人工智能技术前沿与产业应用结课汇报
中国人工智能(AI)产业近年来飞速发展,AI产品和应用深入到各个领域,既影响了人们的生活,也改变着社会的面貌。然而,人工智能是一个复合性的综合学科,AI在赋能不同产业的过程中充满机遇也有着挑战。以向同学们传授人工智能技术前沿进展和产业最新应用示范,从而打造新一代人工智能复合创新型人才为目标,信息学部李秀教授为人工智能项目新生及全院有志于人工智能创新创业同学打造了《人工智能技术前沿与产业应用》课程,以讲座汇报,阳光课堂,小组总结等多样化的形式,让同学们真正深入AI产业一线,早日确立未来学习目标,全院共有162名同学选课。
人工智能是一门极富挑战性的学科——除了计算机科学以外,人工智能还涉及信息论、控制论、自动化、仿生学、生物学、心理学、数理逻辑、语言学、医学和哲学等多门知识。基于人工智能技术的这一特点,李秀教授牵头联合北大,哈工大等兄弟院校及华为、腾讯、商汤、优必选等企业组建了由多位专家大咖组成的授课团队,以夯实基础-技术驱动-跨界融合为主线开设了系列精彩的讲座。 课程的第一堂课就特邀清华大学自动化系脑与认知科学研究所所长季向阳教授,介绍了机器学习的基础理论——季教授从什么情况下可以使用机器学习,为什么机器能够学习,机器是怎样学习的,机器如何才能更好的学习几个问题出发,介绍了统计学等基础学科是如何为机器学习模型的设计与分析提供理论基础的,并强调了核心机器学习算法离不开基础数学理论的指导支撑。 人工智能技术涵盖不同的技术分支,课程围绕物联网技术,人机交互技术,语音处理技术,脑机接口技术等,分别邀请了国内学界专家中国人工智能学会副理事长/北京大学刘宏教授,深圳市人工智能学会理事长/中科院特聘研究员李光林教授;哈尔滨工业大学(深圳)讲席教授/人工智能研究院院长IEEEfellow刘劼教授,上海交通大学计算机系俞凯教授、同济大学汽车学院毕欣研究员对相关技术进行了专题汇报。以李光林教授的神经-机器交互技术专题汇报为例子,李教授重点介绍了神经-机器接口技术及其人工智能协同系统的基本概念与最新进展,内容涵盖神经-机器交互技术概述、神经信息接口技术、脑机接口与人机协同系统、神经肌肉接口与人机协同系统、神经-机器交互技术展望几大方面,让同学们对未来脑机设备的应用充满了期待。图|学界专家授课并与同学们交流
人工智能本身并不是一个单独的产业,而是通过赋能特定的产业产生AI+的效果。为了强化产教融合,本课程整合了华为、腾讯、商汤、美团、平安、优必选、深信服等众多人工智能领军企业的人才培养资源,特邀产业一线专家入校与同学们交流。其中华为云计算机视觉领域首席科学家田奇博士从计算机视觉的概述开始讲起,介绍了计算机视觉技术的发展历程和主要技术梗概,分析了目前计算机视觉的应用场景与市场,并对华为视觉研究计划和进展进行了介绍。腾讯天衍实验室主任郑冶枫博士结合腾讯天衍实验室最新研发工作,介绍了人工智能在医疗上的应用以及技术挑战包括疫情期间如何借助AI进行“抗疫”的故事。优必选CTO,研究院院长熊友军博士则引领了优必选公司研制的Walker和悟空机器人现场走入教室,介绍了智能服务机器人特别是人形服务机器人的国内外研究现状,以及服务机器人所涉及到的主要关键技术研究与发展反向,并对智能服务机器人的市场前景进行了分析。同学们为服务机器人的现场表演献上了热烈的掌声。
图|各人工智能企业专家授课
古语有云:“读万卷书不如行万里路”。在课程负责人李秀教授的协调安排下,课程于2020年10月22日下午开展了阳光课堂活动,120余位选课同学被分为三组,分别前往腾讯,大疆和优必选三家不同领域的典型高科技企业调研参观,在一线体验人工智能技术在不同领域的应用情况与发展前沿。
图|同学们前往高科技企业调研
每节课程结束后,同学们都纷纷提交了对于本节课程的思考与感悟,其中不少同学还以思维导图等方式,条理清晰的展示了自己对于主讲嘉宾讲授内容的理解。在课程的最后,共有十六位同学获得了“优秀作业奖”。
在最后一节课,同学们根据个人兴趣分为了十三个小组分别对十三位主讲老师的相关课题进行调研,整理成调研报告并在课堂上进行汇报展示。在汇报中,同学们有的针对相关领域的最前沿的技术进行了综述性的汇报,有的将主讲老师的内容与自己研究方向相结合谈了自己对于这一领域的理解。
课程感悟:朱羿:“人工智能技术前沿与产业应用”这门课给了我们这些象牙塔内的学生很多与来自工业界大咖接触的机会,近距离地感受到了AI的落地和应用场景,并且嘉宾们来自AI的各个不同细分领域,比如CV、语音、机器人、安全、金融等等,让不同研究方向的同学也能理解其他方向的最新研究动态,收获满满。
游程卉:这学期的“人工智能技术前沿与产业应用”课程内容紧扣前沿和技术两个关键词给我们带来了一系列精彩的讲座,例如来自腾讯的郑冶枫老师分享了腾讯AI抗疫背后的技术内容,华为田奇老师从计算机视觉基础内容讲到华为视觉全面布局。既有深度又有广度,让我受益匪浅,非常感谢课程团队的精心筹备和受邀来校的各位校企专家老师们!
