纵览2023世界人工智能大会:百模大战4个月,中国AI产业怎么样了
图片来源@视觉中国
文|光锥智能,作者|刘雨琦 ,编辑|王一粟
身处大模型的浪潮之中,AI的热度一波接着一波。
7月6日,2023年世界人工智能大会在上海召开,一度冲上了微博热搜榜。在5万平方米的会场中,400多家企业的展台员工都在不遗余力地讲解着自家新产品,参会的人们不断穿梭其中,“脚都走麻了,但心情还是很澎湃。”有观众说道。
在现场,光锥智能发现大会的展台均是按行业部署,软件、硬件、芯片“一家人整整齐齐”的排列着。阿里、百度、腾讯三连座,无异于同台竞技,而观众们能在5分钟之内纵览全国最新大模型,边看边对比。
作为国内最大的AI盛会,此次与往届不同的是,通用人工智能的曙光似乎就在咫尺之间,群雄逐鹿的战意感染了每一个见证者。
特斯拉创始人、CEO埃隆·马斯克连线开场,图灵奖得主、中国科学院院士、上海期智研究院院长姚期智主持讨论此次大会,不仅集齐了百度文心、阿里通义、华为盘古、讯飞星火、商汤日日新等30余个海内外大模型,还有80余位国内外院士,特斯拉、微软、华为、阿里等50余位海内外大咖,学术界与科技界正在合力推开时代厚重的大门。
最为基础的大模型层,技术平台迎来新的迭代升级,如何赋能千行百业,推进产业落地成为新阶段的探讨主题。
AIinfra结构虽然尚不成熟,但大模型的配套设施跟了上来,适应大模型计算存储的向量数据库成为热门赛道,保证大模型安全运行的AI安全监测平台顺势而生。
应用落地抢在了大模型成熟的前面,软件应用渗透至各行各业场景,硬件端又催生了一批机器人新产品。
中国大模型跑出了中国速度,技术层、配套设施层、应用层,同时在各个环节同步崛起,而不是等着底层大模型技术成熟后才慢慢跟上。一面继续夯实地基,一面遍地开花,整舰加速前进,衍生出更多的中国大模型模式。
大模型,两条腿走路
从3月如雨后春笋般冒头至今,短短4个月的时间,大模型正在从“通用型”走向“产业落地”。
通用大模型是一场“赢家通吃”的大逃杀,把大模型用起来,比做出来更重要。在此次世界人工智能大会上,所有大模型升级的关键词都是“产业”。
作为大模型的提供方,蚂蚁、腾讯、百度、阿里、华为、网易等大厂结合此前已有领域的经验优势,快速探索垂类场景应用。
阿里的通义千问大模型,就率先用在了智慧金融。通过将自然语言理解和生成能力与金融场景结合,通义千问与中金财富、杭州银行、恒生电子等合作,通过智能问答、智能外呼、智能助手,来帮助企业识别市场风险、理解客户需求。
以游戏和教育为主的网易,则将大模型率先与这两个领域结合。在教育领域,网易有道自研了国内首个教育大模型“子曰”,在此次大会还发布了最新应用成果——虚拟人口语教练,可以1V1体验类似真人的口语私教。
而在自动驾驶领域积累多年的百度,把大模型投入了汽车交通领域。在汽车制造领域,百度智能云为长安汽车提供了人工智能基础设施平台和数字人平台,与吉利汽车一起打造了汽车行业大模型,构建了工厂数字化大脑,帮助降低管理运维成本。
正如华为轮值董事长胡厚崑提到,“人工智能的发展关键是走深向实,着力点放在让人工智能为千行百业的生产活动服务,为科研创新服务。”
不过,这波中国大模型们产业落地的姿势虽各不相同,但在优势领域站稳后,都开始一致向外扩展,比拼起了行业覆盖能力。
以腾讯为例,目前,腾讯云已经为传媒、文旅等10余个行业提供了超过50个大模型行业解决方案;华为的盘古大模型则主要与金融、制造、医药研发、煤矿、铁路等行业相结合落地......总体而言,智慧政务、智慧金融、智慧交通成为抢手垂类赛道。
腾讯集团高级执行副总裁、云与智慧产业事业群CEO汤道生表示,“通用大模型可以在100个场景中,解决70%-80%的问题,但未必能100%满足企业某个场景的需求。”
