博舍

浅谈AI(人工智能)在农业领域的应用 人工智能技术应用于农业上的应用有哪些

浅谈AI(人工智能)在农业领域的应用

2、智能农业机器人

智能农业机器人利用电脑图像识别技术来获取农作物的生长状况,通过机器学习,分析和判断出那些是杂草需要清除,哪里需要灌溉,哪里需要施肥,哪里需要打药,并且能够立即执行。智能农业机器人因为能够更精准的施肥和打药,可以大大的减少农药和化肥的使用,比传统种植方式减少了90%的农药化肥使用。

3、土壤、病虫害探测等智能识别系统

人工智能在农业领域可实现土壤探测、病虫害防护、产量预测、畜禽患病预警等功能。在土壤探测领域,IntelinAir公司开发了一款无人机,通过类似核磁共振成像技术拍下土壤照片,通过电脑智能分析,确定土壤肥力,精准判断适宜栽种的农作物。

4、禽畜智能穿戴产品

智能穿戴产品主要应用在畜牧业,其可以实时搜集所养殖畜禽的个体信息,通过机器学习技术识别畜禽的健康状况、发情期探测和预测、喂养状况等,从而及时获得相应处置。这些数据信息会通过配套的软件进行分析,采用人工智能技术分析出奶牛是否出现生病、排卵或是生产的情况,并将相应信息自动推送给农户,以得到及时的处理。

未来的挑战和机遇

人工智能在农业领域的应用才刚刚开始,面临的挑战比其他任何行业都要大,因为农业涉及的不可知因素太多了!地理位置、周围环境、气候水土、病虫害、生物多样性、复杂的微生物环境等等,这些因素都在影响着农作生产。你在一个特定环境中测试成功的算法,换一个环境未必就有用了。

我们现阶段看到的一些人工智能成功应用的例子大都是在特定的地理环境或者特定的种植养殖模式。当外界环境变换后,如何挑战算法和模型是这些人工智能公司面临的挑战,这需要来自行业间以及农学家之间更多的协作。via土淘头条返回搜狐,查看更多

人工智能在农业的应用

农业是人类赖以生存的根本,在三次产业中占据基础性地位,对经济社会的稳定与发展至关重要。然而,随着人口的快速增长、耕地面积的逐步缩减以及城镇化的加速推进,农业面临的挑战日益严峻。为应对这种挑战,国内外都在探索通过信息技术来促进农业提质增效,其中以人工智能为基础的智慧农业新模式发展迅速,出现了很多典型案例,为农业广泛深度融合应用人工智能提供了有益参考。

人工智能与农业融合应用的基本态势。农业的生产和服务领域存在很多痛点问题,如生产方式较粗放、农业服务不完善等。不少企业以产业痛点为导向,积极探索人工智能在农业生产服务中的融合创新,为解决农业痛点问题找到了新的突破点。

在农业生产中,人工智能助力农业生产精细化,从而促进农业提质增效。在种植领域,企业利用人工智能对农作物生长情况及环境数据进行建模分析,为农业生产提供精准指导。例如,Infosys、IBMWatsonIoT和SakataSeedInc.在美国加利福尼亚两块田地上布置测试床,利用基于机器视觉的无人机、环境传感器和土壤传感器,全方位、立体化地采集植物高度、空气湿度、土壤肥力等18种数据,并将数据上传到Infosys信息平台进行大数据管理和人工智能技术分析,分析结果反馈至企业ERP系统、植物育种研发系统,以指导下一步生产和育种。在养殖领域,企业通过对畜禽多元化数据的采集与分析,实现精准养殖。例如,阿里云与四川特驱集团、德康集团合作推行智能养猪,猪场内遍布与ET农业大脑连接的摄像头,自动采集、分析猪的体型及运动数据,运动量不达标的猪会被赶出室外继续运动,以保证猪肉品质;此外,利用ET农业大脑、结合声学特征及红外线测温技术,可通过猪的咳嗽、叫声、体温等数据判断猪是否患病,及时预警疫情。