郭冠求:十分幸运能够选上这学期的“人工智能技术前沿与产业应用”课程,除了精彩纷呈的课程讲座外,本课程还为同学们安排了企业参观的活动,我有幸能够前往大疆科技进行参观,了解到在蕴含在无人机背后的技术知识。大疆员工王闯老师为我们详细解读了每一款无人机的研发过程、技术创新点、背后蕴藏的研发者初心、相比业内的其他公司产品的领先之处等等;也讲到了大疆创始人汪涛如何从小便热爱航模与飞行器,从白手起家到领世界无人机事业之潮头的经历。临行前,同学们又很幸运的赶上了展厅中央的黑科技展示——手势识别控制无人机。返程后同学们根据所学知识,积极讨论其中的原理,推断出该技术可利用深度相机捕捉识别后通过深度学习得以实现。
图片|人工智能项目
文字|严江鹏何肃南
排版|何肃南
审核|洪明春
人工智能技术在医药研发中的应用
鉴于人工智能技术在医药领域内得到越来越多的关注,以及在未来新药研发的重要位置,有必要对目前的研究及应用现状进行归纳总结。本文首先概述人工智能的主要方法,论述人工智能的特点,综述人工智能在医药研发各专业领域中的应用情况,讨论国内外实践经验,归纳人工智能应用的关键问题,最后提出建议并总结。
1
人工智能概述
1.1人工智能的主要应用领域
人工智能的主要应用领域包括机器学习、进化计算、图像识别、自然语言处理、认知计算等。除此之外,其他领域仍在持续性发展中。目前机器学习的主流研究方向也是人工智能的重要应用领域,机器学习可以通过计算获得经验来提高系统本身的性能。机器学习可以分为传统机器学习和高级机器学习,传统机器学习包括无监督学习和有监督学习等,高级机器学习则包括深度学习、强化学习和迁移学习等[9-11]。
1.2人工智能的主要发展过程与自身特点
自从1956年人工智能诞生以来,它经历了从高潮到低潮的各个阶段。最近的低潮发生在1992年,当时日本的第五代计算机并未取得成功,其后人工神经网络热潮在20世纪90年代初退烧,人工智能领域再次进入低潮期。直到2006年,GeoffreyHinton提出了深度学习的概念并改进了模型训练方法,突破了神经网络的长期发展瓶颈,人工智能的发展迎来新一轮浪潮。此后,国内外众多知名大学和知名IT企业开展了深度学习、强化学习、迁徙学习等一系列新技术的课题研究。同时,智能医疗、智能交通、智能制造等社会发展的新需求驱动人工智能发展进入了一个新阶段。
人工智能基于先进的机器学习、大数据和云计算,在感知智能、计算智能和认知智能方面具有强大的处理能力。它以更高水平接近人的智能形态存在,主要特点包括:①从人工知识表达到大数据驱动的知识学习技术。②从多媒体数据的子类处理到跨媒体交互。③从追求智能机器到高层人机协作。④从关注个人智能到基于网络的群体智能。⑤从拟人机器人到更广泛的智能自我处理系统。
内容由凡默谷小编查阅文献选取,排版与编辑为原创。如转载,请尊重劳动成果,注明来源于凡默谷公众号。
2
人工智能在医药研发领域的应用现状
本文为全面了解目前研究现状以及关注热点,借鉴杨超凡等[12]的方法,通过Scrapy(爬虫),在百度学术以“artificialintelligenceanddrugdiscovery/research”为关键词进行英文文献搜索,得到共361篇英文文献,爬取到了每一篇文献中摘要、关键词、研究点分析以及发表时间。在进行文献搜集时只搜集了英文文献,因为一方面,人工智能在药物研发领域国外研究起步较早且研究体系相对成熟,形成对比的是国内在该方面领域研究较少;另一方面,本文要爬取信息并对文本进行分词处理,英文由标点符号、空格、单词组成,所以只用根据空格和标点符号便可将词语分开,进行处理时更为便捷和精确。
作为抽象信息的视觉表达手段,信息可视化可用于文档处理和数据挖掘。本文主要使用Python的Pandas数据分析软件包进行文献的可视化处理和可视化分析,为了符合科学的测量原理,使研究结论更加具有时间敏感性,首先需要进行数据清理。为了更形象、更直观地展现出人工智能在医药研发方面的发展趋势,将对本文年度发表文章数使用Matplotlib绘图库进行绘图分析。通过数据清洗后,分析年度相关发表论文量与发表文章数量趋势,见图1和图2。