为了提升行业大模型的竞争力,企业们需要深入垂类行业的具体场景,贴身肉搏真正考验技术的细节与效果。
作为持续进化的技术,大模型光能用起来还不够。正如每一个技术的发展,都需要两条腿走路,一条是实用性,一条是先进性,大模型的实用性,是借由产业侧落地逐步探索的,而先进性则体现在对跨模态难题的突破。
参考ChatGPT从3.5到4.0的路径,生成式大模型的技术前进之路,是单模态到多模态的,从一开始同质化严重的文生文,正在一路向文生图、文生声、文生视频演进。
在通义千问之后,阿里云此次宣布推出“通义大模型”新成员AI绘画“通义万相”,与文心一格、商汤秒画类似,文生图赛道已经拥挤起来。
而在文生图之后,文生声、文生视频是接下来的赛点。
以视频为例,作为文、声、图的结合体,文生视频也是生成式大模型的终极形态。目前,文生视频技术的难点在于连贯画面素材的生产。基于数字人的已有技术,文生视频最快在数字人场景实现。
例如,商汤的如影大模型,能将文本文案,一键生成知识分享、品牌宣传、短视频带货、培训宣讲、热点资讯等各类数字人视频,以及3D内容生成平台“琼宇”(场景生成)、“格物”(物体生成),基于3D内容生成技术对空间和物体复刻与交互。
以往,技术往往都是先发展,后应用。而在这一波大模型浪潮下,技术的先进性、实用性同步发展,两条腿走路的大模型正在加速前进。
产业拼图,逐个补齐
大模型狂奔了4个月,产业的拼图,也在一块一块逐渐补齐。
以大模型为核心的MaaS服务平台,是大模型飞机着陆的机场。大模型如何落地、落地速度,都与这个机场平台的建设成熟程度紧密相关。
目前,百度文心千帆、阿里灵骏PAI平台、腾讯模型商店、火山引擎的火山方舟,虽然有细分的差别,但都是MaaS服务平台,帮助企业更好的精调、部署行业大模型,将大模型应用在产业中。
WAIC中,MaaS平台的升级也是一大主要看点。会上,腾讯云公开了几大重点行业方向,包括金融风控、交互翻译、数智人等创新场景,下一步将布局AIforScience,持续通过AI大模型应用在天文探索、文化考古等领域。
在不久前,火山引擎也发布了MaaS服务平台火山方舟,包括模型广场和模型工具两个重要模块,核心目的也是通过平台力量帮助企业更好的做应用落地。
而在发展的过程中,安全问题也逐渐暴露出来。
无论是AI诈骗还是三星的员工数据泄露,模型安全一度成为了社会焦点。现阶段,解决问题的前提是发现问题,亮起安全红灯,才能有的放矢的解决。
为此,蚂蚁推出了可信程度安全评测系统“蚁鉴2.0”,作为业内首个产业级支持文本、图像等全数据类型的AI安全检测平台,“蚁鉴2.0”新增AIGC安全性、AI可解释评测能力,可服务于金融、教育、文化、医疗、电商等领域10多个大规模复杂业务场景。
另外,蚂蚁还将发布以隐私计算技术为核心的隐语开源框架1.0版本、“隐私计算安全对战”科普互动游戏,数字版权保护平台“鹊凿”等。
蚂蚁的技术人员告诉光锥智能:“当面对多模型决策时,企业可以将大模型开放给蚁鉴平台进行评分,将有4个不同的评分标准,就像论文的查重系统,检测模型的安全指数并打分,为企业提供指导。”
不过,据光锥智能了解到,目前,蚁鉴仅能检测问题,并不提供针对性解决数据安全问题的方案。还需要其他厂商共同完善产业链条。
另一方面,数据技术的发展也在突破大模型本身的限制。
正如前文所讲,大模型正在经历从通用到行业的变迁,这个过程受到两个方面的限制:一是通用大模型只有“短期记忆”,无论是国内还是国外,OpenAI最新发布了GPT4的开源版本中也强调,有8k的Token限制;二是训练行业专有大模型,企业需要将私有数据与通用大模型进行结合,私有数据如何安全的接入大模型?如何更高效率、低成本的处理动态变化的数据?
