通用人工智能的时代已经来临
原创PatrickHammer等返朴
本文旨在向读者指出通用性AI发展面临的许多挑战和误解。短期应用成果应与长远蓝图相得益彰。我们需要渊思寂虑,精进系统研发,从而理解主体感知,并使之实时适应不断变化的环境。
撰文|PatrickHammer(TempleUniversity,USA),TonyLofthouse(EvolvingSolutionsLtd.,UK)
翻译|刘凯(渤海大学教育科学学院、渤海大学通用人工智能研究所)
能记忆和推理不同情境信息的个人AI助手总似“呼之欲出”,但直至鼠年年末,这样的AI助手竟仍未实现。同样,机器学习尽管进展斐然,可一旦离开“人工”协助,自主系统依旧难言“智能”——无法在不同学习中贯通数据并整合模型,以实现经验的跨领域迁移。
若将AI的目标设定为优化函数来解决领域问题,那么我们一直在与日俱进。很多曾被视作难如登天的特定问题(参考文献[1][6][11]),用最优化——尤其是深度神经元网络(DL)的反向传播来解决,已被证实立见成效,且远超人力之际。计算机视觉、机器翻译、语音识别、棋艺博弈、电子竞技等诸多领域焕然如新——人工智能正迅速被全面“驯化”。
正所谓“莫为风波羡平地,人间处处是危机”,此类“驯化”的共同缺陷是:学习仅发生在模型部署之前。可事实上,实时学习才是动物获得生存优势的智能展现。相较而言,支撑机器学习的脊檩则是狭隘的学习理念。更深入地看,所有的离线优化(OfflineOptimization)问题,本质上都是基于进化而非个体智慧。例如,假定被植入某种遗传密码,转基因萤火虫就能准确探测特定猎物并成功捕食。这种情况下,萤火虫无需实时学习便可拥有相应技能。类似地,只要预装导航、定位、目标检测(ObjectDetection)等预置功能的模块或经离线优化设定参数,自动驾驶汽车就应该能够即开即走。
时至今日,如何从离线优化转向快速可靠的实时学习,主流人工智能仍未给出令人信服的回答。但这既是对智能本质之叩问,也是人工智能的初心所向。与荒野生存的动物一样,通用人工智能(Artificialgeneralintelligence,AGI)能够在运行时应对无法预见的情况。快速和可靠的适应力不仅能够推动新一代机器人及个人助手的实践发展,也理应被视为智能理论的那块“核心拼图”。
对“智能”一词的理解万别千差、百口不一,王培为此专门撰写《人工智能定义专论》一文,并刊发于《通用人工智能》(JGAI,2019年第10卷)。这篇文章被认为是解决人工智能领域核心历史遗留争议最给力的尝试之一,受邀的同行评议专家多达110位,且广泛来自多所著名大学以及DeepMind、GoogleBrain等知名业界公司。文章标靶为智能的“非主流”定义,即“智能是知识和资源不足情况下,主体对环境的适应能力”。尽管该定义在另一项对567名人工智能专家的调研中高票获选,但对资源限制和实时适应必要性的质疑之声也同样存在。有些质疑源自人工系统与生物系统的差异,认为后者总是在知识和资源不足的条件下通过演化进行适应,但部署后的AI系统则无需再配备这种能力。
对智能本质的不少误解都为忽视实时学习所致。比如,遗传算法(GA,参考文献[5])有时被当做强化学习(RL,参考文献[12])的“替身”。诚然,根据前文所述,遗传算法之于强化学习,正如进化之于智能。但只有当学习发生在海量的代际实例模拟中,上述类比方才成立。而这对自主机器人或动物毫不适用,因为二者都能在单次生命周期内以最快速度适应未知环境。很显然,只要致命事件发生一次,个体学习也就戛然而止。这也正是高度模拟领域(如参考文献[11])取得了巨大成功却难以“变现”的主要原因。于是,与实时的适应性系统相比,离线优化这位“同学”着实有些志大材疏。
机器学习视角下,存在三项重要挑战:
一是,智能主体若想适应动态(非稳态)环境,“好用”的决策理论便不可或缺。对动物而言,这是通过进化实现的。但对机器而言,单独个体的一生中却无法学到。因此,尽管离不开先天预设,但其行为表现则是先天和后天的相互结合。
强化学习就是一个非常成功的决策理论(RL,参考文献[12])。虽在非稳态环境中难堪大用(主体的适应性需求与学习速率衰减是一对矛盾),不过至少能够用于实时学习。强化学习有一些主要概念的限制,基于行为主义的强化学习最为常见。通过对具有最高预期回报的“状态—行为”之间的响应映射(策略)进行学习,且无须对所在情境的其他因果关系进行建模,令此类主体具有奖励中心主义的世界观。这意味着,一旦效用函数发生变化,主体就必须重新习得一个新策略,既有知识也无法借助先天设计而迁移到新任务中。对于存在单一明确取胜标准的电脑游戏来说(如:赛车游戏中的圈速、象棋中的将军等),效用函数的变化不是问题。但对于生物系统而言,这却是日常的现实考量。
动物在饿与渴的时候行为完全不同,前者会寻找猎物或美味的枝叶,后者会寻觅水源。也就是说,个体行为不仅取决于外部因素,也取决于内部需求。当出现特定需求时,个体寻求“因果知识”,这一知识会自动迁移到解决下一次其他需求。如此,便能对不断变化的需求予以及时响应。但是,个体并不总能预先知道该如何满足特定需求。要解决这一问题,可将具体信念与动机系统解耦,令主体在不同的环境中学习到行为的不同结果,建立不同的因果模型。这是那些抱持AI初衷的AGI研究者所追求之路,但在专用人工智能(Special-purposeAI,SAI)领域中却常常无人问津。
二是测量。毋庸置疑,不测量便无从知晓是否有进步,但测量的对象也很重要。我们在每个领域下测试主体表现,如果允许对不同领域设定不同的超参数(译者注:在机器学习中,模型“自学”得到的是参数,无法“自学”必须由“上帝”赋予的是超参数。深度学习“炼丹师”的一项重要操作就是对超参数的调校),得到的将是不同主体的“专项成绩”。虽在应用层面上十分有用,却对了解个体的一般性顿口无言。另一方面,如果因领域各异而设定不同超参数不被允许,那么得到的则是主体“各科考试”的“总成绩”。