通过以上可视化分析,可以清楚了解到人工智能在医药研发方面的研究发展趋势,与上文分析人工智能发展趋势基本一致,同时也能发现近5年人工智能在医药研发方面研究趋于减少乃至于停滞,亟须整个行业进一步投入以及寻找发展新活力。为了确认人工智能在医药研发重点应用领域,利用Python对爬取到的数据中关键词、摘要、研究点分析进行了系统的词频统计,见表1。
从上述表1关键词频可以直观看到,关键词词频数越大,说明该主题在人工智能医药研发方面中的关注度越高,研究越热。高频词中机器学习(MachineLearning)、药物研发(DrugDiscovery)、医疗保健(HealthCare)、数据库(Databases)、数据挖掘(Datamining)、数据分析(DataAnalysis)、数据可视化(DataVisualization)、数据交流(DataCommunication)、归纳逻辑编程(Inductivelogicprogramming)、癌症(Cancer)、神经网络(NeuralNetworks)、药物制剂(PharmaceuticalPreparations)、计算机科学(Computerscience)、医药制造业(PharmaceuticalIndustry)由于研究内容过于宽泛抑或与在医药研发方面的研究相关性不足所以被剔除。通过词频分析、清洗无关研究领域的词汇、综合近义词汇后最终确定了7个频次靠前的人工智能在医药研发重点研究领域:靶点药物研发(DrugTargetsDevelopment)、药物挖掘(DrugMining)、化合物筛选(CompoundScreening)、预测ADMET性质(PredicationofADMETProperties)、药物晶型预测(CrystalStructurePrediction)、病理生物学研究(Pathophysiology)、药物重定位/药物再利用(DrugRepurposing)。人工智能的主要应用领域包括机器学习、进化计算、图像识别、自然语言处理、认知计算,7个频次靠前的人工智能在医药研发重点研究领域在这5个主要应用领域各有涉及,具体关系如图3所示。
2.1人工智能技术在医药研发的应用现状概述
2.1.1靶点药物研发
研究和开发新药的关键是寻找、确定和制备药物筛选目标分子药物靶点。靶点药物是指药物在体内的结合位点,包括生物大分子,比如基因座、受体、酶、离子通道和核酸等,而识别新的有效的药物靶点是新药开发的重中之重,因此发现和验证大量分子靶标所涉及的工作极大增加了药物开发的负担[13]。利用机器学习算法可以组合设计并评估编码的深层知识,从而可以完全应用于旧时的单目标药物发现项目[14]。研究人员首先研究了靶点选择性结合均衡小分子的可能性来确定那些最易于化学处理的靶点,对于双特异性小分子,设计过程类似于单一目标药物。关键的区别在于功效必须同时满足2个不同的目标。初创公司Exscientia是AI公司这方面的典型代表,Exscientia针对这些靶点药物通过AI药物研发平台为GSK公司的10个疾病靶点开发创新小分子药物,来发现临床候选药物[15]。Exscientia系统可以从每个设计周期的现有数据资源和实验数据中学习,这些原理近似于人类自我学习的过程,但AI在识别多种微妙和复杂的变化以平衡药效方面更具效率。Exscientia首席执行官霍普金斯表示,其人工智能系统已经可以用传统方法的1/4时间和成本得到新的候选药物[16]。目前,公司已与众多国际知名制药公司建立了战略合作关系,如Merck公司、Sunovion公司、Sanof公司、Evotec公司、强生公司。
2.1.2药物挖掘
医学、物理学或材料科学领域的专业论文非常广泛,但这些专业论文中有大量独立的专业知识和研究结果,快速且有针对性地组织和连接这些知识和发现的能力对于药物挖掘是极其重要的。使用人工智能可以从大量的科学论文、专利、临床试验信息和非结构化信息中生成有用的信息。通过自然语言处理算法的深度学习优化,分析和理解上下文信息,然后进一步学习、探索、创建和翻译它所学到的知识以产生独特结论。该技术通过寻找可能遗漏的连接使以前不可能的科学发现成为可能:可以自动提取药学与医学知识,找出相关关系并提出相应的候选药物,进一步筛选对某些疾病有效的分子结构,使科学家们能够更有效地开发新药。2016年BenevolentAI公司曾通过人工智能算法在1周内确定了5种假造药物,用于治疗肌萎缩侧索硬化。BenevolentAI使用AI算法建模来确认化合物对睡眠的潜在影响,这是解决帕金森病相关嗜睡症状的一大机会。该公司目前的药物研发产品组合表明,它可以将早期药物研发的时间缩短4年,并有可能在整个药物研发过程中将药物研发的平均效率提高60%[17]。