这也就是为什么,大模型火了之后,向量数据库随之火爆的原因。
星环科技创始人孙元浩向光锥智能解释道:“向量数据库就像是大模型的外脑,能够帮助大模型拥有长期记忆,且私有数据可以通过向量化存储在向量数据库中,既能满足瞬时接入和输出,也保障企业私有数据不被泄露。”
为此,腾讯云发布了云原生向量数据库TencentCloudVectorDB,支持10亿级向量检索规模,并将延迟控制在毫秒级。相比传统单机插件式数据库检索规模提升10倍,同时具备百万级每秒查询(QPS)的峰值能力。
星环科技发布了分布式向量数据库TranswarpHippo。支持存储、索引以及管理海量的向量式数据集,提供向量相似度检索、高密度向量聚类等能力,有效地解决了大模型在知识时效性低、输入能力有限、准确度低等问题。
向量数据库火爆的背后,是大模型带动着整个数据产业链向前发展。
在训练大模型之前的数据准备(清洗、过滤、提纯)、数据处理(选型、质量、标注)在经历了数道工序后才能“喂”给大模型,而中国目前数据产业相对分散,导致数据在流通的过程中容易遇到安全问题,且效率不高。
比如,需要先把复杂的非结构化数据通过向量化(embedding),处理统一成多维空间里的坐标值,才能够为大模型所用,但如Zilliz一类的向量数据库,并不帮企业完成向量化的过程。
这就需要一个一站式的数据处理平台。和数据打了十几年交道的孙元浩,将经验凝结在了星环的SophonLLMOps中,通过该平台,用户可以完成数据采集、知识沉淀、大模型迭代提升的完整闭环。同时将向量数据库与图数据库进行结合,能够更好的帮助大模型跨领域知识学习和调优,让大语言模型能更好地理解不同领域的专业术语、缩写、常见词汇和语法,承担统一的语义理解功能,解决业务领域性问题。
产业链的陆续补齐,是大模型发展的基石,同时也将带起诸多的产业链机会,共建一个完整的模型生态。
软件、硬件,两手抓
今年整个展览馆,素有“人气王”之称的机器人被数字人抢了风头。
数字人展馆外人头攒动,围了一圈又一圈。商汤搭建如影数字人生成平台,现场演绎3D数字人生成过程;网易有道竖屏展示虚拟人口语教练,吸引了参展人上前互动;魔珐科技还原虚拟人试播间,虚拟人一上午连播三场。
虽然,近期AI主播、AI数字人大规模涌入了短视频平台,掀起了一波讨论热度,但逛完一圈却发现没人展出2D数字人,显然相比其实用性,酷炫、好玩、互动性强的3D数字人更能抢夺人们的目光。
走进AI绘画平台的场馆,依然令人眼花缭乱。阿里打造巨屏展示其文生图效果,商汤使用超大卷屏演示其秒画功能。数字人、AI绘画,AIGC俨然成为大众最关心的事儿,也是大模型应用中跑得最快的方向。
AIGC热度居高不下,成为了人们茶余饭后的谈资,不过更重要的是要推进产业落地。
网易伏羲预训练及生成式人工智能平台负责人赵增告诉光锥智能,目前游戏是图像生成的核心应用场景之一。“游戏场景需要创作大量的内容,例如各种不同朝代的角色,世界各地的风景,通过文图功能可快速生成手稿,激发创意,提升游戏制作效率。”
光锥智能逛展过程中发现,相比于年初,市面上内容生成的类型变得丰富了起来。文生图几乎是各家的标配,除此之外,更多维度的多模态能力越来越完善。比如,腾讯利用文生音频技术,在音乐创作领域推出了XMusic生成式通用作曲框架。
从最初的文生图,到现在的文生音频、图生图,生成内容的类型越来越多样化,呈现出从单模态走向多模态的趋势。但这还远远不够,参照国外Midjourney一类软件的发展,文生视频将是下一阶段的方向,而国内公司在这方面探索还处于特别早期。
“左手软件,右手硬件”,AIGC应用落地正在表现出“两手抓”的趋势。
