图像识别的引入和应用前景
一、图像识别技术的引入。图像识别是人工智能的重要研究方向。图像识别技术的发展经历了文字识别、数字图像处理识别、目标识别三个阶段。顾名思义,图像识别是对图像进行各种处理、分析,最后确定要研究的对象。如今的图像识别已经不仅仅是用人的眼睛来识别,而是借助了计算机技术。尽管人的识别能力很强,但在高速发展的社会中,人们对自身识别能力已无法满足的需求,于是出现了计算机图像识别技术。正如人类研究生物细胞一样,完全用肉眼来观察细胞是不现实的,因此自然会出现显微镜等用于精确观察的仪器。当某个领域具有固有技术不能解决的需求时,相应的新技术就会产生。图像识别技术也是如此,这项技术的产生是为了让计算机代替人类处理大量的物理信息,解决了人类无法识别或识别率特别低的信息。
二、图像识别技术的应用与前景。电脑图像识别技术在公共安全、生物、工业、农业、交通、医疗等领域有着广泛的应用。比如,交通方面的车牌识别系统;治安方面的人脸识别技术;指纹识别技术;农业方面的种子识别技术、食品品质检测技术;医疗领域的心电图识别技术等。伴随着计算机技术的不断发展,图像识别技术不断完善,算法也在不断完善。影像是人类获取和交换信息的主要来源,图像识别技术也是未来研究的重点。今后计算机图像识别技术将会在更多的领域崭露头角,其应用前景不可限量,人类的生活将更加离不开图像识别技术。
图像识别技术是新兴的技术,但是它的应用已经相当广泛。而且,图像识别技术也在不断发展壮大,随着科技的不断进步,人们对图像识别技术的理解也会越来越深入。在当今的生活中,图像识别技术将更加强大,更加智能化,给人类社会带来更大的应用领域。21世纪是信息时代,不可能想象出离开图像识别技术后的生活将会是怎样。图像识别技术是当今人类乃至未来生活的重要技术。
机器视觉检测技术的应用和发展前景
原标题:机器视觉检测技术的应用和发展前景随着技术的进步和智能工厂的发展,视觉检测设备在过去十年中发生了巨大变化。预计到2022年,全球视觉检测设备市场将增长近一倍,达到136.2亿美元,因为行业对质量检测的要求增加了。亚太地区将继续成为全球最大的市场,到2022年将占收入的38.4%。在技术,灵活性,效率和准确性方面表现出高度创新的外观检测供应商将在不断发展的市场中取得最大的成功。互联网的高速发展,使得物流业走势迅猛,不仅是每年一度的京东购物节和淘宝节让物流人员高压负重,喘不过气,就连现在的日常外卖派送,超市派送也使得快递人员人手不断速增,美团外卖布局无人物流,京东机器人物流拣货已开始应用,机器人工作,为人们的生活带来了巨大的便利性。机器人逐渐成为市场的宠儿。
如今,我们的身边已然充斥着各种类型的机器人,在制造、运输、生活等各领域起着非常重要的作用。比如机器人代步车,扫地机器人等。而让这些机器人拥有一双“智慧”双眼的正是机器视觉技术,得益于机器人产业的规划发展,机器视觉技术的应用就有非常广阔的空间。机器视觉是人工智能正在快速发展的一个分支。简单说来,机器视觉就是用机器代替人眼来做测量和判断。机器视觉基于仿生的角度发展而来,比如模拟眼睛是通过视觉传感器进行图像采集,并在获取之后由图像处理系统进行图像处理和识别。
机器视觉检测技术的应用
1、视觉引导和定位应用
视觉定位要求机器视觉系统能够快速准确地找到被测零件并确认其位置,上下料使用机器视觉来定位,引导机械手臂准确抓取。在半导体封装领域,设备需要根据机器视觉取得的芯片位置信息调整拾取头,准确拾取芯片并进行绑定,这就是视觉定位在机器视觉工业领域最基本的应用。此外,在半导体制造领域,芯片位置信息调整拾取头非常不好处理,机器视觉则能够解决这个问题,因为需要准确拾取芯片以及绑定,这也是视觉定位成为机器视觉工业领域最基本应用的原因。