2.1.3化合物筛选
化合物筛选是指通过标准化实验方法从大量化合物或新化合物中选择对特定靶标具有较高活性的化合物方法,这样通常需要很长的时间和较多的成本,因为要从数万种化合物分子中选择与活性指数相匹配的化合物。Atomwise是硅谷的一家人工智能公司,开发了人工智能分子筛选(AIMS)项目,该项目计划通过分析每种疾病的数百万种化合物来加速拯救生命药物的开发。同时,该公司开发了基于卷积神经网络的AtomNet系统,该系统已经学习了大量的化学知识和研究数据。该系统分析化合物的构效关系,确定药物化学中的基本模块,并用于新药发现和新药风险评估。目前,AtomNet系统已经掌握了很多化学知识和研究资料,2015年AtomNet只用1周时间已经可以模拟2种有希望用于埃博拉病毒治疗的化合物[18]。
2.1.4预测ADMET性质
ADMET性质是衡量化合物成药性最重要的参考指标[19-20],化合物ADMET预测是当代药物设计和药物筛选中十分重要的方法。药物的早期ADMET特性主要使用人或人源化组织功能蛋白作为药物靶点,体外研究技术结合计算机模拟研究药物与体内生物物理和生物化学屏障因子之间的相互作用。为了进一步提高ADMET性质预测的准确性,部分企业通过深度神经网络算法探索了结构特征(包括处理小分子和蛋白质结构)的有效提取,加快了药物的早期检测和筛选过程,并大大减少了研发投入和风险。典型的公司包括晶泰科技等[21]。
2.1.5药物晶型预测
多晶型现象是一种物质可以存在于2种或更多种不同晶体结构中的现象,对于化学药物,几乎所有固体药物都具有多态性。由于晶型的变化可以改变固体化学药物的许多物理性质和化学性质,因此存在几种由于晶型问题而导致上市失败的药物,因此,晶型预测在制药工业中具有重要意义。使用人工智能有效地动态配置药物晶型可以完全预测小分子药物的所有可能的晶型,与传统的药物晶型研发相比,制药公司不必担心缺少重要的晶型。此外,晶型预测技术大大缩短了晶体的发展周期,更有效地选择了合适的药物晶型,缩短了开发周期并且降低了成本[22]。
2.1.6病理生物学研究
病理生物学是一门研究疾病发生、发展和结果的规律和机制的科学。它是传播临床医学和基础医学的“桥梁”学科。病理生物学研究是医学研究和发展的基础。肌萎缩侧索硬化症(ALS,也称为渐冻症)是一种毁灭性的神经退行性疾病,确切的发病机制尚不清楚。ALS的突出病理特征是一些RNA结合蛋白(RBPs)在ALS中发生突变或异常分布。人类基因组中至少有1542个RBPs,并且仅发现了与ALS相关的17个RBPs。IBMWatson是认知计算系统和技术平台的杰出代表。IBMWatson基于相关文献中的广泛学习,构建模型以预测RBPs和ALS相关性。2013—2017年Watson对引起突变的4个RBPs进行了高度评价,证明了该模型的有效性,然后Watson筛选了基因组中的所有RBPs,成功鉴定了5个ALS中发生变化的新RBPs[23]。
2.1.7药物重定位
多年来,研究人员逐渐认识到,提高疗效的最佳策略是基于现有药物治疗某些疾病,发现新的适应证并用于治疗另一种疾病。Visanji博士与IBMWatsonforDrugDiscovery合作,使用Watson强大的文献阅读和认知推理技巧,在几分钟内筛选出3500种药物,并按最佳匹配顺序排列。然后研究人员根据这个“药物排名表”提出了6种候选药物,并在实验室进行了测试。第一种药物(已经得到FDA批准,但该适应证不包括帕金森病)已经在动物实验中初步验证[24]。
2.2人工智能技术
在医药研发方面国内发展现状我国在这方面起步相比于国外较晚,2015年百度公司和北京协和医院开展了癌症研究,结合北京协和医院医学研究优势与百度大数据、人工智能技术,找到了一个重要标志物用于早期诊断与中国大样本密切相关的食管癌,为食管癌提供早期筛查和诊断,为食管癌药物的开发提供靶标,这是中国医学研究和发展领域的重要一步[25],这是我国人工智能在医药研发领域迈出的重要一步。