大会刚开幕,马斯克在发言中就提出:“未来人类将会有更多机器人产品,预计地球上的机器人数量将会超过人类数量。
据了解,今年现场共20余款机器人共同亮相,多款为首发,包括达闼搭载大模型对话能力的双足机器人、特斯拉人形机器人擎天柱、网易伏羲具身智能工程机器人、微创手术机器人、美团无人机V4、宇树四足机器人、科大讯飞机器狗、云深处绝影Lite3四足机器人等。
大模型让软件重做了一遍,但离实际应用到机器人行业还有很长的距离。
长期以来,机器人一直面临前端需求不足、单体成本太高、无法规模化生产等难题。某机器人厂商市场负责人向光锥智能透露,几年间,我们的机器人成本降低到此前的三分之一,但于行业而言,在实际应用中还有很多未知问题需要磨合。
上述负责人表示,理想状态下,大模型能够使机器人长出灵魂,让它自主做决策,跟实际环境去互动。
但遗憾的是,目前还很难做到,机器人的边缘端资源有限,已有的算力带不动大模型部署,而部署了高昂的GPU又会继续拉高机器人的单价。
对此,有创业者称,AI技术路线尚未走通,可能五年之内也难出现大规模人形机器人的产品形态应用。
不过,包括马斯克在内的多位企业家都认为,机器人是人工智能的“具身智能”落地。在更长期的未来中,机器人的成熟会将人工智能的应用从信息产业,带向更深更大的实体世界中。
结语
中国大模型正处于一片欣欣向荣的态势。
不过,行业热闹之中,我们也看到了大模型技术路径、产业落地、配套设施搭建、应用生态仍处于早期阶段。
正如阿里云周靖人所说,“大模型领域你追我赶的过程刚刚开始,大家还是要有一些耐心。”
以人工智能为引擎推动产业智能化发展
作者:王林辉(吉林大学商学与管理学院教授)董直庆(华东师范大学工商管理学院教授)
党的二十大报告强调,“推动战略性新兴产业融合集群发展,构建新一代信息技术、人工智能、生物技术、新能源、新材料、高端装备、绿色环保等一批新的增长引擎”。当前,人工智能日益成为引领新一轮科技革命和产业变革的核心技术,在制造、金融、教育、医疗和交通等领域的应用场景不断落地,极大改变了既有的生产生活方式。统计数据显示,中国2021年机器人出货量达26.8195万台,存量突破100万台,2011年后中国人工智能专利申请量高居世界首位,2020年达到46960项,这表明中国已跻身全球人工智能发展的前列,市场前景广阔。作为世界第二大经济体,我国拥有数以亿计的互联网用户以及海量大数据资源,这种大国经济特征为深化人工智能应用、加快产业智能化发展提供了丰富的数据支持和广阔的应用场景。我国门类齐全、体系完整和规模庞大的产业体系,更是为产业智能化向广度和深度发展奠定了坚实基础。展望未来,人工智能技术引领的新一轮科技革命和产业变革浪潮,将成为未来世界经济和高端制造的主导技术,更会对中国现代化产业体系建设发挥无可替代的作用。
人工智能赋能方向和产业智能化应用场景
人工智能技术可以模拟人的思维过程如归纳、推理、判断等,使机器独立或通过人机协作方式执行生产任务。在机器人参与的生产过程中,生产任务被分解成一系列连续型任务,然后通过系统集成、功能集成和网络集成统一由机器人完成。人工智能技术可嵌入技术研发、产品设计、原材料加工、中间品制造、最终品装配、产品流通与市场销售等产业链条的各个环节,全面赋能各个产业链节点,最终产生更高效的新业态与新经济模式。