2、外观缺陷检测应用
检测生产线上产品有无质量问题,该环节也是取代人工最多的环节。例如机器视觉涉及到的医药领域,其主要检测包括尺寸检测、瓶身外观缺陷检测、瓶肩部缺陷检测、瓶口检测等。伴随着现代工业自动化的发展,机器视觉检测被广泛应用到各种各样的检查、测量和零件识别,例如新能源动力电池表面缺陷检测、电子元器件识别、磁性材料外观缺陷检测、产品包装上的条码和字符识别等,这类应用的共同特点是连续大批量生产、对外观质量的要求非常高。随着经济水平的提高,机器视觉检测越来越受到重视。它可以提高合格产品的生产能力,在生产过程的早期就报废劣质产品,从而减少了浪费节约成本。
展开全文3、高精度检测应用
有些产品的精密度较高,达到0.01~0.02m甚至到u级,人眼无法检测必须使用机器完成。最典型的案例就是动力电池毛刺检测、pcb电路板检测等。以及药用玻璃瓶检测,医药领域也是机器视觉的主要应用领域之一。
4、图像识别应用
图像识别就是利用机器视觉对图像进行处理、分析和理解,以识别各种不同模式的目标和对象。可以达到数据的追溯和采集,在新能源电池、电路板、电子元器件、五金配件、食品、药品等领域应用较多。最典型的案例就是识别二维码。二维码和条形码是我们生活中极为常见的条码。在商品的生产中,厂家把很多的数据储存在小小的二维码中,通过这种方式对产品进行管理和追溯,随着机器视觉图像识别应用变得越来越广泛,各种材质表面的条码变得非常容易被识别读取、检测,从而提高现代化的水平、生产效率大大的提高、生产成本却逐渐降低。
5、物体分拣应用
在机器视觉应用环节中,物体分拣应用是建立在识别、检测之后的一个环节,通过机器视觉系统将图像进行处理,结合机械臂的使用实现产品分拣。在过去的生产线上,是用人工的方法将物料安放到指定地点,再进行下一步工序。而现在则是使用自动化设备分料,其中使用机器视觉系统进行产品图像抓取、图像分析,输出结果,再通过机器人,把对应的物料、放到固定的位置上,从而实现工业生产的智能化、现代化、自动化。常用于食物分拣、快递主动分拣、棉花纤维分拣等,节约人工、提升速率、进步产物质量成为了当下经济情况下企业生计的必经之路,应用机器视觉检测技巧将能帮助企业在剧烈的竞争中立于不败之地。
深圳市昊天宸科技有限公司是一家集研发、专属定制及销售为一体的高新科技企业,生产线设备升级改造方案提供商。自成立以来,公司就一直专注于机器视觉检测领域,自主研发生产机器视觉检测设备、视觉检测自动化设备、机器视觉外观检测设备、光学自动化检测设备、CCD视觉检测设备、光学筛选机、机器视觉检测系统,同时提供定制化机器视觉检测解决方案,为各大企业厂家提供非标自动化检测设备,针对新能源电池、PCB线路板、精密部件、电子元器件等领域产品的尺寸测量、外观缺陷、字符识别等方面进行自动化检测,帮助客户提高生产效率,提高产品质量,降低人工成本,增强市场竞争力。返回搜狐,查看更多
责任编辑:图像识别(一):发展与演进
0分享至随着计算机技术的发展,科学技术的不断进步,图像识别技术的应用日益广泛,例如:在一些公司中,通过人脸识别或指纹识别进行员工考勤打卡;支付宝通过人脸识别的方式进行支付;在交通管理系统中,通过采集汽车牌照来识别车辆是否有违规违章行为;在无人监考的考试中,通过识别考生的肢体动作来判断考生是否有作弊行为;在农业方面的种子识别技术、食品品质检测技术;在医学中的心电图识别技术等。图像识别已经融入在我们的日常生活中,并随着社会实践中越来越丰富的应用场景,被识别的对象内容也越来越复杂。近年来人工智能、深度学习等科学技术的快速发展,图像识别技术也日趋成熟,并在工业、农业、交通、医学等各个领域发挥着至关重要的作用。