人工智能企业典型应用案例拟入选名单公示
根据人工智能社会实验工作有关任务部署,为更好支持企业参与实验工作,中央网信办信息化发展局面向人工智能社会实验特定方向,组织开展了企业应用案例征集。经人工智能社会实验专家组评审,遴选了一批人工智能企业典型应用案例。为进一步听取社会各界意见,现将拟发布的人工智能企业典型应用案例名单进行公示。
如有不同意见,请在公示期间将意见书面反馈至中央网信办信息化发展局,电子邮件发送至wangzhicheng@cac.gov.cn(邮件主题注明:人工智能企业典型应用案例意见反馈)。
公示时间:2021年4月14日至2021年4月20日
联系电话:010-55635303
地址:北京市车公庄大街11号中央网信办信息化发展局
邮编:100044
附件:人工智能企业典型应用案例入选名单
中央网信办信息化发展局
2021年4月14日
附件:
人工智能企业典型应用案例拟入选名单公示
人工智能的十大应用
导读:人工智能已经逐渐走进我们的生活,并应用于各个领域,它不仅给许多行业带来了巨大的经济效益,也为我们的生活带来了许多改变和便利。下面,我们将分别介绍人工智能的一些主要应用场景。
作者:王健宗何安珣李泽远
来源:大数据DT(ID:hzdashuju)
01 无人驾驶汽车
无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等。
美国、英国、德国等发达国家从20世纪70年代开始就投入到无人驾驶汽车的研究中,中国从20世纪80年代起也开始了无人驾驶汽车的研究。
2005年,一辆名为Stanley的无人驾驶汽车以平均40km/h的速度跑完了美国莫哈维沙漠中的野外地形赛道,用时6小时53分58秒,完成了约282千米的驾驶里程。
Stanley是由一辆大众途锐汽车经过改装而来的,由大众汽车技术研究部、大众汽车集团下属的电子研究工作实验室及斯坦福大学一起合作完成,其外部装有摄像头、雷达、激光测距仪等装置来感应周边环境,内部装有自动驾驶控制系统来完成指挥、导航、制动和加速等操作。
2006年,卡内基梅隆大学又研发了无人驾驶汽车Boss,Boss能够按照交通规则安全地驾驶通过附近有空军基地的街道,并且会避让其他车辆和行人。
近年来,伴随着人工智能浪潮的兴起,无人驾驶成为人们热议的话题,国内外许多公司都纷纷投入到自动驾驶和无人驾驶的研究中。例如,Google的GoogleX实验室正在积极研发无人驾驶汽车GoogleDriverlessCar,百度也已启动了“百度无人驾驶汽车”研发计划,其自主研发的无人驾驶汽车Apollo还曾亮相2018年央视春晚。
但是最近两年,发现无人驾驶的复杂程度远超几年前所预期的,要真正实现商业化还有很长的路要走。
02 人脸识别
人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
有一个关于人脸识别技术应用的有趣案例:张学友获封“逃犯克星”,因为警方利用人脸识别技术在其演唱会上多次抓到了在逃人员。
2018年4月7日,张学友南昌演唱会开始后,看台上一名粉丝便被警方带离现场。实际上,他是一名逃犯,安保人员通过人像识别系统锁定了在看台上的他;
2018年5月20日,张学友嘉兴演唱会上,犯罪嫌疑人于某在通过安检门时被人脸识别系统识别出是逃犯,随后被警方抓获。随着人脸识别技术的进一步成熟和社会认同度的提高,其将应用在更多领域,给人们的生活带来更多改变。
03机器翻译
机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
随着经济全球化进程的加快及互联网的迅速发展,机器翻译技术在促进政治、经济、文化交流等方面的价值凸显,也给人们的生活带来了许多便利。例如我们在阅读英文文献时,可以方便地通过有道翻译、Google翻译等网站将英文转换为中文,免去了查字典的麻烦,提高了学习和工作的效率。
04声纹识别
生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