基于技术高渗透性及生产任务可智能化的属性,人工智能的应用场景不断拓展。人工智能技术正在全面赋能各类行业,全方位改变传统产业的经营模式和生产业务流程,推动产业的智能化升级。在制造业领域,工业机器人可精准代替人工完成高难度、高负荷的任务,尤其是能够代替人在危险或恶劣环境中工作,目前工业机器人应用最广泛的汽车制造业已基本实现全流程智能化制造。在农业领域,智能机器人在播种、灌溉、除草和收割等农业生产中广泛应用,逐渐展现出一幅智慧农业的美好画卷。在服务业领域,智能客服机器人代替人工进行查询、咨询和业务处理等工作,在极大降低客服成本的同时也提升了服务质量。在医疗卫生行业,机器人可协助医生精准完成外科手术,快速完成数以万计影像的特征识别、标注与分析,从而提高病情诊断的效率与准确率,可以协助护理人员帮助患者恢复肢体功能。在商业方面,以人工智能为核心技术的智能化产能预测和销售系统,可以精准对接供求信息并开展智慧决策,实现以市场需求为导向的资源投入和优化决策。
人工智能技术催生新产业、重塑产业链
根据其技术属性,人工智能产业可细分为基础层、技术层和应用层三个层面。基础层主要包括芯片、传感器、云计算和大数据服务等软硬件设施及数据服务;技术层包括核心的人工智能技术诸如机器学习、计算机视觉、语音图像识别和算法理论等;应用层主要指人工智能的应用领域如智能家居、智能安防和智慧金融等。这三个层面的产业和企业相互促进,对我国的产业链进行全方位赋能。
人工智能技术通常以智能机器设备为载体,通过智能化系统实现传统生产环节的智能化改造,在替代劳动力执行生产任务的同时,也会通过创造新生产任务催生相关的新职业和新产业。具体而言,人工智能技术的应用会促进企业突破既有生产边界,向产业链上游延伸或向下游拓展,推动终端设备、产品及服务的智能化,加快技术成果的产业化和商业化,不断衍生出新的行业或新的产品,诸如无人驾驶、无人零售、智能家居等。新产品新产业的涌现,必然会催生大量新的职业。2020年2月25日,人力资源和社会保障部与国家市场监管总局、国家统计局便联合向社会发布了智能制造工程技术人员、工业互联网工程技术人员、虚拟现实工程技术人员、人工智能训练师等新职业。此外,人工智能技术结合互联网、大数据等数字技术不断催生新行业的同时,也不断淘汰旧行业,引发新旧行业更替,从而重塑现有产业格局。
人工智能技术可以促进产业链纵向延伸,不断加大产业链长度,进而实现产业链重构;人工智能技术可以促进产业链的横向拓展,拓宽产业链的宽度并形成产业集群;人工智能技术可以结合大数据和互联网等数字技术,不断提升产业链的内部关联性与外部协同性,从而全面优化产业链,形成产业链新格局。智能化系统的应用能促使互补型企业更好地关联起来,通过企业合并、重组或集群化发展实现产业链横向拓展;智能化系统的应用能接通散落于不同空间产业链的断环或孤环,形成新的产业链环,增加产业链的整体附加值和韧性,有效提高产业链抵御外部风险的能力。当然,人工智能技术也会打破产业链空间稳态,使一些企业摆脱地理区位和传统生产要素的约束,并通过进退与转移形成新的产业集群,带动新的上下游产业发展,从而引发相关产业链由线状向网状交织模式的演化,进而重塑产业链空间格局。
加快发展人工智能技术,推动产业智能化发展
人工智能技术正在成为推动我国经济持续增长的重要引擎,如何占据人工智能技术制高点并推动产业智能化发展,是当前加快产业转型升级,推动经济高质量发展的重要内容。
政府应积极搭建智能服务平台,助力企业加快智能化转型。政府充分发挥主导作用,为相关企业、高校及科研院所的产学研合作提供稳定合作的平台,促进科技成果有效转化;积极建设信息服务平台,为企业提供智能化设备采购、使用指导、维修养护、检测诊断、人员培训和市场推广等服务,多举措支持和促进人工智能产业发展。