目前国内相关研究企业数量较少,仍处于起步状态。比较著名的企业有晶泰科技和深度智耀及冰州石生物技术公司。晶泰科技是谷歌与腾讯两大科技巨头共同投资的第一家人工智能公司,它也是中国第一家宣布与世界顶级制药公司进行战略合作的人工智能药物算法公司。该公司在过去严重依赖于实验和误差的一些药物研发步骤上使用药物晶型预测,以极其准确和快速的算法预测结果,帮助制药公司提高研发效率,最后加速药物开发。深度智耀是以人工智能为基础的药物研发和决策平台,以“决策大脑”为核心产品,同时公司已推出10款产品,并于近日发布了新一代人工智能药物合成系统,该系统通过大量学习公共专利和论文数据库,大大提高了科学家的工作效率[26-27]。
另外,深度智耀还推出智能化医学写作,是在自然语言处理等助力下,自动写作绝大多数药物注册类文档。冰洲石生物科技(AccutarBiotech)利用人工智能针对生物药进行药物筛选,已经利用人工智能平台进行了药物设计,其中一款药物针对乳腺癌,适用于乳腺癌常用药物tamoxifen后3~5年复发的患者,已经经过了细胞验证和初步小鼠动物实验,正在美国申请相关专利,并计划推进新药临床研究申请。
但人工智能在我国医药研发方面仍存在部分难点:
其一人才支持是一大问题,全世界大约有22000名具有博士或以上学历的人工智能从业者和研究人员,而在中国只有约600名。另外,国内人工智能人才几乎被几家主要的龙头企业所垄断。数据显示,未来中国人工智能人才缺口高达500万[28]。人才集中是任何行业进一步发展的重要基础,也是人工智能在医药行业应用的关键因素。
目前,人工智能与药学的融合提升了对人才的需求。目前,高校培训与市场需求存在差距,产出人才远远少于市场需求。国家要重视复合型人才的培养,注重培养综合人工智能理论、方法、技术、产品和应用的垂直复合型人才,以及掌握经济、社会、管理、药学的复合型人才。当地政府也需要进一步加强产学研合作,鼓励高校、科研院所和企业合作开展人工智能学科建设,开展创新型专业人才的继续教育,建立公平合理的人才评估机制。
其二,国内创新药研发起步较晚,与国外相比,对于优质数据的积累还有一定距离。但利好消息是某些国内企业比如晶泰科技,在数据积累上颇为优秀。晶泰科技的数据来源是公共数据和私有数据结合,这其中包括晶泰科技在国内外工业、学术界的合作伙伴的积累。同时,晶泰科技通过量化计算算法也可以自行生成大量高质量的数据,这是其一大优势。总体大环境上,中国的医药大数据存在数据不完整、数据质量低、数据共享水平低等问题,医药数据的数量和质量将成为制药行业人工智能发展的主要障碍。
制药行业的专业门槛很高,而且链条很长。此外,中国长期的“多头管理”制度也是导致国内药品数据极度分散的重要原因。此外,医药领域的监管政策和体制改革也很频繁,使得获得连接历史药物数据变得困难。这些都会导致医药数据统计在完整度和精准度上的不足,从而影响相关决策。因此,国家应该在原有的标准管理体系框架内,加强信息和标准的整合,加强国家、行业现有相关标准的普及推广,并出台一系列激励和惩罚措施来推动标准的应用和落地。建立一套有效、完备、真实可靠的数据评估体系,进一步提升数据质量。同时应该加快完善数据共享开放机制,发挥数据应用价值,为人工智能在医药行业应用提供有质有量的数据支撑。
其三,与当前人工智能在医药领域发展火热形成鲜明对比的是政策法规的制定相对滞后。国内目前尚未有人工智能在医药研发方面的立法,但它已经受到学术界和医药行业的关注。2018年1月6日,第一届全国“人工智慧与未来法治”研讨会在西北政法大学举行。
参会者认为,未来人工智能将不能单独提出提供人性化的法律服务,仍然需要人们完成一些辅助工作。展望未来,人工智能法律建设将涉及人格权、知识产权、财产权、侵权责任认定、法律主体地位等方面[29]。目前,人工智能创作的知识产权归属问题、人工智能研发人员法律权利和义务定义问题、人工智能可能需要监管等,都没有明确的法律法规规定[30]。缺乏法律支撑的人工智能在医药行业的前景并不明朗。为了解决以上问题,国家应该加强人工智能知识产权保护,当前许多应用由医院、科研院所、人工智能企业等多方联合开发,最终知识产权归属需要进行明确。另外,建立追溯体系,保证算法的透明,使人工智能的行为及决策全程处于监管之下,明确研发者、运营者和使用者各自的权利和义务是重中之重。
3