声纹识别的工作过程为,系统采集说话人的声纹信息并将其录入数据库,当说话人再次说话时,系统会采集这段声纹信息并自动与数据库中已有的声纹信息做对比,从而识别出说话人的身份。
相比于传统的身份识别方法(如钥匙、证件),声纹识别具有抗遗忘、可远程的鉴权特点,在现有算法优化和随机密码的技术手段下,声纹也能有效防录音、防合成,因此安全性高、响应迅速且识别精准。
同时,相较于人脸识别、虹膜识别等生物特征识别技术,声纹识别技术具有可通过电话信道、网络信道等方式采集用户的声纹特征的特点,因此其在远程身份确认上极具优势。
目前,声纹识别技术有声纹核身、声纹锁和黑名单声纹库等多项应用案例,可广泛应用于金融、安防、智能家居等领域,落地场景丰富。
05智能客服机器人
智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
当用户访问网站并发出会话时,智能客服机器人会根据系统获取的访客地址、IP和访问路径等,快速分析用户意图,回复用户的真实需求。同时,智能客服机器人拥有海量的行业背景知识库,能对用户咨询的常规问题进行标准回复,提高应答准确率。
智能客服机器人广泛应用于商业服务与营销场景,为客户解决问题、提供决策依据。同时,智能客服机器人在应答过程中,可以结合丰富的对话语料进行自适应训练,因此,其在应答话术上将变得越来越精确。
随着智能客服机器人的垂直发展,它已经可以深入解决很多企业的细分场景下的问题。比如电商企业面临的售前咨询问题,对大多数电商企业来说,用户所咨询的售前问题普遍围绕价格、优惠、货品来源渠道等主题,传统的人工客服每天都会对这几类重复性的问题进行回答,导致无法及时为存在更多复杂问题的客户群体提供服务。
而智能客服机器人可以针对用户的各类简单、重复性高的问题进行解答,还能为用户提供全天候的咨询应答、解决问题的服务,它的广泛应用也大大降低了企业的人工客服成本。
06智能外呼机器人
智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
在外呼期间,它可以利用语音识别和自然语言处理技术获取客户意图,而后采用针对性话术与用户进行多轮交互会话,最后对用户进行目标分类,并自动记录每通电话的关键点,以成功完成外呼工作。
从2018年年初开始,智能外呼机器人呈现出喷井式兴起状态,它能够在互动过程中不带有情绪波动,并且自动完成应答、分类、记录和追踪,助力企业完成一些烦琐、重复和耗时的操作,从而解放人工,减少大量的人力成本和重复劳动力,让员工着力于目标客群,进而创造更高的商业价值。当然智能外呼机器人也带来了另一面,即会对用户造成频繁的打扰。
基于维护用户的合法权益,促进语音呼叫服务端健康发展,2020年8月31日国家工信部下发了《通信短信息和语音呼叫服务管理规定(征求意见稿)》,意味着未来的外呼服务,无论人工还是人工智能,都需要持证上岗,而且还要在监管的监视下进行,这也对智能外呼机器人的用户体验和服务质量提出了更高的要求。
07智能音箱
智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作。
支撑智能音箱交互功能的前置基础主要包括将人声转换成文本的自动语音识别(AutomaticSpeechRecognition,ASR)技术,对文字进行词性、句法、语义等分析的自然语言处理(NaturalLanguageProcessing,NLP)技术,以及将文字转换成自然语音流的语音合成技术(TextToSpeech,TTS)技术。
在人工智能技术的加持下,智能音箱也逐渐以更自然的语音交互方式创造出更多家庭场景下的应用。
08个性化推荐
个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
个性化推荐既可以为用户快速定位需求产品,弱化用户被动消费意识,提升用户兴致和留存黏性,又可以帮助商家快速引流,找准用户群体与定位,做好产品营销。
个性化推荐系统广泛存在于各类网站和App中,本质上,它会根据用户的浏览信息、用户基本信息和对物品或内容的偏好程度等多因素进行考量,依托推荐引擎算法进行指标分类,将与用户目标因素一致的信息内容进行聚类,经过协同过滤算法,实现精确的个性化推荐。