企业注重培训在岗人员职业技能,使其快速适应人工智能领域的新技术环境。通过定期组织在岗人员技能培训,提升劳动者的职业技能水平和人机匹配效率,更好地适应新技术环境。人力资源和社会保障部门应联合企业及职业培训机构,根据现实市场需求及时开设相关技能培训课程,如计算机网络、数据存储技术、图像设计等,以及人机交互能力等新技能培训,为劳动者提供技能学习的机会,尽可能减少由于技能折旧引发的失业。
加强校企合作,构建相关劳动就业需求的动态跟踪与预测机制,准确把握人工智能应用背景下的职业技能需求,精准定位人才培养方向。高等院校增设人工智能等相关专业,重视人工智能基础算法与基础硬件等核心课程体系建设,改造和优化原有课程体系,为人工智能技术发展提供人才支持。增设相关的创新创业训练项目,并与企业共建实习实训基地,打造专业理论与实践能力协同培育模式,为社会输送应用型专业人才。
《光明日报》(2022年11月29日 11版)
[责编:丁玉冰]人工智能促进教育变革创新
通过云平台布置电子作业,利用数据分析课堂上学生学习行为,推进学校管理流程迈向数字化……前不久,2022国际人工智能与教育会议在线上举行,来自全球数十个国家的政府官员、专家学者、一线教师、企业代表等相聚“云端”,畅叙人工智能时代教育发展图景。
作为引领新一轮科技革命和产业变革的重要驱动力,人工智能催生了大批新产品、新技术、新业态和新模式,也为教育现代化带来更多可能性。习近平总书记强调,“中国高度重视人工智能对教育的深刻影响,积极推动人工智能和教育深度融合,促进教育变革创新”。国务院印发的《新一代人工智能发展规划》,明确利用智能技术加快推动人才培养模式、教学方法改革;教育部出台《高等学校人工智能创新行动计划》,并先后启动两批人工智能助推教师队伍建设试点工作;中央网信办等八部门联合认定一批国家智能社会治理实验基地,包括19个教育领域特色基地,研究智能时代各种教育场景下智能治理机制;科技部等六部门联合印发通知,将智能教育纳入首批人工智能示范应用场景,探索形成可复制、可推广经验……“人工智能+教育”不断碰撞出新的火花,为教育变革创新注入强劲动能。
“人工智能+教育”,应用就在身边。音乐课上,虚拟数字人“元老师”跨越时空限制,带领多所学校学生同唱一首歌;体育课上,学生开始跳绳项目测试,智能终端上实时显示心率变化、跳绳次数、平均速度等数据。技术改变课堂,潜力无限。比如,借助虚拟现实技术,学生能够模拟穿上太空服行走在宇宙,感受浩瀚星河的魅力;通过增强现实技术体验川剧变脸,平面的课本知识变得可感可知。现实中,越来越多的学校已经开设或准备筹备人工智能教育教学活动。
“人工智能+教育”,变革教育生态。教、练、考、评、管各环节均有人工智能辅助,让教师教得更好;虚实融合多场景教学、协同育人,让学生学得更好;海量线上数据和逐渐强大的算力,让学校管理更加精准。此外,在人工智能支撑下,优质数字教育资源跨越山海,推动教育更加公平、开放。在西藏墨脱县,得益于多媒体器材配备到雅鲁藏布大峡谷深处、“智慧课堂”全覆盖,门巴族孩子小学入学率实现100%。
我国发展“人工智能+教育”具备良好基础和独特优势。比如,语音识别、视觉识别等技术世界领先;国家智慧教育平台汇集了海量的数据资源,2.91亿在校学生和1844.37万专任教师展现出丰富的应用需求;教育领域数字化基础条件全面提档升级,全国中小学(含教学点)互联网接入率达到100%,99.5%的学校拥有多媒体教室,学校配备的师生终端数量超过2800万台。也应看到,人工智能技术在教育领域的应用仍处于起步阶段。“数字鸿沟”可能将部分学生排除在智能教育之外,数据收集、使用、分析等环节存在安全隐患,相关公共政策制定较为滞后……以人工智能赋能教育现代化,这些都是需要回答好的课题。