目前,最好的通用系统仍无法与专用系统(其超参数针可对特定目标领域进行调整)相媲美,但最好的专用系统其通用性得分却不会很高。类似情形在自然界比比皆是(如图1所示),尽管在特定静态环境,特定的专用方案往往是首选,但通用性却能使适应特殊环境条件变得更为容易。
图1:高专用性的昆虫与高通用性的昆虫
从上述讨论中可以窥见:
衡量AGI成功与否需要改变已有的评估方式。AGI亦非AI超集,特定领域内大发神威的专用化最优方案,很可能在其他领域百无一用。在通向AGI的道路上,尽管并非总是,但一般情况下确与专用能力交集寥寥。
写作此文正是想向读者指出通用性AI发展面临的许多挑战和误解。短期应用成果应与长远蓝图相得益彰。我们需要渊思寂虑,精进系统研发,从而理解主体感知,并使之实时适应不断变化的环境。
三是系统实现。非知之艰,行之惟艰。打造具有通用能力的系统实属不易,我们只是在漫漫前行路上迈出了一小步。王培提出的非公理逻辑推理系统NARS(Non-AxiomaticReasoningSystem)[9]便是其中重要一例。NARS项目历经30余年,在实时学习、推理和目标满足等关键领域成效斐然。系统能通过自身感知对环境进行建模,适应环境,通过推理来决定下一步行动,从而实现自我目标。近期的研究亮点是,将深度神经网络(YOLOv4,参考文献[1][6])的视觉感知与NARS实时学习和推理能力(OpenNARSforApplications,参考文献[4][13])进行整合,很好地完成机器人瓶子收集的任务(如视频所示)。
机器人寻找瓶子、机器人抓住瓶子
机器人举起瓶子、机器人运送瓶子
图2:体现NARS实时推理与学习能力的瓶子收集任务
图注:此例虽小,但意义重大。首先,再次印证同一个通用人工智能系统能够完成不同的专用任务,而无需再次开发或修改源码重新编译;其次,明确说明通用人工智能系统的多种感知与运动功能能够在“大脑”的指挥下被妥善协调,而对算力仅有“微弱”的要求;最后,尽管单项能力非其所长,但对开放世界里又“找”又“避”又“抓”又“举”的“多强全能”冠军而言,通用人工智能系统必定是最有力的竞争者,没有之一。
视频演示:[瓶子收集任务][抓、举动作更替]
在这一任务中,机器人不仅需要协调视觉搜索和机械操作等多种感知运动功能,同时还要学习探索如何避障。这让NARS实时学习和实用推理相得益彰,二者融合一目了然——既能够充分体现实时学习的能力(常被视为强化学习的优势),又不失目标规划及利用背景知识的认知灵活性。而且,通过集成最新的深度学习模型来处理其所擅长的目标检测任务,可将机器学习的离线优化特点与AGI系统的实时学习和推理优势相互结合,此为SAI与AGI系统的共生之道。我们的AGI方案有望实现智能系统自主性的极大提升,并用于:
救援机器人
探险机器人
基于智能手机或PC的个人助手
无论是某种新型自主代理还是其他项目,AGI的应用不拘形迹——“一切皆有可能”。一言以蔽之,实时学习乃AGI关键之法,离线优化的人工智能技术可以成为服务AGI“大脑”的其他延展“器官”,从而令多模态学习及跨域迁移的交结变为现实。这样的系统具备真正意义上的智能,能迅速适应多变的现实环境。
最后,总结本文要点如下:
AGI与SAI根本目标各异——通用VS专用
AGI与SAI评价方式完全不同
实时适应性是智能系统的必然要求
NARS所依据的通用推理系统是实现真正智能的一种方法
AGI时代的大幕正徐徐升起。2021,你好牛年,你好牛·年!
参考文献
[1]Bochkovskiy,A.,Wang,C.Y.,&Liao,H.Y.M.(2020).YOLOv4:OptimalSpeedandAccuracyofObjectDetection.arXivpreprintarXiv:2004.10934.
[2]Bratman,M.E.(1987).Intention,Plans,andPracticalReason.CSLIPublications.ISBN1-57586-192-5.
[3]Georgeff,M.,Pell,B.,Pollack,M.,Tambe,M.,&Wooldridge,M.(1998,July).Thebelief-desire-intentionmodelofagency.InInternationalworkshoponagenttheories,architectures,andlanguages(pp.1-10).Springer,Berlin,Heidelberg.
[4]Hammer,P.,&Lofthouse,T.(2020,September).‘OpenNARSforApplications’:ArchitectureandControl.InInternationalConferenceonArtificialGeneralIntelligence(pp.193-204).Springer,Cham.
[5]Holland,J.H.(1984).Geneticalgorithmsandadaptation.InAdaptiveControlofIll-DefinedSystems(pp.317-333).Springer,Boston,MA.
[6]Redmon,J.,Divvala,S.,Girshick,R.,&Farhadi,A.(2016).Youonlylookonce:Unified,real-timeobjectdetection.InProceedingsoftheIEEEconferenceoncomputervisionandpatternrecognition(pp.779-788).
[7]Wang,P.(2019).OnDefiningArtificialIntelligence.JournalofArtificialGeneralIntelligence,10(2),1-37.