09医学图像处理
医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像。
传统的医学影像诊断,主要通过观察二维切片图去发现病变体,这往往需要依靠医生的经验来判断。而利用计算机图像处理技术,可以对医学影像进行图像分割、特征提取、定量分析和对比分析等工作,进而完成病灶识别与标注,针对肿瘤放疗环节的影像的靶区自动勾画,以及手术环节的三维影像重建。
该应用可以辅助医生对病变体及其他目标区域进行定性甚至定量分析,从而大大提高医疗诊断的准确性和可靠性。另外,医学图像处理在医疗教学、手术规划、手术仿真、各类医学研究、医学二维影像重建中也起到重要的辅助作用。
10 图像搜索
图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
该技术的应用与发展,不仅是为了满足当下用户利用图像匹配搜索以顺利查找到相同或相似目标物的需求,更是为了通过分析用户的需求与行为,如搜索同款、相似物比对等,确保企业的产品迭代和服务升级在后续工作中更加聚焦。
关于作者:王健宗,博士,某大型金融集团科技公司资深人工智能总监、高级工程师,中国计算机学会大数据专家委员会委员、高级会员,美国佛罗里达大学人工智能博士后,曾任美国莱斯大学电子与计算机工程系研究员、美国惠普公司高级云计算解决方案专家。
何安珣,某大型金融集团科技公司高级算法工程师,中国计算机学会会员,中国计算机学会青年计算机科技论坛(YOCSEF深圳)委员。拥有丰富的金融智能从业经验,主要研究金融智能系统框架搭建、算法研究和模型融合技术等,致力于推动金融智能的落地应用与价值创造。
李泽远,某大型金融集团科技公司高级人工智能产品经理,中国计算机学会会员,长期致力于金融智能的产品化工作,负责技术服务类的产品生态搭建与实施推进。
本文摘编自《金融智能:AI如何为银行、保险、证券业赋能》,经出版方授权发布。
延伸阅读《金融智能》
点击上图了解及购买
转载请联系微信:DoctorData
推荐语:这是一部讲解如何用AI技术解决银行、保险、证券行业的核心痛点并帮助它们实现数智化转型的著作。作者从金融智能一线从业者的视角,深入剖析了传统金融行业的痛点与局限,以及金融智能的特点与优势,阐明了人工智能等技术在金融业的必要性,并针对金融智能在银行、保险和证券业的诸多应用场景,给出了具体解决方案。
划重点????
干货直达????
有了中台,那后台还剩下什么?(图解中台架构)
关于读书,我发现每一个技术大牛都有这个怪癖
2020福布斯中国富豪榜发布!10年来谁是中国最有钱的人?
34秒看完200余年美国总统大战:民主党vs共和党谁是赢家?
更多精彩????
在公众号对话框输入以下关键词
查看更多优质内容!
PPT | 读书 | 书单 | 硬核 | 干货 | 讲明白 | 神操作
大数据 | 云计算 | 数据库 | Python | 可视化
AI | 人工智能 | 机器学习 | 深度学习 | NLP
5G | 中台 | 用户画像 | 1024 | 数学 | 算法 | 数字孪生
据统计,99%的大咖都完成了这个神操作
????
人工智能的12个典型案例
虽然人工智能在各个行业的应用有很多的例子,但仍然被认为是一个仍在崛起的新生力量。事实上,人工智能对于许多企业的技术平台至关重要,其中包括金融、零售、医疗和媒体。则人工智能和深度学习的例子也数不胜数。
如今的人工智能例子如此之多,以至于在选择一些具有代表性的人工智能案例时成为一个困难的选择。
虽然人工智能在各个行业的应用有很多的例子,但仍然被认为是一个仍在崛起的新生力量。事实上,人工智能对于许多企业的技术平台至关重要,其中包括金融、零售、医疗和媒体。则人工智能和深度学习的例子也数不胜数。
虽然选择的一些人工智能例子彼此有很大不同,但它们都有一个共同的特点:输入的数据越多,学到的东西就越多。这就是人工智能的本质:基于输入学习的软件系统。这是大数据分析和人工智能的关键区别:大数据可以扫描数据并揭示趋势,但人工智能可以做到这一点,也可以根据输入进行调整。
人工智能的例子:跨部门的人工智能