在农业服务中,人工智能可缓解信息不对称导致的农产品供需失衡及农业融资难等问题。一方面,行业主管部门或企业运用人工智能建立农产品价格走势预测模型,指导农业生产主体动态调整产能,既可减少由于盲目生产导致的成本浪费,也能提升消费者满意度。例如,IBM利用机器学习分析卫星图像、天气、人口、土地等数据,对农作物供需情况进行预测;笛卡尔实验室使用基于卫星数据训练的机器学习模型,预测美国国内的玉米产量,为农民的生产决策提供参考。另一方面,金融机构依托农业大数据建立农民征信体系,可提高对农业金融的风险把控能力,增加农民融资机会并降低融资成本。如,互联网信用评估平台闪银和互联网金融公司农信宝开发的“八戒分期”,通过线上采集超过300个维度的农户数据,在后台利用人工智能模型进行分析,可在数秒内完成对生猪养殖户的信用评分并反馈给审核人员,帮助金融机构降低风控成本和坏账,也显著降低了养殖户融资成本。

总体而言,人工智能在农业生产和服务环节都涌现出了一些融合应用的典型案例,为促进农业智能化转型升级提供了新思路。但这些融合应用目前主要处于探索和试点阶段,融合模式仍需优化完善,应用范围也有待逐步扩大。

我国人工智能与农业领域深度融合面临多重挑战大数据、人工智能等技术在国外农业领域已形成了相对成熟的融合模式和较大范围的应用。而我国虽然也出现了一些典型案例,但整体还处于起步阶段,农业的数字化、网络化、智能化转型仍面临诸多挑战。

一是农村网络基础设施薄弱。人工智能在农业领域的融合应用对网络实时响应和海量数据积累有较高要求。但我国村级信息化服务网络不够健全,农业领域网络化水平还有待提升。据统计,我国农村地区互联网普及率为36.5%,仅为城镇地区的一半。

二是智能化农业设备供给水平不足。针对智能农业设备的专用芯片较为缺乏,而通用芯片在环境较差的农业现场非常容易发生损坏,进而导致农业智能设施应用受阻。同时,由于农业场景复杂,农业智能机器人等设备在实际应用中存在效率不高、灵活度不够等问题,智能化设备的性能还需要进一步提升。

三是农民应用人工智能的意愿和能力不够。一方面,智能化农业设备的投资金额大、回收周期长,导致农民“不敢用”。另一方面,智能化农业设备的操作方式与传统农业设备差别较大,农民对智能化设备的操作能力不足,“不会用”也阻碍了农业的智能化发展。

加快人工智能与农业领域深度融合的建议

针对人工智能与农业深度融合面临的挑战,行业主管部门应从基础设施、技术供给、产业需求等多角度入手,全面促进人工智能与农业领域的深度融合,探索现代农业高质量发展的有效路径。

支撑能力方面,着力强化农村网络基础设施及农业信息服务平台建设。一方面,进一步加强农村信息基础设施建设,扩大宽带和移动网络覆盖范围,提升网络速率,为部署智能化农业设施、采集农业大数据奠定良好基础。另一方面,建立健全农业信息服务平台,提高农产品供需、价格等信息的智能化预测水平,为农业生产决策提供更多参考与指导。

技术供给方面,持续提升农业领域人工智能技术供给水平。一方面,应加大对农业专用芯片、传感器等基础零部件以及农业无人机、农业机器人等智能化设备研发应用的支持力度,提升智能化农业设备供给能力和供给质量。另一方面,应着力培养农业领域融合解决方案提供商,催生农业领域融合应用人工智能的优秀解决方案。

产业需求方面,应大力培养农民应用人工智能的意愿与能力。一方面,应加强人工智能与农业深度融合的宣传工作,让农民充分认识到应用人工智能的长期效益,调动农民开展智慧农业的积极性。另一方面,应加强对投资应用农业智能化设备的财政补贴,强化对农民应用智能化设施的培训工作,提高农民开展农业智能化生产经营的能力。