[8]Monett,D.,Lewis,C.W.,&Thórisson,K.R.(2020).IntroductiontotheJAGISpecialIssue“OnDefiningArtificialIntelligence”—CommentariesandAuthor’sResponse.JournalofArtificialGeneralIntelligence,11(2),1-100.
[9]Wang,P.(2013).Non-axiomaticlogic:Amodelofintelligentreasoning.WorldScientific.
[10]Wang,P.(2009,October).InsufficientKnowledgeandResources-ABiologicalConstraintandItsFunctionalImplications.InAAAIFallSymposium:BiologicallyInspiredCognitiveArchitectures.
[11]Schrittwieser,J.,Antonoglou,I.,Hubert,T.,Simonyan,K.,Sifre,L.,Schmitt,S.,...&Lillicrap,T.(2020).Masteringatari,go,chessandshogibyplanningwithalearnedmodel.Nature,588(7839),604-609.
[12]Sutton,R.S.,&Barto,A.G.(2018).Reinforcementlearning:Anintroduction.MITpress.
[13]OpenNARSforApplications(ONA),lastaccessedJanuary3,2021
版权说明:欢迎个人转发,任何形式的媒体或机构未经授权,不得转载和摘编。转载授权请在「返朴」微信公众号内联系后台。
原标题:《通用人工智能的时代已经来临》
阅读原文
复旦通识·人工智能丨如何理解和应对ChatGPT与生成式人工智能的开放性伦理挑战
【编者按】随着聊天程序ChatGPT成为时下关注的焦点,人们意识到人工智能正在影响着各个领域与学科,正在成为推动人类文明进入一段新旅程的力量。复旦大学通识教育中心组织“人工智能”系列,邀请校内外不同领域的学者,从多学科视角入手、以平实的语言,尝试与读者一起了解有关人工智能的方方面面。以下是段伟文教授的文章《如何理解和应对ChatGPT与生成式人工智能的开放性伦理挑战》。
自图灵等人工智能先驱提出计算机可以像人一样思考和行动以来,人工智能会不会构建出类似人类的智能甚至超越后者,一直是一个在探索之中和争论不休的问题。在近年来新一波数据驱动的人工智能热潮中,这一问题的焦点逐渐从理论上的可能性之争转换为如何应对技术上可能出现的颠覆性创新。从基于深度学习的人工智能战胜人类围棋棋手到最近以ChatGPT为代表的生成式人工智能取得令人惊叹的成功,特别是ChatGPT为自然语言问题和提示所作出的表述清晰、语法正确的回答,像巨型魔术表演一样牵动了人们对科技未来的想象。面对这一步步紧逼的“创造性破坏”所带来的海啸般的冲击,人们不仅看到了突然演化出通用人工智能乃至超级智能的潜在风险,而且越来越强烈地认识到,必须严肃思考和认真对待由此可能引发的开放性社会风险与价值伦理挑战。
人工智能的工程创新与智能理论间的认知落差
从技术上讲,ChatGPT是在模仿人类语言的大型预训练语言模型(LLM)基础上产生的一种生成式的人工智能语言模型。其成功的关键在于通过基于人类反馈的强化学习(RLHF)对模型加以微调,从而不仅使其获得了流畅的对话功能——可以针对任意话题与用户进行高质量的对话,而且在工程上基本实现了“人机对齐”——让机器的目标和意图符合人的要求。由此,它可以较为准确地按照用户意图实现问答、分类、摘要和创作等自然语言理解与生成任务,自动而迅速地输出逻辑较为自洽的回答,甚至可以生成类似人类作者写出的文章和报告。
虽然作为演示样本的ChatGPT尚存在诸多的不完善之处,但其所涌现出的流畅的类似人类的对话功能表明,它在理论层面突破了人们对智能和人工智能的既有认知框架。其一,尽管它并不具备自主性和自我意识,没有真正意义上的理解能力,但鉴于它可根据人们的提示和提供新的信息而改进回答,它至少看起来在一定程度上具备了“理解”自然语言并不断优化推理和表达的能力。其二,作为ChatGPT基础的大型预训练模型具有强大的泛化能力,即能够处理与不同于先前遇到的情况不或任务的能力,而这实际上打破专用人工智能与通用人工智能的传统二分法。其三,根据所谓“人工智能效应”悖论,在人工智能发展过程中,各种专用人工智能(如下棋等)一旦实现,往往会被视为对部分人类智能或技能的自动化并不再被当作是具有智能的;而ChatGPT的特殊性在于它不仅是一种可以实现类人类语言的自动化专用人工智能,而且因其作为语言而具有的指令功能,它可以与图像、音视频等其它模态的人工智能生成内容形成无限的组合。
同时,它的出现也突破了人工智能怀疑者的认知框架。几年前,面对深度学习的突破性成就引发的达到或超越人类智能的奇点临近的热议,人工智能的怀疑者、科学社会学家柯林斯(HarryCollins)依然向人工智能走向通用人工智能的潜力了提出质疑。在《人工虚构智能:反对人性向计算机缴械》(2018)一书中,他从“嵌入认知”理论出发,祭出了“连环掌”:(1)除非完全嵌入正常的人类社会,否则任何计算机都不会流利地使用自然语言、通过严格的图灵测试并具有完全类人类的智能;(2)尽管与任何其他人工智能方法相比,深度学习更易于将计算机嵌入人类社会,但因其当前技术基于渐进式发展,任何计算机都不能完全融入人类社会。但显然,ChatGPT在工程上所呈现出超强的人机自然语言对话能力不仅在相当的程度上打破了柯林斯等悲观主义者的设限,而且超出了大部分技术乐观主义者的预期。