着眼未来,应携手打造高质量、有温度的人工智能教育生态。人机协作如何更聪明,人机对话如何更友好,是“人工智能+教育”的长期课题。一方面,技术应服务育人,在让其“授业”“解惑”的同时,必须坚持教师“传道”的主体地位。另一方面,人也要理解、善用技术,努力提升信息应用能力,让人工智能更好辅助教学。教育是动态的、发展的,理性思考人与技术的关系,把握教育规律、用好技术手段、凝聚各方力量,进一步推动人工智能与教育深度融合、创新发展,才能更好赋能教育现代化,培养顺应时代发展要求的创新人才。(吴丹)
人工智能会替代哪些岗位,又会创造出哪些岗位
1、人工智能为什么让人产生焦虑焦虑是一种常见的情绪反应,通常由内部或外部的压力和不确定性触发。人类焦虑的根源大多来自于不安全感,不安全感导致了人们的焦虑,早期人类的不安全感来自于野兽的侵袭和艰苦的生存环境,到了社会发展到一定阶段后,人类的不安全感又转移动到了科技、经济、地位、权力、情感、工作、生活等多方面的不确定性,可以说只要人类社会一直不断的向前发展,那么人类的焦虑情绪就不会消失。
不过焦虑不一定都是坏事,大多时候,只要引导方向正确,少许的焦虑是人类科技进步的源动力,每一次的工业革命都是是上一次工业革命的红利消失殆尽,社会发展迟滞的情况下诞生的,客观上说,只要人类的焦虑情绪达到一定程度后,科技和文明的发展必然会有所变化。当然有时候这种变化可能是反方向的,比如一战和二战也是社会红利消失,人类焦虑情绪爆发后所引起的。
对于普通人的你而言,一旦产生焦虑情绪,就只差下一步行动了,说明你潜意识中已经认识到自己的不足,只要你付诸行动,焦虑就会逐渐转移或消失,或者不行动,让焦虑继续蔓延。短期的焦虑并不可怕,反而能帮我们更进一步,可怕的长期不作为而带来的的焦虑,会对身心产生深刻的影响。
人工智能作为第四次工业革命的主导技术,完全颠覆了几千年来人类作为生产力主角的地位,人口不再是一个国家发展的唯一限制性因素了,所谓的人口红利,完全可以由人工智能来顶替,创造和生产价值的不一定是人,人工智能完全可以做到这一点。
而人工智能的发展在事实上确实也带给了我们焦虑,这是不可改变的,纵观人类文明发展史,每一次文明的晋级,都会造成大量岗位的变动,在消除一些旧岗位的同时,又会产生一些新岗位,所以我们焦虑的不是如何保住旧有的岗位,而是想一想如何踏入人工智能的发展而带来的新岗位。下面我们分析一下因人工智能技术的发展而被替代的旧岗位和催生出的新岗位。
2、人工智能会替代哪些旧岗位人工智能已经开始逐渐替代一些旧的岗位,以下是一些可能会受到人工智能替代的岗位:
l生产线工人:随着机器人和自动化技术的发展,生产线工人的工作逐渐被机器人和自动化系统取代。
l数据录入员:人工智能可以处理大量的数据和信息,自动完成数据录入、数据分析等任务,逐渐替代了传统的数据录入员。
l客服人员:智能语音系统和聊天机器人可以实现自动化客服,逐渐替代了传统的客服人员。
l银行柜员:自助银行系统、在线银行和移动支付等技术的普及,逐渐减少了人们对银行柜员的需求。
l行政助理:人工智能可以完成一些简单的行政任务,例如日程安排、电子邮件管理等,逐渐替代了传统的行政助理。
l酒店前台服务员:智能酒店系统可以实现自动化的登记、结算和服务,逐渐替代了传统的酒店前台服务员。
除了上面提到的岗位,还有一些其他的岗位可能会受到人工智能替代,例如:
l交通运输行业:自动驾驶技术的发展,可能会逐渐替代传统的驾驶员、车队管理员等岗位。
l医疗行业:医疗影像分析、智能诊断和虚拟医生等技术的应用,可能会逐渐替代传统的医生、医疗助理等岗位。
l餐饮服务行业:智能点餐、智能配餐和智能厨房等技术的应用,可能会逐渐替代传统的服务员、厨师等岗位。