国外人工智能技术在现代农业中的应用及其对中国的启示

1.2德法数字化模式

德国农业重视“数字化发展”,提出了“农业4.0”概念,旨在通过人工智能技术实现农业生产数字化。德国的大型农业机械都是由全球卫星定位系统(GPS)导航系统控制。农民只需要切换到GPS导航模式,卫星数据就能让农业机械精确作业,误差可以控制在几厘米之内。

为实现农业现代化生产,法国专门打造大数据农业体系。法国农业将GPS和GIS系统应用于联合收割机,不仅实现了产量图的自动生成,更使植保机械电子化及施肥机械的变量作业变为可能。

1.3荷兰以色列自动化模式

荷兰农业的重点在“温室农业”,信息技术推动了温室农业升级换代,实现全自动化控制,包括光照系统、加温系统、液体肥料灌溉施肥系统、二氧化碳补充装置以及机械化采摘、监测系统等,减少了用工人数。

以色列农业重视“节水农业”的发展,最直接体现在滴灌系统。以色列运用物联网技术设计了一套滴灌节水系统。该系统通过控制计算机,由传感器传回土壤的数据,决定何时浇水以及浇水量,并通过远程进行检测与判断。这一系统既节约了水资源,也节约了人力投入。

二、不同生产阶段应用比较

2.1产前阶段

在现代农业生产的产前阶段,人工神经网络(ArtificialNeuralNetwork,即ANN)技术给农户提供科学指导,选择准确合适的作物品种,掌握合理的施肥时间和地点,进行科学灌溉和施肥,从而实现低经济成本、高质量产出的目标,有效促进了农业生产现代化。

2.1.1土壤领域的应用。COCKL等提取表土从深度加权EM38DD(一种电磁感应土壤传感器)的信号中获得的土质纹理信息,通过ANN评估了不同的输入层对影响表土粘土含量的预测能力,综合使用2个EM38DD信号,优化了表土黏土含量的预测。

2.1.2种子领域的应用。ZAPOTOCZNYP等使用图像分析以及神经网络方法鉴别麦粒的品种品质。通过调查11个不同品质等级的春冬小麦品种,对从PC接口的平板扫描仪获得的图像进行了分析,结果发现试验小麦品质的纹理分类准确率达到100%。

2.1.3灌溉领域的应用。ELGAALIE等开发并应用了2种模型以估计科罗拉多阿肯色河流域气候变化对灌溉水平衡的影响,应用了ANN模型来估计气候变化对该区域灌溉供水的影响。

2.2产中阶段

在现代农业生产的产中阶段,通过专家系统和农业机器人可以帮助农民更加科学合理地进行农业种植管理,从而推进农业现代化发展,提高农业产业化效率。

2.2.1生产领域的应用。ORELLANAFJ等针对当地橄榄种植研制出1个基于网络的综合信息系统SAIFA(SpanishacronymforSistemadeAlertaeInformacionFitosanitariaAndaluz-AndalusianPhistosanitaryInformationandAlertSystem),可实时监测橄榄的综合生产情况,还可帮助生产者选择适用的综合生产策略,还可以实时向卫生局反馈作物卫生情况。

2.2.2温室领域的应用。基于3S技术(地理信息系统GIS、全球定位系统GPS、遥感技术RS)的温室控制與管理系统,德国研发出该系统,通过在温室里安装传感器,测量作物生长情况,采集温室内外部的生长环境数据,根据人工智能技术处理分析这些数据,可以很便捷地遥控灌溉和施肥。

2.2.3采收领域的应用。研究人员研发出了具有2层结构的采收白芦笋的自动机器人。在第1层上,使用2个独立的速度控制回路,以确保驱动电机的实际旋转;第2层为了解决驱动机器人跟踪所需轨迹的问题,提出了一种由内向误差控制器和外侧向偏移控制器组成的级联控制结构。通过根轨迹分析选择控制参数,保证了系统的稳定性。