而这再次表明,不论是对什么是智能、什么是人工智能的理论构想,还是从德雷福斯到柯林斯等对人工智能不能做什么的理论反思,往往与技术和工程上交付的人工智能实现方式之间存在着不小的认知落差。而造成这种落差的原因,则在于在人工智能发展过程中理论思维和工程思维之间的张力。如果用能够处理无限任务、自主和具有价值系统之类的“关键要求”作为通用人工智能的标准,ChatGPT显然不够格,但问题是这些“关键要求”本身在工程上如何测试。
回顾人工智能的发展历程,有关智能和认知的哲学研究往往会对人工智能技术和工程上的“理论缺陷”展开批评,旨在推动人工智能的范式转换。如近年来试图超越笛卡尔式认知主义的具身认知、嵌入认知、生成认知、延展认知和情境认知等“4E+S”认知得到了深入的讨论,从哲学上不难指出缺失这些维度的认知很难成为真正的认知,也可据此顺手批评技术和工程上实现的人工智能之不足。类似地,在人工智能的讨论中,人工智能体是否具有“意识”既是人们公认的人工智能可能出现的最高风险,也被人工智能怀疑者视为真正意义上的智能的金标准,但问题是认知科学和哲学对这个难问题的认识还非常有限,人们目前所能做的只能是工程技术层面的防范。
就像柯林斯的“连环掌”一样,诸多有关智能的理论认知框架往往缺乏必要的谦逊,未能将其立场当作探究的视角之一,容易陷入固守“先验”标准的封闭式否定思维之中。而工程思维则主要体现为工程实践中的累积创新和涌现创新,是一种基于技术产业演进的“后验”迭代的开放性的肯定思维,常常是对某些技术路径的偏执性选择,且能在技术演进中赋予这些选择以新的内涵。
受到两者之间的这种认知落差的影响,理论研究者和批评者无法预见人工智能工程实践可能涌现出的重大突破,工程实践者和喝彩者则难以前瞻技术上的突破在社会价值伦理层面所引发的革命性影响,由此形成的总体认知状态显然无法应对包括超级智能在内的开放性伦理风险。
基于人机交互智能的生成式人工智能与人机对齐
为何会出现这一认知落差呢?这其中固然有人工智能前沿创新高度不确定的原因,但不容忽视的原因是人们思考相关问题时所采用的实体论预设。耐人寻味的是,不论是理论反思者还是从事工程实践的人,在相关的探讨中大多将人工智能与人类智能预设为相互分立的智能体,大多聚焦二者的高下之分和此消彼长,而较少以两者之间的交互作为思考的出发点,从技术社会系统和智能生态系统的维度理解人工智能体的实质。
但实际上,从基于大数据的深度学习到基于大模型的生成式人工智能,其创新应用都发生于数据、算法、算力等所构建的巨型技术社会系统之中,是在高度社会化的人机交互智能生态系统中形成的。它们之所以可实现功能上的突破,固然源于数据量和模型参数大到一定规模后的功能涌现,更重要的是要充分认识到人类反馈微调和使用中的人机智能交互对其性能改进的作用。
目前业界和学界对生成式人工智能伦理风险的认知大多滞留于网络媒体和数字平台涉及的相关问题,聚焦于偏见、歧视、数据滥用、信息误导、用户操纵、虚假内容和恶意使用等方面。这些问题其实是现实世界中存在的问题在大数据、人工智能等数字技术应用中的折射与放大,并且在生成式人工智能中进一步延伸和加剧,故对它们的关注的确具有紧迫性。
而实际上,在ChatGPT的研发过程中,OpenAI的技术路线就是在高度社会化的人机交互智能系统中展开的。ChatGPT所采用的人工智能新范式基于对自然语言内在的同质化形式和结构的学习,其中既有海量的文本数据集,也包括运行中大量的人机对话数据,其内容生成思路是学习与预训练的结合——首先是自动提取相关内容并加以聚合,然后通过人机对齐工程对其目标和价值加以必要的修正。
依照OpenAI的说法,之所以实施人机对齐工程的背景是,OpenAI对其所开发的GPT系列大模型以及ChatGPT的技术定位是探索通用人工智能。为了防范由此可能带来的颠覆性社会伦理影响,开发者通过人类标注、反馈、审核等工程方法对生成的类自然语言中的价值冲突和伦理争议进行了校准,对生成内容与语言表达策略进行了持续监督和不断优化。这使ChatGPT的输出对价值敏感问题相对谨慎、持平,主动回避有争议的问题、甚至拒绝回答。
人机对齐工程的实施表明,由于存在着包括超级人工智能可能引发的人类生存风险在内的巨大社会伦理风险,生成式人工智能的技术开发与价值伦理调节从一开始就是同步进行的。由此,可以得到二个重要的启示。一方面,人机对齐工程的实施表明,对生成式人工智能进行价值伦理矫正并防范恶性后果在工程上是可行的,这为其创新应用中恪守价值底线和红线提供了可借鉴的经验。当然,必须明确指出的是,作为语言模型的ChatGPT本身并不真正理解各种价值观的内涵。另一方面,人机对齐工程是在人机交互的基础上的实施的,不论是在训练数据之中还是在人工标注等人类反馈环节,都负载着利益相关者的利益和好恶,会受到各种价值预设和文化选择的影响,必然存在一定的偏向性。
超越知识生成自动化的知识权威幻象与图灵陷阱
人机对齐工程所进行的价值伦理矫正固然有助于对人工智能生成内容的法律规制和伦理治理,但更重要的是,要看到以ChatGPT为里程碑的生成式人工智能是机器智能与人类智能全新的交互组合方式,我们正在开启借助人工智能自动生成知识并全面重塑生活的前所未有时代。从知识生产方式的范式转换来看,如果说大数据分析带来的是堪比微积分的新分析,那么ChatGPT所开启的大模型加人类反馈的自动化知识生成方式则是面向智能化未来的新综合。而对这一新综合的拥抱将迫使我们面对一系列全新伦理挑战,除了热议的违背学习和研究诚信、侵犯知识产权等问题之外,尤其值得关注的是以下两个具有开放性的社会伦理挑战。