人工智能在医药研发中的应用总结
由大数据支撑的广泛互联、高度智能、开放互动和可持续发展的医药产业,是未来发展的趋势,借助人工智能技术推动医药产业发展具有重要意义。虽然人工智能技术在医药产业各专业领域已有较多的应用研究,但总体上还停留在初级研究阶段,在可靠性与准确性方面仍存在部分问题,离实际广泛应用尚有差距。但是,人工智能技术为医药研发带来了无限可能,还需众多医药产业相关人员与政府能够紧抓历史机遇,积极投入,深入开展相关研究工作。
参考文献
详见中国新药杂志2020年第29卷第17期
免责声明
我们尊重原创作品。选取的文章已明确注明来源和作者,版权归原作者所有,如涉及侵权或其他问题,请联系我们进行删除。
内容由凡默谷小编查阅文献选取,排版与编辑为原创。如转载,请尊重劳动成果,注明来源于凡默谷公众号。返回搜狐,查看更多
人工智能在医疗健康领域的应用及挑战
一、人工智能概述
1.人工智能发展历程
人工智能(ArtificialIntelligence,AI)是对人的意识和思维过程进行模拟并系统应用的一门新兴科学,其发展经历了三次浪潮。1956年,美国Dartmouth大学举行的聚会是人工智能正式诞生的标志,这一时期使用机械化思考方式和逻辑学知识来解决问题,但对复杂的问题束手无策;20世纪80年代,Hopfield神经网络和BT训练算法的提出,使AI再次兴起,出现了语音识别、翻译等计划,但迟迟未进入人们的生活之中;2006年,Hinton提出深度学习技术,并随着互联网的普及和应用,AI在各个领域迅速得到发展和应用。
2.人工智能的基础和要求
人工智能的核心是算法,基础条件是数据及计算能力。因此,可以认为医疗与人工智能结合的关键要素是“算法+有效数据+计算能力”。先进算法能提升数据使用效率。在医疗领域,有效的医疗大数据是人工智能应用的基础,医疗数据的有效性包括三个方面:电子化程度、标准化程度以及共享机制。电子化程度强调数据和病历的供给量;标准化程度强调数据之间的可比性和通用型;共享机制强调数据获取渠道的便利性和合法性。随着互联网的普及,我国各级医疗机构、健康管理机构、行政机构、居民都已普遍了解互联网并链接互联网,给大数据的实现奠定了基础。
3.医疗健康领域对人工智能的需求
近年来,借助人工智能技术,开展智慧医疗成为医疗领域的热点。2017年7月,国务院印发的《新一代人工智能发展规划》提出,要建立新一代人工智能基础理论体系和关键共性技术体系,加快培养聚集人工智能高端人才。同年12月,工信部印发《促进新一代人工智能产业发展三年行动计划(2018—2020年)》,对医疗人工智能的发展做出了详细的规划,提出要着重在医疗影像辅助诊断系统等领域率先取得突破。2018年,国务院办公厅印发《关于促进“互联网+医疗健康”发展的意见》,明确支持“互联网+医疗保健”的发展,允许依托医疗机构发展互联网医院。事实上,除了医疗影像辅助诊断对AI具有巨大的需求外,辅助诊断、辅助手术、辅助护理、辅助检查、辅助医院管理、辅助挂号、辅助减少计量误差、健康管理、药品研发等医疗健康领域对AI技术都有强大需求。
随着我国人口老龄化程度不断加深,慢性病、癌症发病率逐年上升,以人力为主的各类卫生资源配置不足、分布不均的困境越发突显,AI作为一门综合性极强的交叉学科,将在医疗领域内得到越来越多的应用,并将成为影响医疗行业发展的重要科技手段。
二、医疗人工智能应用现状
目前,人工智能在医疗健康领域已得到了初步的应用,主要集中在辅助影像和病理诊断、辅助护理、辅助随访、基层医生助手、医院智能管理及辅助健康管理等方面。
1.辅助影像和病理诊断
医学影像及病理切片作为结构化数据,是AI应用的绝佳场所。2015年起举办的CAMELYON16挑战赛,比较AI和病理医生在检测乳腺癌患者淋巴结转移病理切片中转移灶的潜力,结果显示AI在诊断模拟中的表现优于病理医师。目前,人工智能辅助影像和病理诊断在国内发展迅速,2006年我国首家独立临床病理诊断专业机构——上海复旦临床病理诊断中心成立,启用数字病理远程会诊平台,免去患者来回奔波。2015年沸腾医疗有限公司以“E诊断医学影像服务平台”为核心,通过“E诊断”医学影像技术专业输出及专业精准的远程医学影像诊疗合作,实现了远程医学影像信息交互的目标。
2.辅助护理
