博舍

为什么人工智能用的是GPU gpu和人工智能

为什么人工智能用的是GPU

通常在我们的映像中,计算机处理运算的,都是cpu,但人工智能的运算使用的是gpu,图形处理器(英语:GraphicsProcessingUnit,缩写:GPU),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。

在GPU设计之初,并非针对深度学习,而是图形加速,在NVIDIA推出CUDA架构之前,GPU并无太强对深度学习运算能力的支持。而如今,NVIDIA可以提供基于其GPU的从后端模型训练到前端推理应用的全套深度学习解决方案,一般的开发人员都可以非常容易地上手使用GPU进行深度学习开发,或者高性能运算。而CUDA架构的开发,耗费了NVIDIA巨大的人力物力。可以说,是CUDA这个中间层(computingframework)的优化,才使得开发者真正爱上了GPU,NVIDIA胜在软件。而CUDA还不能称之为算法,它只是计算硬件与算法之间的桥梁。

对于人工智能计算架构来说,一般可以归结为三类模式:CPU+GPU,CPU+FPGA,CPU+ASIC(专用集成电路)。其中,应用于图形、图像处理领域的GPU可以并行处理大量数据,非常适合深度学习的高并行、高本地化数据场景,是目前主流的人工智能计算架构。

如果把科技产业划分为三个时代:PC时代、移动互联网时代和AI时代。目前,我们处于移动互联网时代的末期和下一个时代的早期,即以深度学习、无人驾驶为主的AI时代。时代转变会引起一系列的变化。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