一是将自动生成的知识视为神谕的知识权威幻象。拥抱知识生成自动化必然面对的一个悖论是,生成式人工智能系统固然能带来知识生成效率的提升,但它并非知识大全和全能的知识的领会者。这种从海量训练数据中拼凑出答案的语言形式生成系统如同自动的随机鹦鹉,其自身既不真正理解输入输出数据的意义,也没有自己的目标,更不知道什么是研究和学习以及为什么要研究和学习。但人们往往会产生一种将它们视为自动化的知识生产者的幻象,而没有注意到,虽然它们能够产生连贯的文本,但其意义和连贯性是在人类与机器的互动中形成的,而它们并没有试图表达什么。如果认识不到这种幻象,就容易产生将生成式人工智能视为知识权威和道德权威的风险。随着ChatGPT的进一步发展,有望演变为普通人日常生活中的人工智能助手,成为解答知识、辨别是非乃至区分善恶的重要工具。鉴于ChatGPT并不真正理解其所生成的知识内容以及对是非善恶的判断,而且有时会产生荒谬的错误或随意堆砌和编造的内容,在缺乏批判性思考的情况下,将ChatGPT简单地视为教育、医疗、心理、精神方面的解惑者或指导者,难免放大由知识生成错误和不准确造成的危害。
二是由盲目的智能化和自动化导致的图灵陷阱。如果不能认识到生成式人工智能建立在人机交互的智能生态系统乃至遍布地球的智能科技社会系统之上,就看不到知识生成自动化的基础和前提是对人类智能的提取,其运作过程既是对知识和智能的重新定义,也是对地球生态环境、人类社会和个人的重构。如果缺乏对这一过程的反思,就可能陷入各种图灵陷阱:在教育和研究中无条件采用自动化生成知识,在工作中无限度地用自动化取代人类智能,完全不顾及能源消耗的自动化知识生成还会使地球生态环境不堪重负。之所以会出现图灵陷阱,是因为智能和自动化系统没有做到以人为本,在人工智能的部署中往往迫使人被动地适应智能化和自动化——在很多情况下,“自动建议”“自动更正”等智能系统的运作预设不是使机器人性化,而是让人越来越机器化,使人的自主性在不经意间被自动剥夺。
为了克服人工智能的知识权威幻象,超越图灵陷阱,无疑需要全社会展开进一步的讨论,以构建我们对可接受的深度智能化未来的合理想象。而从观念上讲,必须直面的问题是:人类在知识和智能上能否保有主创者和主导者地位?人的主体性能否经受住来自人工智能的挑战?如果未来不会出现人工智能超越人类智能的奇点,我们似乎可以坚持:一方面,人应该成为最终的知识权威;另一方面,人工智能应该更多地作为人的智能助手,而不是一味地用智能化和自动化取代人的工作和替代人的技能。
最后,从长期风险来看,ChatGPT强大功能的涌现表明,对于大模型的研发必须真正开始警惕出现有意识的通用人工智能的可能性,将人工智能可能威胁人类生存的安全风险的及时防范作为其发展的前提。OpenAI的首席执行官山姆.奥特曼在最近的一篇博文中再次宣示了其发展通用人工智能的初衷,并强调要确保造福人类。这种站在道德制高点上的高调宣示其实表明,他已经认识到通用人工智能的巨大风险,但人类的未来能能否避免由此带来的生存风险,显然不能仅仅寄希望于其作出的审慎发展的承诺。
(本文经删节编辑后发表于《中国社会科学报》2023年3月7日第7版。)
本专栏内容由复旦大学通识教育中心组稿。
未来可期|通用人工智能的双刃剑:驾驭发展,规避危机
《未来简史》作者尤瓦尔·赫拉利警示:核武器和人工智能最大的区别是,核武器不能制造更强大的核武器。但人工智能可以产生更强大的人工智能,所以我们需要在人工智能失去控制之前迅速采取行动。
最近,微软雷蒙德研究院机器学习理论组负责人塞巴斯蒂安·布贝克(SébastienBubeck)联合2023斯隆研究奖得主李远志等人,发表了一篇关注度极高的论文。这篇论文名为《通用人工智能的火花:GPT-4早期实验》,长达154页。一些好事者从LaTex源码中发现,原定的标题实际上是《与AGI的第一次接触》。
这篇论文的发表,标志着人工智能研究领域的一次重要里程碑。它为我们深入了解通用人工智能(AGI)的发展和应用提供了有价值的见解。同时,论文的原定标题《与AGI的第一次接触》,也凸显了对迈向通用人工智能的探索的重要性和前瞻性。
我耐着性子,看完了这篇论文的翻译版。说句大实话,半懂半不懂,不明觉厉。先给大家介绍一下这篇论文的核心主张:GPT-4呈现出一种通用智能的形式,绽放了通用人工智能的火花。这表现在它的核心心智能力(如推理、创造力和推理),它获得专业知识的主题范围(如文学、医学和编码),以及它能够完成的各种任务(如玩游戏、使用工具、解释自己等)。
读完这篇,我又重温了拙文《未来可期|人工智能绘画:让每个人都成为艺术家》。我问了自己一个问题:此前把ChatGPT这类大模型归类在人工智能生成内容(AIGC),是否有些狭隘?正如微软研究院论文所说,GPT-4实际上不仅仅是AIGC,它更像是通用人工智能的雏形。
在解释AGI意味着什么之前,我先给澎湃科技“未来可期”专栏的读者朋友说一下ANI、AGI、ASI这三个单词。
人工智能(ArtificialIntelligence,AI)通常分为三个层次:
①弱人工智能(ArtificialNarrowIntelligence,ANI);
②通用人工智能(ArtificialGeneralIntelligence,AGI);
③超人工智能(ArtificialSuperintelligence,ASI)。
接下来,再稍微给大家介绍一下这三个层次的区别和发展。
①弱人工智能(ANI):
弱人工智能是目前最常见的人工智能形式。它专注于执行单一任务或解决特定领域的问题。例如,图像识别、语音识别、机器翻译等。这类智能系统在特定任务上可能比人类表现得更好,但它们只能在有限的范围内工作,无法处理它们未被设计解决的问题。当前市场上有许多智能产品和服务,如虚拟助手(Siri、微软小冰等)、智能音箱(天猫精灵、小爱音箱等)和阿尔法围棋(AlphaGo)等,都属于弱人工智能的范畴。弱人工智能的局限性在于,缺乏综合性的理解和判断能力,只能在特定任务上表现出色。