我国台湾医院应用AI产生护理诊断,AI建议的诊断与护士建议的诊断一致百分比高达87%。国外AI已普遍运用于人们的日常生活护理中,日本研究机构Riken开发的机器人Robear,能将病人从床上抬起,帮助行动不便的病人行走、站立等;应用AI开发的机器人能为老年及瘫痪患者提供喂饭、日常照护等服务。澳大利亚养老院用机器人做护工,通过给机器人输入程序,使其可以与老年人一对一交流,消减老年人的苦闷。AI在护理领域的应用,极大减轻了护理人员负担,为患者提供了温暖且有力的服务,是应对老龄化社会的有力帮助。
3.辅助随访
随访是医院常规工作的重要组成部分,然而目前的卫生人力无法满足所有患者的随访需求。AI的发展打破了长期随访在时间和空间上的限制。2017年,海宁市中心医院首次应用AI智能随访助手,采用声纹预测思维算法,语言识别准确率高达97.5%。2018年,上海交通大学医学院附属仁济医院东院日间手术病房正式上线AI随访助手,随访助手可以根据问题模板模拟医生进行电话随访,主要询问患者出院后是否发生呕吐、疼痛、发热、伤口渗血感染等不良情况。随访助手的上线不仅大大提高了随访效率,还确保了随访信息采集的全覆盖及准确性。同时,随访助手可以根据不同的手术种类,制订个性化随访计划,通过终端自动拨打患者电话,模拟人声与患者进行术后随访沟通,并有效采集患者回答的信息。随访结束后,医务人员能清楚地了解每位患者的术后情况。
4.基层医生助手
基层医院在实现“健康中国”战略中有着举足轻重的作用,但目前其服务能力难以满足广大群众的基本需求。AI通过学习海量的专家经验和医学知识,建立深度神经网络,并在临床中不断完善,协助基层医生给群众提供高质量的服务。2017年,科大讯飞和清华大学联合研发的“智医助理”以超过合格线96分的成绩成为全球第一个通过国家执业医师资格考试综合笔试测评的AI机器人,可以辅助基层医生提升诊疗质量和效率。2017年9月,国家在安徽省旌德县首次开展全科医生机器人辅助基层医疗试点,深受基层群众欢迎。
5.医院智能管理
人工智能技术在医院的应用,能提高医院为患者提供正确治疗方案的精准性,减少了患者的不必要支出,并且能合理地为患者安排治疗计划。澳门仁伯爵综合医院应用AI技术,在电子处方系统内设置安全警示,确保用药规范,防止滥用抗生素等药物。美国IBM公司应用机器学习方法,自动读取患者电子病历相关信息,得出辅助诊断信息,实现医疗辅助诊断。
6.辅助健康管理
传统的健康管理技术在信息的获取、处理和应用上相对落后,将AI应用于健康管理,通过对健康数据实时采集、分析和处理,评估疾病风险,给出个性化、精准化的基本管理方案和后续治疗方案,能有效降低疾病发病率和患病率。健康管理机构可以通过手机APP或智能可穿戴设备,检测用户的血压、血糖、心率等指标,进行慢性病管理。国外Welltok公司利用“CaféWell健康优化平台”,管理用户健康,包括压力管理、营养控制以及糖尿病护理等,并在用户保持健康生活习惯时给予奖励。同时,为用户提供更灵活、全方位的健康促进方案,包括阶段性临床护理、长期保持最佳健康状态等多个方面。
三、人工智能存在的问题和挑战
目前,人工智能+健康医疗正在起步阶段,要保证AI在医疗健康领域应用的深入发展,仍有许多亟需解决的问题和挑战。
1.监管缺失
目前,国内尚未出台相关法律法规对AI进行监管,而作为AI的基础医疗大数据也没有完善的法律条文来规范,对数据的隐私保护、责任规范、安全性等没有明确的法律指示。AI在医疗健康领域应用的质量标准、准入体系、评估体系尚是空白,无法对AI数据和算法进行有效验证和评价,不利于监管,阻碍了AI产品在医疗健康领域的应用和发展。
2.数据质量
高质量的医疗数据对提升AI在医疗健康领域应用的准确性有着至关重要的作用,尽管我国医院的数据庞大,但大部分是非结构化数据,不能发挥出“大数据”挖掘的价值。由于疾病的复杂性,数据维度、特性各不相同,质量参差不齐,如将数据细分到每种疾病,可利用的样本量很少。同时, AI的深度学习需要使用大规模规范化数据进行训练,细微的数据误差会对AI发展产生负面影响。我国当前医院与医院、院内科系互不相连,没有统一标准的临床结构化病历报告,医生手写病历不规范,临床用药、检查等细节缺失,患者离开医院后失访率较高等各种原因,造成医疗数据错漏、数据质量低下。
3.伦理问题