2.3产后阶段

在现代农业生产的产后阶段,合理的机器学习方法可以对农产品进行有效的检验,确保其质量安全外形完美;在搬运和销售过程中,极大提高了农产品产业链的销售效率,减少劳动力的投入,获得更高的经济效益。

2.3.1产品检验领域的应用。运用机器学习分类器AdaBoost和支持向量机。MATHANKERSK等使用此类人工智能技术提高山核桃缺陷分类的准确性,对良好和有缺陷的山核桃(各100只)的X线图像进行了分割,该技术提高了分类精度,缩短了分类时间,并使山核桃缺陷分类方面的性能持续提高。

2.3.2食品搬运领域的应用。PETTERSSONA等设计了1种利用磁流变(MR)流体效应的新型机器人夹持器,可以在搬运草莓、胡萝卜、苹果、花椰菜和葡萄时不会在其表面留下抓痕。

2.3.3销售领域的应用。将RFID射频识别技术应用在超市等地点,商品到达门店后会自动完成清点并及时更新数据库;摆上售货架后,可实时定位货物的种类、数量、位置信息,及时掌握货物信息;顾客完成购物后,推车从阅读器前走过即可完成商品结算。

三、国外经验对我国的启示

作为第一产业,农业生产在我国经济发展中具有不可动摇的地位,同时也是我国经济发展中最基础的部分。不可否认,近几年来我国农业生产虽然以迅雷不及掩耳之势高速发展,但也存在许多严峻的问题。例如有关农业的生产费用只增不减,农产品的质量安全问题得不到高度有效的监管和保障。

在我国,人工智能技术在现代农业生产中应用的时间相对较短,直到2017年,才正式提出将人工智能技术应用到农业生产中。在大数据的时代背景下,农业决议计划解析的智能系统应势而生,智能农业生产链开始得到有效推广运用。由此可见,人工智能技术已经成为农业生产中的中枢力量,它在农业生产各个阶段都有相关的应用,并进一步促进农业的生产、供应以及销售系统有机整合、密不可分,变得更加严谨。不仅快速的提升我国农业生产的工作效率与产出质量,打造出高质量、高生产并且稳定发展的现代化农业,更为我国的农业发展开辟出一条全新的智能化道路,有效地提高我国国民经济、科学技术的发展速度与水平。

3.1借鉴国外经验,大力发展现代农业

因其专业化程度高,美国农业形成了著名的生产带,如玉米带、小麦带、棉花带等。我国的粮食主产区,如东北、新疆等地可借鉴美国的“信息化建设”,从而加快人工智能设备和技术普及率,提高农业生产效率。

在农业生产的产前阶段,灌溉用水领域可借鉴以色列的滴灌技术,控制计算机,通过传感器传回土壤的数据,决定何时浇水以及浇水量。

在农业生产的产中阶段,温室领域可以借鉴荷兰的“温室农业”,全自动化温室,包括光照系统、加温系统、液体肥料灌溉施肥系统、二氧化碳补充装置以及机械化采摘和监测系统等。

例如托普云农的智能温室大棚就是利用物联网技术,对温室环境调控及水肥灌溉实现全自动化托管。棚内除布控土壤温湿度、光照强度、二氧化碳等常见土壤、环境传感器外,还重点增设土壤pH、EC、作物本体等传感器,随时监测其土壤、环境及生理生态信息,同时采用喷灌、滴灌等方式调节空气湿度和基质水肥,保障其湿润的生长环境。

温室内环境控制系统采用精密无线传感器采集数据,无线上传至平台,平台一整套温室控制逻辑与温室电动设备形成关联,根据采集数据和控制逻辑相结合,联动控制风机、湿帘、内外遮阳、喷滴灌等设备。