随着大数据、算法和计算能力的不断发展,弱人工智能正在逐步渗透到我们日常生活的各个领域。在金融、医疗、教育、娱乐等领域,我们已经见证了许多成功的应用案例。
②通用人工智能(AGI):
通用人工智能,也称为强人工智能,是指具备与人类同等的智能,能表现正常人类所具有的所有智能行为的人工智能。这意味着,AGI能够像人类一样,在各种领域中学习、理解、适应和解决问题。和ANI不同,AGI能够独立完成多种任务,而不仅仅局限于某个特定领域。目前,普遍认为人工通用智能尚未实现,但许多科技公司和科学家正在努力靠近这一目标。
③超人工智能(ASI):
超人工智能指的是一种人工智能系统,在各个领域远远超越人类智慧。它不仅能够完成人类可以完成的各种任务,还在创造力、决策能力、学习速度等方面远远超过人类。ASI的出现,可能引发许多前所未有的科技突破和社会变革,解决人类无法解决的难题。
然而,ASI也带来了一系列潜在的风险。例如,它可能导致人类价值和尊严的丧失,引发人工智能的滥用和误用,甚至可能引发人工智能的反叛等问题。
原来,我们一直认为,人工智能技术,从弱人工智能到通用人工智能再到超人工智能,将经历一个漫长而复杂的发展过程。在这个过程中,我们有足够的时间来做好各种准备,大到法律法规、小到每个个体的心理准备。可是,最近我有一个强烈的感觉:我们离拥有通用人工智能可能只有几步之遥,而这可能只需要20年甚至更短的时间。如果有些人说这个过程只需要5-10年,我也不会完全排除这种可能性。
OpenAI公司在其发布的《通向AGI的规划和展望》中提到:“AGI有可能为每个人带来令人难以置信的新能力。我们可以想象一个世界,我们所有人都可以获得几乎任何认知任务的帮助,为人类的智慧和创造力提供一个巨大的力量倍增器。”
然而,这份规划强调了一个“逐渐过渡”的过程,而不是过分强调AGI的强大能力。“让人们、政策制定者和机构有时间了解正在发生的事情,亲自体验这些系统的好处和坏处,调整我们的经济,并将监管落实到位。”
在我看来,这段话传达的潜在信息是:通往AGI的技术其实已经具备。然而,为了让人类社会有一个适应的过程,OpenAI正在有意放缓技术的进展步伐。他们意图平衡技术进步和人类社会的准备程度,给予更多时间来进行法律、伦理和社会适应的讨论,并采取必要的措施来应对可能带来的挑战。
《论语·季氏将伐颛臾》里面有这么一句话:“虎兕出于柙”,现在,各种GPT们,如猛虎一般,已经从笼子里跑出来了。就像《未来简史》作者尤瓦尔·赫拉利所言:人工智能正在以超过人类平均水平的能力掌握语言。通过掌握语言,人工智能已经具备与数亿人大规模产生亲密关系的能力,并正在掌握入侵人类文明系统的钥匙。他更进一步地警示:核武器和人工智能最大的区别是,核武器不能制造更强大的核武器。但人工智能可以产生更强大的人工智能,所以我们需要在人工智能失去控制之前迅速采取行动。
3月22日,生命未来研究所(FutureofLife)向全社会发布了一封公开信,题为《暂停巨型人工智能研究:一封公开信》,呼吁所有人工智能实验室,立即暂停比GPT-4更强大的人工智能系统的训练,暂停时间至少为6个月。生命未来研究所美国政策主任克雷恩(LandonKlein)表示:“我们认为当前时刻类似于核时代的开始……”这份公开信,已获得超过超千名人士支持,其中包括埃隆·马斯克(特斯拉创始人)、山姆·奥特曼(OpenAI首席执行官)、约书亚·本吉奥(2018年图灵奖得主)等知名人士。
如果许多人都意识到,我们即将进入一个“人工智能核武器扩散”的时代,那么我们确实需要探讨一种可能性。这个可能性是建立一个类似于国际原子能机构的国际组织,其目标是监督所有人工智能公司,根据其使用的GPU数量、能源消耗等指标进行监管。那些超过能力阈值的系统,都需要接受审核。通过这样的国际组织,我们可以共同努力,确保人工智能技术为人类带来福祉,而不是潜在的危害。
一些科学家主张,在推进人工智能研究和应用时,一定要避免人工智能系统具有超出人类控制的能力。他们做了很多比喻来描述正在发生的灾难,包括“一个10岁的孩子试图和Stockfish15下棋”,“11世纪试图和21世纪作战”,以及“南方古猿试图和智人作战”。这些科学家希望我们,不要把通用人工智能想象成“居住在互联网中,没有生命的思考者”。而是要把它们想象成一个完整的外星文明,正在以比人类快百万倍的速度思考。只不过,它们最初被限制在计算机中。
然而,也有一些科学家持乐观态度。在他们看来,人工智能的发展和研究应当持续推进,以促进科学进步和技术创新。他们比喻说,如果在汽车诞生的那个年代,如果有马车夫提议,让司机暂停开车6个月。现在回过头来看,这是否是螳臂当车的行为呢?他们认为,通过透明和负责任的研究方法,可以解决潜在问题,并确保人工智能技术的可控性。而且,正是要通过不断的实验和实践,我们才能更好地理解和应对人工智能可能带来的挑战。
最近,世界卫生组织(WHO)对于人工智能与公共医疗的结合发出了警告。他们指出,依赖人工智能生成的数据进行决策,可能存在偏见或被错误使用的风险。世卫在声明中表示,评估使用ChatGPT等生成式大型语言模型(LLM)的风险至关重要,以保护及促进人类福祉。他们强调,需要采取措施来确保使用这些技术时的准确性、可靠性和公正性,以保护公众的利益并推动医疗领域的进步。
许多国家已经开始采取措施,迈出了规范人工智能领域的第一步。3月31日,意大利个人数据保护局宣布,即日起暂时禁止使用ChatGPT。同时,欧盟官员也正在制定一项名为《人工智能法(AIAct)》的新法律草案,其中包括:禁止特定人工智能服务的使用以及制定相关的法律规范。
美国商务部则发布通知,征求公众意见,其中包括:存有危害风险的人工智能新模型是否需要先进行审查才能发布。同时,商务部还承诺,打击那些违反公民权利和消费者保护法的有害人工智能产品。