l保险行业:智能理赔、风险评估和保险精算等技术的应用,可能会逐渐替代传统的保险代理人、保险精算师等岗位。
随着人工智能技术的不断发展和应用,越来越多的岗位可能会受到影响,需要人们不断学习和更新自己的技能,以适应新的就业市场。同时,也需要政府和企业加强培训和转型支持,帮助那些受到影响的人们重新就业。
3、人工智能会带来哪些新岗位人工智能的发展不仅会替代一些旧的岗位,也会创造出一些新的岗位。以下是一些可能会出现的新岗位:
l机器学习工程师:负责开发、实现和维护机器学习算法和模型。
l数据科学家:利用数据分析和机器学习技术,从海量数据中发现商业价值,并制定数据驱动的策略。
l自然语言处理工程师:负责开发、实现和维护自然语言处理技术,例如语音识别、语义分析等。
l人工智能产品经理:负责开发、推广和营销人工智能产品和服务,需要具备对技术和市场的深入理解。
l机器人工程师:负责设计、开发和维护各种类型的机器人,例如工业机器人、服务机器人等。
l智能家居系统工程师:负责设计、开发和维护智能家居系统,例如智能灯光、智能安防等。
l数据安全专家:随着人工智能技术在企业和政府中的广泛应用,数据的保护和安全性越来越重要。
l人机交互设计师:负责设计和开发人与计算机之间的交互界面和体验,以确保用户能够充分利用人工智能系统。
l人工智能伦理学家:负责研究人工智能技术的伦理和社会问题,以确保其合法、公正、透明和人性化。
l人工智能战略顾问:负责帮助企业和政府制定人工智能战略和计划,以最大限度地利用人工智能技术的优势。
可以预见的是随着人工智能技术的不断发展,会涌现出越来越多的新岗位。这些新岗位需要具备不同的技能和知识,需要不断学习和更新自己的能力,以适应新的就业市场。
4、如何踏入人工智能行业人工智能是一门涉及多个学科的复杂领域,需要具备一定的技能和知识,但是也不是不可逾越的难题。以下是一些普通人踏入人工智能行业的建议:
l学习编程和数学基础知识:人工智能需要涉及编程和数学等多个领域的知识,可以通过自学或参加培训班等方式学习。
l学习机器学习和深度学习等算法:机器学习和深度学习是人工智能领域的核心技术,需要深入了解和掌握。
l参与开源项目和竞赛:通过参与开源项目和竞赛等活动,可以积累实际经验和技能,提高自己的能力。
l注重实践和项目经验:在学习的过程中,可以尝试通过实践来巩固和深入理解知识,并通过参与项目来积累经验。
l关注人工智能行业的最新动态:关注人工智能行业的最新发展和趋势,了解人工智能技术的应用和发展方向。
l进一步深造和提高学历:如果有条件,可以考虑深造和提高自己的学历,例如攻读人工智能相关的硕士或博士学位。
除了上述建议之外,还有以下几点可以帮助普通人踏入人工智能行业:
l参加人工智能相关的课程或培训:可以参加在线或线下的人工智能课程或培训班,获得专业指导和支持。
l加入人工智能社区或论坛:可以加入人工智能社区或论坛,了解更多人工智能的相关信息,与行业内的人进行交流和学习。
l开展自己的项目或研究:可以开展自己的人工智能项目或研究,建立自己的技能和经验,并展示自己的才华和能力。
l寻找实习或工作机会:可以寻找与人工智能相关的实习或工作机会,通过实践来学习和提高自己的能力,并建立自己的职业网络。
总之,踏入人工智能行业需要不断学习和提高自己的能力,同时也需要有耐心和毅力,因为这是一门需要长期投入和学习的领域,同时也需要有一定的专业知识和实践经验。通过不断学习和实践,可以不断提升自己的能力,并最终实现自己在人工智能领域的职业目标。
——本文部分内容来自于ChatGPT的咨询返回搜狐,查看更多