在农业生产的产后阶段,食品搬运和销售领域可以借鉴日本的“信息技术”,借助公众电话网、专用通讯网、无线寻呼网,把大型数据库系统和互联网网络系统等联结起来。

3.2转变政府职能,提高农业科研应用能力

在农业现代化发展进程中,政府应将管理职能转变为服务职能,对使用人工智能的现代农业施行税收减免政策,并提供专项农业资金支持,鼓励其进行创新;建立农业科研体系,促进农业科技机构、农业企业以及农业从业者之间的合作交流,有针对性地进行人工智能技术的研发,提高农业科研应用能力。

3.3整合建设资金,促进农业基础设施建设

加强人才引进与培养,使农业从业者职业化,使其更具综合性、更能符合现代农业所需。政府、企业和农业高校进行联合,鼓励引导农业高校毕业生从事农业生产活动,同时学习先进的人工智能技术,更好地将现代农业与人工智能技术相结合;通过政府部门提供的专项农业资金,集中改善农村农田道路,增加农机设备购置补贴政策,实现现代农业生产智能化、科学化。

3.4加大科技投入,增强人工智能技术应用

在高校中加大人工智能技术理论知识的研究,通过科学研讨会等方式加强科技交流与合作,从理论上提高人工智能技术的研究能力;其次要加大实践研究的力度,把人工智能技术理论在实际生产中不断地投入实践,把控好农业生产中的各个阶段,总结生产中的经验,使之与农业生产不断匹配完善,从而在现代农业中更好地应用。返回搜狐,查看更多

人工智能技术为农业发展带来了什么?

农业一直是国民经济的基础,是人类衣食之源、生存之本,是一切生产的首要条件。改革开放以来,我国农业生产力大幅度增加,足够的粮食让人们不再挨饿。但同时也存在土地资源匮乏、农业产量低、农业生态环境遭到破坏等等的问题。在这一局面下,如何通过人工智能技术,稳步提升农业发展水平,成为了一大重要命题。

什么是智慧农业?

含有人工智能技术的农业,我们称为智慧农业。它是指现代科学技术与农业种植相结合,从而实现无人化、自动化、智能化管理。智慧农业是人工智能、物联网技术在现代农业领域的应用,主要具有监控功能系统、监测功能系统、实时图像与视频监控功能……

发展智慧农业有什么意义?

智慧农业利用物联网技术,可以实现智能灌溉、智能施肥与智能喷药等自动控制方式,实现农业精细化,在满足作物生长需要的同时,保障资源节约又避免环境污染;实现农业高效化,各大数据让农业经营者便捷灵活地掌握天气变化数据,准确判断农作物是否该施肥、浇水或打药,提高了农业生产对自然环境风险的应对能力;实现农业绿色化,通过对农业精细化生产,实施测土配方施肥、农药精准科学施用、农业节水灌溉,从而达到合理利用农业资源、减少污染、改善生态环境,即保护好青山绿水,又实现产品绿色安全优质。

AI技术下的智慧农业是怎样的?

现在,人工智能在农业上的应用可谓是全方位覆盖。从耕种到收获,再到病虫害防治、探测土壤、禽畜智能穿戴设备等等。它不仅能够帮助提高效率,也能实现绿色农业。例如,智能机器人还能用颜色识别技术,去辨别和定位哪些苹果已经成熟,然后利用机械手臂进行采摘,再移动到传输道上。整个过程不仅快速而且一点都不会伤到果树和苹果。如今,智慧农业从萌芽期到快速发展期再到规模应用期,利用科技推动了传统农业的发展。将农民从劳动者转变为管理者,从而达到用更小的精力获得更大收益。

AI在农业领域的应用

对于农村出身的IT从业人员来说,农业和农村几乎是一辈子的烙印,如果哪天真的失业了,你会怎么办呢?好在我们还有几亩薄田,靠着智慧和勤劳度过寒冬应该是可行的。把自身优势发挥出来,也许还有更广阔的一片田地等着我们这些农八代去开垦。砥砺奋进吧。

导语

柯洁最终还是输了,连输三局,败给了Alphago。柯洁代表了人类最高智慧棋类的最强大脑,三连败的结局足以展示科技的进步和人工智能的强大。

人工智能已成为自动化、电气化和信息化之后新一轮工业革命的基石,而人工智能的应用亦非仅在工业领域,在教育、医疗和金融领域都是革命性的技术创新。那么在人类最古老的农业领域,人工智能有何表现呢?我们是不是连种地也要输给电脑了呢?