以下人工智能的例子正在引领市场——未来几年采用人工智能的企业可以参考以下示例。
1.Siri和Alexa
语音助理在商业运营中扮演着越来越重要的角色,它们面临的挑战是需要真正理解人类的语言,然而更难的是需要真正了解人类。
这就是人工智能的用武之地。虽然人工智能系统工程师可以构建这些语音助理,但他们无法在发布时将大量的人类特质嵌入其中。因此,人工智能系统需要大量使用机器学习技术,使它们能够更好地完成人机界面这一异常复杂的任务。有了人工智能,语音助理将越来越有能力搜索网络,帮助人们购物,提供导航。人们期待这项语音技术在家庭助理中发挥重要作用,帮助照顾老人。这是人工智能语音识别的无数其他例子之一。
2.亚马逊和在线商务
响应客户输入的系统概念本身并不是人工智能的一个例子。例如,那些检测到用户了解衬衫产品之后然后在网上推荐衬衫广告的应用程序不一定是高级的人工智能应用程序。
但以亚马逊的推荐系统为例,它是一个交易性人工智能平台的强大引擎。人们可能已经观察到它的能力,这个系统可以不断学习。本质上,大批购物者正在“教导”亚马逊人工智能系统,以便更好地展示可能出售的商品。也就是说,将一件商品与过去展示的另一件商品相匹配将促进销售,可以将半关联的概念联系起来(例如灯架与摄影设备)。
另一方面,这种高端的人工智能系统需要庞大的计算平台来处理所有这些数据。对于使用小型服务器的用户来说很难为此类系统提供支持。显然,亚马逊网络服务公司拥有世界领先的计算平台。
3.Pandora
对于那些认为人工智能将会取代人类工作的人们来说,Pandora人工智能系统就是一个与人类合作的例子。首先,Pandora通过音乐专业人员的帮助来分析和分类歌曲。Pandora着眼于歌曲的450种属性进行分类,从声乐风格到节奏感。
当其人工智能算法工作时,根据大量用户对其歌曲库的响应,结合了来自用户的大量推荐。然后,人工智能系统可以批量分组和呈现对于用户具有意义的歌曲。
4.Cogito
这无疑是人工智能最活跃的领域之一:在销售和客服电话中使用人工智能,可以增强与客户的情感联系。具体地说,使用人工智能互动比人类更具移情能力。当然,这是人工智能使用的一个前沿。
Cogito(拉丁语的意思是“自我意识”)使用了人类互动的关键真理:它不仅仅是词语的表达意义,而且是词语的表达方式、情绪、节奏和感觉。
Cogito软件可以实时分析对话,提供有关正确和错误的线索和提示。也许对话者可能切入太多主题,或者反应不够快。应用程序提供基于颜色的警告和更新。该软件可以分析数百条线索,以确定对话的情感质量。
5.Nest
推动人工智能增长的关键因素之一是资金雄厚的厂商之间的竞争,希望在早期获得市场份额。以谷歌公司旗下的家用恒温器Nest为例,其部分目标是将谷歌公司的人工智能构建到设备中,用来应对苹果Siri和亚马逊Alexa的不断增长。
Nest使用人工智能来适应人类的行为模式,获得恒定的输入线索,并在家中工作时做出更准确的反应。在业主设置系统一段时间之后,Nest可以自己整合输入。
无论如何,智能家庭设备(物联网设备)无疑是争夺人工智能市场支配地位的关键战场。让一整组智能家庭设备协同行动,它们可以响应家庭成员的指令,并根据其行为学习,这显然是人工智能在家庭应用中的未来。
6.Boxever
总部位于爱尔兰的Boxever公司推出其Boxever“个性化平台”,其主要目标是旅游业。其基于云计算的平台允许旅游公司创建一个单一的客户视图,从而为客户提供更有效的营销。它的目标是通过单独针对客户来改进销售过程。如果人工智能可以在一对一的基础上定制交互过程,理论上它可以更有效地服务(并销售给)客户。
Boxever公司的方法承认竞争的关键部门是客户体验。如果零售商更加谨慎地满足客户的需求,将会在电子商务竞争中获胜。而使用智能软件比人工销售代表的成本要低得多。
7.AIRobotics、Humanoid和其他
人工智能为机器人的应用提供动力,其中包括加州大学伯克利分校的BRETT和麻省理工学院的MITdog。Sophia就是一个受到媒体热捧的人工智能机器人的例子,它和NBC电视台主持人JimmyFallon在“今夜秀”上聊天和唱歌。