5月16日,OpenAI首席执行官兼联合创始人山姆·奥特曼首次参加美国国会的听证会,就人工智能技术的潜在危险发表了讲话。他坦承,随着人工智能的进步,人们对于它将如何改变我们的生活方式感到担忧和焦虑。为此,他认为政府的干预,可以阻止人工智能“狂放的自我复制和自我渗透”。他提议建立一个全新的监管机构,实施必要的保障措施,并颁发人工智能系统许可证,同时具备撤销许可的权力。
在听证会上,奥特曼被问及他对人工智能可能出现的最大担忧是什么,他没有详细说明,只是表示“如果这项科技出了问题,可能会大错特错”,并可能会“对世界造成重大伤害”。
在这个听证会之前,中国在人工智能领域的监管和控制措施也引起了广泛关注。4月11日,为促进生成式人工智能技术健康发展和规范应用,根据《中华人民共和国网络安全法》等法律法规,国家网信办起草了《生成式人工智能服务管理办法(征求意见稿)》。这份办法明确了对生成式人工智能产业的支持和鼓励态度,比如,“国家支持人工智能算法、框架等基础技术的自主创新、推广应用、国际合作,鼓励优先采用安全可信的软件、工具、计算和数据资源。”
该意见稿要求,利用生成式人工智能生成的内容应当体现社会主义核心价值观,不得含有颠覆国家政权、推翻社会主义制度,煽动分裂国家、破坏国家统一,宣扬恐怖主义、极端主义,宣扬民族仇恨、民族歧视,暴力、淫秽色情信息,虚假信息,以及可能扰乱经济秩序和社会秩序的内容。意见稿同时要求,供货商须申报安全评估,采取措施防止歧视,尊重隐私权等。
上述这些国家共同采取的措施提醒我们,当前人工智能的发展带来了巨大的机遇和挑战。我们迫切需要制定明确的伦理准则和法规,以确保人工智能技术的正确使用和透明度。我们将面临着一系列重要问题:如何保障数据隐私和安全?如何应对算法的偏见和不公正?如何确保人工智能的决策透明和可解释性?这些问题需要通过明确的法规和制度来回应。
写到这里,我的思绪莫名地跳转到了最近大火的国产剧《漫长的季节》中,那首题为《漫长的》的诗歌第一段:
打个响指吧,他说
我们打个共鸣的响指
遥远的事物将被震碎
面前的人们此时尚不知情
在这里,我想做一个大胆的预测:当2024年到来,我们来评选2023年度词汇时,ChatGPT会是十大热词之一,甚至可能成为年度词汇或年度人物。
让我们来拆解一下“AI”这个单词吧。如果A代表天使(Angel),那么I可以代表恶魔(Iblis)。如今,人工智能技术正在迅速发展,展现出令人惊叹的“天使和恶魔”的共生关系。面对这一现实,我们需要采取行动,为了一个目标——“让我们享受一个金色的漫长的人工智能的收获之秋,而不是毫无准备地陷入寒冬。”
(作者胡逸,一个喜欢畅想未来的大数据工作者。“未来可期”是胡逸在澎湃科技开设的独家专栏。)
人工智能导论——人工智能的发展历史、现状及发展趋势
初学者学习人工智能有时候需要了解一些背景知识,我从网上简单搜集总结了下分享给大家。
一、人工智能的发展历史
人工智能的发展并非一帆风顺,总体呈“三起两落”趋势,如今算是迈进人工智能发展的新时代。
(1)梦的开始(1900--1956)。1900年,希尔伯特在数学家大会上庄严的向全世界数学家宣布了23个未解的难题。这23道难题中的第二个问题和第十个问题则和人工智能密切相关,并最终促进了计算机的发明。图灵根据第十个问题构想出了图灵机,它是计算机的理论模型,圆满的刻画了机械化运算过程的含义,并最终为计算机的发明铺平了道路。1954年,冯诺依曼完成了早期的计算机EDVAC的设计,并提出了“冯诺依曼体系结构”。总的来说,图灵、哥德尔、冯诺依曼、维纳、克劳德香农等伟大的先驱者奠定了人工智能和计算机技术的基础。
(2)黄金时代(1956--1974)。1965年,麦卡锡、明斯基等科学家举办的“达茅斯会议”,首次提出了“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。其后,人工智能研究进入了20年的黄金时代,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。在这个黄金时代里,约翰麦卡锡开发了LISP语音,成为以后几十年来人工智能领域最主要的编程语言;马文闵斯基对神经网络有了更深入的研究,也发现了简单神经网络的不足;多层神经网络、反向传播算法开始出现;专家系统也开始起步。
(3)第一次AI寒冬——反思发展(1974--1980)。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,过度高估了科学技术的发展速度。然而,接二连三的失败和预期目标的落空,使人工智能的发展走入低谷。1973年,莱特希尔关于人工智能的报告,拉开了人工智能寒冬序幕。此后,科学界对人工智能进行了一轮深入的拷问,使AI的遭受到严厉的批评和对其实际价值的质疑。随后,各国政府和机构也停止或减少了资金投入,人工智能在70年代陷入了第一次寒冬。计算能力有限、缺乏大量常识数据使发展陷入瓶颈,特别是过分依赖于计算力和经验数据量神经网络技术,长时期没有取得实质性的进展,特别是《感知器》一书发表过后,对神经网络技术产生了毁灭性的打击,后续十年内几乎没人投入更进一步的研究。专家系统在这个时代的末尾出现,并开启了下一个时代。
(4)应用发展(1980--1987)。专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。1980年卡耐基梅隆大学(CMU)研发的XCON正式投入使用,这成为一个新时期的里程碑,专家系统开始在特定领域发挥威力,也带动整个人工智能技术进入了一个繁荣阶段。沉寂10年之后,神经网络又有了新的研究进展,具有学习能力的神经网络算法的发现,这使得神经网络一路发展,在后面的90年代开始商业化,被用于文字图像识别和语音识别。