人工智能解决人类面临的世纪挑战

农业领域面临的挑战对人类来说比其他领域更为重要。如今世界人口总数为72亿,其中有7.8亿人面临着饥饿威胁,到2050年,全球人口将要达到90亿,这意味着我们生产的粮食热量需要增长60%。

如果考虑作为肉类来源的家畜消耗的粮食,那么这一增长率将达到103%。而于此同时,我们又面临着石油农业所依靠的能源危机,面临着化肥农药过度使用造成的土壤和环境的破坏以及对人类健康的威胁。

那么,如何在耕地资源有限的情况下增加农业的产出,同时保持可持续发展呢?人工智能就是解决的方法之一。

人工智能在农业领域的研发及应用早在本世纪出就已经开始,这其中既有耕作、播种和采摘等智能机器人,也有智能探测土壤、探测病虫害、气候灾难预警等智能识别系统,还有在家畜养殖业中使用的禽畜智能穿戴产品。这些应用正在帮助我们提高产出、提高效率,同时减少农药和化肥的使用。

智能图像识别

以前我们在野外看到一个不认识的花草要查阅资料才能知道是什么花草,可如今我们可以通过各种识图软件对着花草拍照扫描一下就知道了,这就是电脑图像识别技术。如今借助机器学习和深度学习,智能图像识别准确率越来越高,而应用也远远不止这些。

PlantVillage(美国)和Plantix(德国)是两款智能植物识别App,他们能做的不仅仅是帮你识别你不认识的农作物,他们能够帮农户智能识别农作物的各种病虫害。农户把患有病虫害农作物的照片上传,App就会识别出农作物犯了那种病虫害,并且可以给出相应的处理方案。除了人工智能给出的处理方案,App上还有用户和专家交流的社区,可以针对相应的病虫害进行讨论交流。

智能识别+智能机器人

那么如果把图像智能识别跟智能机器人结合会怎样呢?那就是更好的帮我们种地、播种和采摘。

BlueRiver的莴苣种植机)

BlueRiverTechnologies是一家位于美国加州的农业机器人公司。BlueRiver的农业智能机器人可以智能除草、灌溉、施肥和喷药。

智能机器人利用电脑图像识别技术来获取农作物的生长状况,通过机器学习,分析和判断出那些是杂草需要清除,哪里需要灌溉,哪里需要施肥,哪里需要打药,并且能够立即执行(图示为莴苣种植机)。

智能机器人因为能够更精准的施肥和打药,可以大大的减少农药和化肥的使用,比传统种植方式减少了90%的农药化肥使用。

智能播种机器人还可以通过探测装置获取土壤信息,然后通过算法得出最优化的播种密度并且自动播种。美国爱荷华州的发明家DavidDorhout研发的智能播种机器人Prospero就是这样的智能机器人。

除了播种和田间管理,农业智能机器人还可以帮我们采摘成熟的蔬果。

(AboundantRobotics的苹果采摘机器人)

AboundantRobotics也是来自美国加州的农业机器人公司,目前他们已经上市的是一款苹果采摘机器人,可以在不破坏苹果树和苹果的前提下达到一秒一个的采摘速度。苹果采摘机器人通过摄像装置获取果树的照片,用图片识别技术去定位那些适合采摘的苹果,然后用机械手臂和真空管道进行采摘,一点都不会伤到果树和苹果。

卫星云图学习,种地不看天,看手机

传统农药田间管理看天看地看作物,而如今农民也要成为看手机的低头族了。通过对卫星拍摄图片,航拍图片以及农田间其他设备拍摄的照片进行智能识别和分析,人工智能的能够精确的预报天气,气候灾害,识别土壤肥力,庄家的健康状况等等。