AI产品做出的医疗决策是通过机器学习大量的医疗数据模拟医生做出的,大规模医疗数据在使用过程中会有泄露的风险,对个人隐私造成影响。决策是基于算法,而算法在分析数据过程中也会获得类似于人类偏见的思想,导致出现算法歧视的不良后果。算法歧视将带来一系列伦理问题,是AI不可回避的挑战。
4.医保支付
AI应用于医疗健康领域,最核心的问题是谁来买单,因此医保覆盖是一个绕不开的话题。如果由患者自费,那么市场就会缩小,AI产业无法向前发展,也很难证明AI在医疗领域的有效价值。目前,公立医院医保报销压力较大,将AI产品纳入医保,医保报销的资金压力将会激增。同时,互联网医疗由于其特殊的属性,还面临异地结算的难题。
5.人才匮乏
目前,既懂医疗又懂AI技术的复合型、战略型人才极其短缺,其中10年以上资深人才尤为缺乏。同时,医务人员对AI的接纳度不足,部分医务人员甚至对AI抱有抵触心理。AI技术的使用需要对医务人员进行专业化规范培训,在此背景下,建立完善的人才培养和人才引进机制是重中之重。
四、讨论与建议
1.加强行业指导和监管
政府部门应尽快出台人工智能相关法律法规,加强对人工智能的监管,通过强化监管,加强对数据的保护,防止数据泄露导致居民隐私受损,甚至危害国家安全。同时,还应建立AI在医疗健康领域应用的标准规范,保障AI产品的质量。此外,政府部门应明确AI在医疗健康领域的定位,明确医生不会被AI取代,AI只是帮助医生进行临床诊疗,方便患者获得高质量的医疗服务,医生仍对诊断结果负主要责任。政府部门应理性看待新一轮的AI浪潮,提升居民对AI的接纳度,积极引导居民、资本和相关机构按更加合理的速度和方向发展医疗AI。
2.加强核心技术人才培养
面对AI人才匮乏的严峻形势,政府要加强人工智能领域专业建设,培养AI算法和技术方面的优秀人才。推进“新工科”建设,形成“人工智能+X”复合专业培养新模式,推动AI领域国家级精品在线课程建设。同时,建立人工智能学院、研究院或交叉研究中心,引导高校通过增量支持和存量调整,加大对人工智能领域核心人才的培养力度。在职业院校大数据、信息管理相关专业中增加人工智能相关内容,培养人工智能应用领域技术人才。另外,要加强对医务人员使用AI的技能培训,保证AI产品能更好地服务于临床实践。
3.夯实数据基础
IBM公司用于辅助医生设计癌症治疗方案的AI产品沃森,由于使用的不是真实患者的数据训练沃森,沃森开出了不合适且危险的治疗方案。可见,数据的质量和数量是AI竞争的核心所在,目前互联网的基础体系已初步健全,但仍存在许多虚假数据,这与脱离统计模型的桎梏、用全数据即真实数据直接分析的大数据初衷相悖。因此,应打破医疗机构、政府部门的数据壁垒,建立数据共享机制,促进不同机构之间、地区之间的数据联网,形成真正的大数据。由于医疗健康数据种类繁多、标准不统一,应加快医疗数据电子化、标准化的进程,形成规范化AI数据集,夯实AI应用的数据基础。同时,加强信息隐私保护建设,研究数据脱敏技术,保障医疗数据可以实时、准确地进行流通,避免数据泄露的风险。
4.深度推进互联网应用
目前,我国东部地区医疗健康机构已具备互联网基础,但部分中西部地区尚有欠缺,而这些地区由于经济水平较低、医疗水平较差,对远程医疗、人工诊疗助手等AI需求强烈,建议国家有侧重地对中西部地区互联网建设给予政策倾斜,促进互联网应用的全面发展。加强基层医疗机构互联网应用,引导优质的医疗资源下沉至基层,实现资源共享,提高医疗服务水平,推动分级诊疗制度。
五、小结
人工智能的记忆力和计算能力远优于人脑,且可扩充脑容量、延伸脑功能、增强脑负荷,能够成为基层医生的智囊、三甲医院医生的秘书,弥补卫生人力资源不足。目前,我国人工智能尚处于起步阶段,仅具有计算智能,“人工智能+医疗健康”应用的领域将会越来越广,尤其适合社区,通过早发现、早诊断、早治疗,有针对性地进行人群健康干预,降低后续的医疗成本。在医院管理方面,AI可简化行政管理和临床医疗管理流程;在影像诊断领域,AI可快速阅读成像,进行分析和诊断;在医疗资源方面,AI能解决昂贵的剂量误差问题;在诊疗方面,AI可为特定病种初诊,进行辅助手术。总之,AI将在人类生命健康全周期中发挥更大的作用,但真正用于卫生健康的核心领域可能还需一个漫长的过程。
作者:金春林、何达,上海市卫生和健康发展研究中心(上海市医学科学技术情报研究所)。