(5)第二次AI寒冬——低迷发展(1987--1993)。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。人工智能领域当时主要使用约翰麦卡锡的LISP编程语言,逐步发展的LISP机器被蓬勃发展的个人电脑击败,专用LISP机器硬件销售市场严重崩溃,人工智能领域再一次进入寒冬。硬件市场的溃败和理论研究的迷茫,加上各国政府和机构纷纷停止向人工智能研究领域投入资金,导致了数年的低谷,但另一方面也取得了一些重要成就。1988年,美国科学家朱迪亚·皮尔将概率统计方法引入人工智能的推理过程中这对后来人工智能的发展起到了重大影响。IBM的沃森研究中心把概率统计方法引入到人工智能的语言处理中;1992年,李开复使用统计学的方法,设计开发了世界上第一个扬声无关的连续语音识别程序;1989年,AT&T贝尔实验室的雅恩·乐昆和团队使用卷积神经网络技术,实现了人工智能识别手写的邮政编码数字图像。
(6)稳健发展(1993--2011)。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1995年,理查德华莱士开发了新的聊天机器人程序Alice,它能够利用互联网不断增加自身的数据集,优化内容。1997年,IMB的计算机深蓝Deepblue战胜了人类世界象棋冠军卡斯帕罗夫。1997年,德国科学霍克赖特和施米德赫伯提出了长期短期记忆(LSTM)这是一种今天仍用于手写识别和语音识别的递归神经网络,对后来人工智能的研究有着深远影响。2004年,美国神经科学家杰夫·霍金斯出版的《人工智能的未来》一书中提出了全新的大脑记忆预测理论,指出了依照此理论如何去建造真正的智能机器,这本书对后来神经科学的深入研究产生了深刻的影响。2006年,杰弗里辛顿出版了《LearningMultipleLayersofRepresentation》奠定了后来神经网络的全新的架构,至今仍然是人工智能深度学习的核心技术。
(7)新时代(2012--至今)。随着移动互联网技术、云计算技术的爆发,积累了历史上超乎想象的数据量,这为人工智能的后续发展提供了足够的素材和动力,以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。。人工智能,大数据,云计算,物联网技术,共同构成了21世纪第二个十年的技术主旋律。2012年,由多伦多大学在ImageNet举办的视觉识别挑战赛上设计的深度卷积神经网络算法,被业内认为是深度学习革命的开始。2014年,伊恩·古德费罗提出GANs生成对抗网络算法,这是一种用于无监督学习的人工智能算法,这种算法由生成网络和评估网络构成,这种方法很快被人工智能很多技术领域采用。2016年和2017年,谷歌发起了两场轰动世界的围棋人机之战,其人工智能程序AlphaGo连续战胜曾经的围棋世界冠军韩国李世石,以及现任的围棋世界冠军中国的柯洁,引起巨大轰动。语音识别、图像识别、无人驾驶等技术不断深入。
二、人工智能的发展现状 主要表现在以下几个方面:(1)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平等。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,在局部智能水平的单项测试中可以超越人类智能,形成了人工智能领域的单点突破。(2)通用人工智能尚处于起步阶段。目前,虽然专用人工智能领域已取得突破性进展,人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,与人类智慧还相差甚远。(3)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。各国及大型互联网公司在人工智能领域的投资日益攀升,全球和中国人工智能行业投融资规模都呈上涨趋势。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。2018年,中国人工智能领域融资额高达1311亿元。人工智能领域处于创新创业的前沿。(4)创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。(5)人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。三、人工智能的发展趋势:(1)从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。(2)从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。(3)从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。(4)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。(5)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。(6)人工智能产业将蓬勃发展,人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。美国、中国、印度以及西欧等国纷纷布局人工智能产业。中国在论文总量和高被引论文数量上都排在世界第一,中科院系统AI论文产出全球第一,中国在人才拥有量全球第二,但杰出人才占比偏低。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。(7)人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。 以上内容主要来自《人工智能的历史、现状和未来》 谭铁牛《求是》2019/04