一、图像识别技术的发展图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别,应用非常广泛,并且已经研制出了许多专用设备。数字图像处理和识别至今也有近50年历史了,数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。简言之,图像识别的发展经历就是从简单到复杂的识别过程。二、图像识别问题的方法在图像识别的问题中,其数据本质是模式空间到类别空间的映射问题。目前主要的识别方法有三种:统计模式识别、结构模式识别、模糊模式识别。统计模式识别是结合了统计概率论的贝叶斯决策系统进行模式识别,首先根据待识别对象的所包含的原始数据信息,从中提取出若干能够反映该类对象某方面性质的相应特征参数,并根据识别的实际需要从中选择一些参数的组合作为一个特征向量,根据统计决策的原理对特征空间进行划分,从而达到识别不同特征对象的目的。主要的分类方法有判别函数法、非线性映射法、K-近邻分类法、特征分析法等。结构模式识别是根据识别对象的结构特征,将复杂的模式结构先通过分解,划分为多个相对更简单的且更容易区分的子模式,若得到的子模式仍有识别难度,则继续对其进行分解,直到最终得到的子模式具有容易表示且容易被识规的结构为止,通过这些子模式就可以复原原先比较复杂的模式结构,主要用于需要对识别对象的各部分之间的联系进行精确识别时。而模糊识别则是对统计方法和结构方法的有用补充,对模糊事物进行识别和判断,其理论基础是模糊数据。它根据人辨别事物的思维逻辑,吸取人脑的识别特点,将计算机中常用的二值逻辑转向连续逻辑。模糊识别的结果是用被识别对象隶属于某一类别的程度,即用隶属度表示。可简化识别系统的结构,更广泛、深入地模拟人脑的思维过程,从而对客观事物进行更为有效地分类与识别。识别图像对人类来说是件极容易的事情,但是对机器而言,这也经历了漫长岁月。在计算机视觉领域,图像识别这几年的发展突飞猛进。例如,在PASCALVOC物体检测基准测试中,检测器的性能从平均准确率30%飙升到了现在的超过90%。对于图像分类,在极具挑战性的ImageNet数据集上,目前先进算法的表现甚至超过了人类。图像识别技术的高价值应用就发生在你我身边,例如视频监控、自动驾驶和智能医疗等,而这些图像识别最新进展的背后推动力是深度学习。深度学习的成功主要得益于三个方面:大规模数据集的产生、强有力的模型的发展以及可用的大量计算资源。对于各种各样的图像识别任务,精心设计的深度神经网络已经远远超越了以前那些基于人工设计的图像特征的方法。尽管到目前为止深度学习在图像识别方面已经取得了巨大成功,但在它进一步广泛应用之前,仍然有很多挑战需要我们去面对。与此同时,我们也看到了很多具有未来价值的研究方向。喜欢本文的话,欢迎关注活在信息时代哦:)特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端人脸识别技术发展现状及未来发展趋势
限时免费提供人脸人体、分割抠图、OCR以及视频等共计140+项AI能力的调用【点此开通】
人脸识别,通常也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术,主要用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部的一系列相关技术。