比如美国的DescartesLabs公司收集了海量农业相关的卫星图像数据,他们对天气的预测比美国农业部的还要精准。DescartesLabs通过人工智能和深度学习,去分析这些图像信息,寻找其跟农作物生长之间的关系,能对农作物的产量做出精准预测,他预测的玉米产量比以往的预测准确率高出99%。

除了天气预测和产量预测,人工智能对农作物各种图像的学习还能判断出农田那里有杂草入侵,那个地块的农作物养分不足,那里片的农作物正在发生病虫害。美国加州的IntelinAir就是一家提供这样服务的公司。

(左:InterlinAir识别田间的杂草,右:给出农田的营养建议)从瑞士联邦理工学院衍生出的农业科技公司Gamaya则使用独特的超光谱(高光谱)感应装置,用这些能够探测出肉眼无法观察的光谱,这为农户提供了更全面的数据,向农户提供智能施肥管理、灌溉管理和虫害管理。Gamaya的技术已经在玉米、大豆和甘蔗的种植上应用,并帮助农户大大降低成本和提高产出。

牛脸识别,智能穿戴

人工智能还可以用在禽畜的养殖业,比如在养牛行业。大家知道吗?牛其实不愿意看到人类的,他们会视人类为捕食者,因此养牛场的工作人员会给牛群带来紧张情绪。那么我们就把农场的管理交给人工智能吧。

人工智能通过农场的摄像装置获得牛脸以及身体状况的照片,进而通过深度学习对牛的情绪和健康状况进行分析,然后帮助农场主判断出那些牛生病了,生了什么病,那些牛没有吃饱,甚至那些牛到了发情期。来自加拿大的Cainthus机器视觉公司正在做这样的事情。

除了摄像装置对牛进行“牛脸”识别,还可以配合上可穿戴的智能设备,这会让农场主更好的管理农场。荷兰的Connecterra是一家动物智能穿戴技术公司。通过带在奶牛脖子上的智能传感器,结合牧场上的固定探测器共同收集数据。这些数据上传到云服务器上,用自己开发的算法通过机器学习让这些海量的原始数据变成直观的图表和信息发送到客户那里。

这些信息包括奶牛的健康分析、发情期探测和预测、喂养状况、位置服务等。Connecterra大大节省了奶农的工作时间,提高了工作效率,特别是对有机农场更有帮助,因为他们可以很容易的了解放养时间、位置和吃草的时间。

让物联网更有价值

(在农田中的各种物联网设施)除了智能穿戴还有更多的农业物联网设施,比如田间摄像头、温度湿度监控、土壤监控、无人机航拍等等。这些设施能够为农业管理提供海量的实时数据,那么如何把这些海量的数据及时的变成有价值的信息,就是人工智能要做的事情。

这些数据被实时传送到云服务器上,不同类型的农业服务公司会根据不同的农业状况设置自己的算法,然后通过机器学习和深度学习把这些数据变成对农户有意义的信息,比如那里虫害超标,那里需要灌溉等等。

人工智能还可以通过算法给出各种最优化的方案,比如根据土壤环境状况,结合市场行情预测,从而给出今年该地适合种玉米还是大豆。

未来的挑战和机遇

人工智能在农业领域的应用才刚刚开始,面临的挑战比其他任何行业都要大,因为农业涉及的不可知因素太多了!地理位置、周围环境、气候水土、病虫害、生物多样性、复杂的微生物环境等等,这些因素都在影响着农作生产。你在一个特定环境中测试成功的算法,换一个环境未必就有用了。

我们现阶段看到的一些人工智能成功应用的例子大都是在特定的地理环境或者特定的种植养殖模式。当外界环境变换后,如何挑战算法和模型是这些人工智能公司面临的挑战,这需要来自行业间以及农学家之间更多的协作。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