除了流行文化的喧嚣之外,还有各种规格和大小的人工智能机器人。例如iRobot公司的RoomBA980吸尘器采用了人工智能技术,可以在家中完成各种清扫工作。该公司声称,Roombas公司已售出1000多万台RoomBA980吸尘器。
8.垃圾邮件过滤器
人工智能的核心就是学习。而使用机器学习和其他人工智能技术,软件系统将变得更智能,无需人工协助。
当然,采用人工智能防止垃圾邮件是一个迫切需要机器学习的领域。工作人员(甚至是团队)难以跟上垃圾邮件的增长。例如,Gmail会部署机器学习算法来过滤(大部分)垃圾邮件。
为此,垃圾邮件过滤器试图更快地跟上垃圾邮件发送者的工作,他们不断采用创造性的方法来欺骗收件人。垃圾邮件过滤器中的人工智能会持续扫描元数据,例如发件人的位置或主题行中的关键字。如果无法学习,垃圾邮件过滤器将在几天之后无法运行。
人工智能技术是使用来自人类的输入:因为对于一个用户具有价值的优惠券对于另一个用户来说则是垃圾邮件。特定用户如何对邮件流进行分类必须是垃圾邮件过滤器学习的一部分。
9.网上银行业务
银行为用户提供方便的优惠:扫描其支票并将其金额存入移动设备中,无需去实际的分支机构存款。其问题是:这样做需要机器来阅读用户的签名,这是一项既混乱又令人困惑的工作——甚至对工作人员来说也是如此。
在其他供应商中,MitekSystems公司采用专门从事基于软件的身份验证。其人工智能技术利用计算机视觉和机器学习使移动到银行的交易安全。
例如,Mitek公司采用视觉算法对银行交易中的无数ID格式进行分类。其核心是光学字符识别(OCR)软件,它扫描文档并将数据转换为可编辑的格式。可以使用人工智能调整OCR软件以准确提取个人签名或指纹。
10.贷款和信用卡处理
当消费者申请信用卡或贷款时,消费者信用评分(FICO)(通常在300到850分之间)将起到至关重要的作用。在过去,贷款工作人员审查了这些贷款和信用卡申请。虽然仍有很多工作人员,但许多关于信用卡的决定或者是否接受消费者的申请,都是由机器学习系统做出的。
同样,学习是这个过程的核心部分。银行管理人员可以设置他们希望当前信贷标准是宽松还是紧缩的参数。但他们希望银行的机器学习系统能够随着时间的推移而学习,以便更密切地确定哪些申请人是安全的借贷者。
11.Lyft和Uber
没有人工智能和机器学习技术,共享单车是不可能存在的。具体来说,票价、预计到达时间以及它将要走的路线:这些都是人工智能计算出来的。
人工智能即时进行大量计算。如果没有一个分析情况的机器学习系统,然后将结果数据路由到用户和驱动程序的应用程序,这些计算的数量和复杂性将是不可能的。当然,Lyft和Uber公司将其记录在自己的系统上,这两家公司拥有关于用户模式的大量数据。
在未来,这些服务预计将出现无人驾驶汽车的时代(尽管这种情况发生时最多仍然模糊不清)。如果没有人类驱动程序的元素,运行系统的过程将成为更纯粹的逻辑机器学习计算。从理论上说,这将导致共享乘车服务的成本下降,甚至可以节省雇佣驾驶员的成本。
12.社交网络
主要的社交媒体网络是人工智能发展的核心驱动力。特别是Facebook公司似乎采用了人工智能的各方面功能。例如,其算法定义了用户的时间轴,决定是否在其时间轴上显示或不显示其朋友的某些帖子。Facebook公司知道,如果某个用户的每位朋友都被展示出来,那么时间表就将变得很混乱,以至于它会让人感到厌烦。因此,时间轴算法可以了解用户与谁进行交互以及其通常忽略的对象。
对于Facebook而言,最重要的是,社交网络使用人工智能来帮助个性化为用户提供广告的方式,因此它具有一定程度的广告显示相关性。需要注意,Facebook允许用户评论广告与时间线的相关性;每个用户评论都有助于系统学习并变得更精细。由于他们使用人工智能微调显示系统的方式,Facebook和谷歌在整个网络广告市场的比例非常高。
此外,Facebook使用图像识别人工智能技术来识别照片中的人脸,因此它可以邀请用户为其添加标签。毫不奇怪,考虑到照片对Facebook的重要性,Facebook在面部识别技术上投入了大量资金。采用机器“读取”照片是当今人工智能时代最为显著的进步之一。