近年来,随着人工智能的发展以及国家经济发展、安全防卫的需要,我国人脸识别市场不断扩大,技术水平不断提升,在算法方面已取得世界领先地位。伴随着人工智能的持续发展,智能化时代的悄然到来,以人脸识别为代表的生物识别技术越来越普及。从安防、支付、金融到教育、医疗和交通,"刷脸"日渐成为常态,为人们的生产与生活带来了诸多智能、安全与便捷。
一、人脸识别技术发展背景
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。除了安防、金融这两大领域外,人脸识别还在交通、教育、医疗、警务、电子商务等诸多场景实现了广泛应用,且呈现出显著应用价值。为了进一步把握人脸识别技术所带来的重大机遇,我国出台了一系列政策予以支撑。
2015年以来,我国相继出台了《关于银行业金融机构远程开立人民币账户的指导意见(征求意见稿)》、《安全防范视频监控人脸识别系统技术要求》、《信息安全技术网络人脸识别认证系统安全技术要求》等法律法规,为人脸识别技术的应用以及在金融、安防、医疗等领域的普及奠定了重要基础。
2017年,人工智能首次被写入全国政府报告;同年7月,国务院发布了《新一代人工智能发展规划》;12月,工信部出台了《促进新一代人工智能产业发展三年行动计划(2018-2020年)》,其中对人脸识别有效检出率、正确识别率的提升做出了明确要求。作为人工智能主要细分领域,人脸识别获得的国家政策支持显而易见。
2020年,《中国新一代人工智能发展报告2020》今天在浦江创新论坛发布。报告对过去一年中国人工智能发展的总体情况进行了系统回顾。报告分全球发展、创新环境、科技研发、产业化应用、人才培养、区域发展、人工智能治理七个章节,力图客观反映中国《新一代人工智能发展规划》的实施情况,揭示未来发展的新挑战和新趋势。
二、人脸识别技术发展历程
人脸识别最初在20世纪60年代已经有研究人员开始研究,真正进入初级的应用阶段是在90年代后期,发展至今其技术成熟度已经达到较高的程度。
1991年,特征脸(Eigenface)算法被应用在人脸识别,首次实现了自动检测人脸。这项技术是霍普金斯大学的希洛维奇(Sirovich)提出,再由麻省理工学院(MIT)"连接科学"的创始主任亚力克斯彭特兰(AlexPentland)发扬光大,彭特兰在2012年被《福布斯》评为"全球7个最强数据科学家之一",获此殊荣的还有谷歌创始人拉里佩奇。
2000年以后,NIST研究院又在FERET项目基础上做了延伸,先后发起两个新项目FRVT和FRGC,FRVT是评估技术可用性,测试算法系统性能,为采购技术的相关部门提供检测报告。FRGC则是面向市场上的公司和团队,联合其他部门的定制化需求,发布竞标比赛,FRVT负责对接评估,帮助不同部门完善人脸识别系统的个性化要求。
2010年,随着Facebook加入人脸识别功能,人脸识别开始走向个人。从支付到美颜,全球互联网公司纷纷跟进,2017年苹果iPhoneX首次发布人脸解锁功能,抢购一空同时引爆了市场,如今人脸识别已经应用在了方方面面,短视频、直播这些每天都会高频出现在我们身边。整个发展过程可以分为机械识别、半自动化识别、非接触式识别及互联网应用阶段。
与其他生物识别方式相比,人脸识别优势在于自然性、不被察觉性等特点。自然性即该识别方式同人类进行个体识别时所利用的生物特征相同。指纹识别、虹膜识别等均不具有自然性。不被察觉的特点使该识别方法不易使人抵触,而指纹识别或虹膜识别需利用电子压力传感器或红外线采集指纹、虹膜图像,在采集过程中体验感不佳。
目前人脸识别需要解决的难题是在不同场景、脸部遮挡等应用时如何保证识别率。此外,隐私性和安全性也是值得考虑的问题。人脸识别优势明显,未来将成为识别主导技术。
具体来说,相比指纹识别、虹膜识别等传统的生物识别方式,优点主要还集中在四点:非接触性、非侵扰性、硬件基础完善和采集快捷便利,可拓展性好。在复杂环境下,人脸识别精度问题得到解决后,预计人脸识别有望快速替代指纹识别成为市场大规模应用的主流识别技术。
三、人脸识别技术研发现状
人脸识别发展加快一方面来自于我国智能化社会建设的发展需求,另一方面来自于人脸识别技术的快速发展。尤其是近年来人工智能化的浪潮下,人脸识别行业受到了资本的青睐,为人脸识别技术的发展提供了重大机遇。根据SooPat数据显示,近年来我国人脸识别行业相关专利申请数量不断提高。
2018年,我国人脸识别行业专利申请量为3487项,较2017年略有提升,专利公开数量为5200项,同比增长93%。2019年1-2月,我国人脸识别专利公开量已经达到1174项,超过2014年全年水平。
四、我国人脸识别技术应用现状分析
2014年是我国人脸识别技术的转折点,使人脸识别技术从理论走向了应用,2018-2020年则是人脸识别技术全面应用的重要节点,"刷脸"时代正式到来。
目前,从我国人脸识别技术应用来看,主要集中在三大领域:考勤门禁、安防以及金融。
从具体应用来看,主要包含了公共安全领域的刑侦追逃、罪犯识别以及边防安全等;信息安全领域的政府职能领域的电子政务、户籍管理、社会福利和保险;商业企业领域的电子商务、电子货币和支付、考勤、市场营销;场所进出领域的军事机要部门、金融机构的门禁控制和进出管理等。除了公共安全领域,人脸识别也更多的被用到了金融行业。当下刷脸办卡、远程贷款、自主开户、刷脸支付已经开始在我们的生活中渗透。现在很多银行已经把人脸识别系统引入到自主设备中,在办卡时可以利用人脸识别技术将现场采集的照片与已存照片、身份证照片进行比对,确认之后,才可以进行自主开卡、业务变更、密码重置等业务,更加的安全高效。
同时在交通领域,行人闯红灯也步入了“刷脸”时代。中国式过马路曾经成为一时笑料,很多中国人在过马路的时候,不看红绿灯,凑够一群人就走的情况还是没能够得到改善。一直以来这种闯红灯的陋习很难被治理,但是人脸识别技术的发展让我们看到了转机。
现在已经有地区开始将人脸识别技术用于治理行人乱闯红灯了,在行人闯红灯时,自动识别抓拍系统会对闯红灯的市民进行抓拍,并将数据上传到大数据侦查实验中心,核实真实身份,并实时在电子大屏上对违法人员进行曝光。
五、人脸识别未来发展趋势
首先,人脸识别应用的最广泛领域便是安防行业,不仅给整个安防行业注入了新的生命活力,也进一步开拓了新的发展市场。作为安防市场未来的发展方向的智能视频分析,其中最重要的技术就是人脸识别。
其二,我国的三维测量技术近年来发展形势较好,而现今3D人脸识别算法正对2D投影的缺陷做了补充,此外对于其中的传统难点,包括人脸旋转、遮挡、相似度等在内的都有了很好的应对,这也成为了人脸识别技术的另一个最为重要的发展路线之一。
其三,大数据深度学习进一步提升了人脸识别的精确度,这也为2D人脸识别的应用作了一定的突破,将其应用于互联网金融行业当中,能够快速普及金融级应用。
其四,人脸识别技术由于其便利性、安全性,可在智能家居中用作门禁系统以及鉴权系统,因此智能家居与人脸识别技术的融合是未来发展的重点方向。智能家居中的人脸识别系统是结合嵌入式操作系统和嵌入式硬件平台建立的,加强了人脸识别技术与智能家居应用的结合度,具有概念新、实用性强等特点。
其五,人脸识别技术是未来基于大数据领域的重要发展方向。现如今公安部门都引入了大数据,这也弥补了传统技术的难点,通过人脸识别技术使得这些照片数据再度存储利用,能够大大提升公安信息化的管理和统筹,这将成为未来人脸识别的主要发展趋势。
在线免费体验百种AI能力:【点此跳转】
钉钉扫描下方二维码,进群免费对接百种AI能力