浅谈人工智能在金融领域的应用
一、人工智能的发展概况
人工智能(ArtificialIntelligence,缩写AI)是一门研发用于模拟、延伸和扩展人的智能的人类智能的理论、方法、技术及应用系统的新的技术科学。人工智能早在1956年就已被提及。随着近几十年来计算方法的革新、硬件水平的提高和云计算大数据的共同驱动,人工智能得到了各行业的广泛关注和研究。尤其是在2016年Google的AlphaGo战胜李世石,随后AlphaGo升级版Master持续挑战人类顶尖围棋高手,保持了60场不败的纪录,使得人工智能名噪一时。
根据艾媒咨询发布的《2017中国人工智能产业报告》显示,2016年中国人工智能产业规模以43.3%的增长率达到100.6亿元,预计2017年将达到152.1亿元,并于2019年增至344.3亿元。
二、人工智能在金融领域的变革情况
一直以来,金融行业差别化的服务都是基于“人”的服务。然而,近年来,机器人的出现在一定程度上模拟了人的功能,批量而且更个性化的服务正尝试取代人的位置。依托互联网金融的兴起,计算机视觉、自然语音处理、机器人、语音识别等人工智能技术在金融行业中得到了广泛的应用。在“第二届中国金融科技大会”中,百度高级副总裁朱光指出金融是人工智能最好的落地场景,因为它的核心就在于数据和数据处理。
(一)人工智能在银行服务领域中的应用
第一,征信助手。从传统金融到“互联网+金融”,无论是传统的信贷审批还是互联网产品,如P2P、现金贷等征信的搜集,风险防控一直是银行类金融机构的重要课题。在过去,对贷款人贷前识别、贷中监控、贷后反馈,一般会单纯地依靠大量的信贷工作人员的实地考察,这就极大地增加了信用风险评估的片面性和失误性。目前,借助人工智能和大数据搜集和认证客户信息。通过多渠道、多维度地获取客户信息数据,实现智能化征信和审批,可极大地加快银行信贷速度和限制增量风险,减少信息不对称。传统银行信贷风控模型中,变量覆盖只有20~30个,而基于用户数据累计和人工智能技术建立的智能化风险控制体系模型可超过万级单位。澳大利亚证券及投资委员会(ASIC)、新加坡货币当局(MAS)、美国证券交易委员会等多家机构已将AI引入风险管理。
第二,客户服务。在银行客户服务中,用户的咨询问题具有重复性特征。人工智能利用深度学习系统,通过前端客户数据搜集,如用户信息、行为动态等方面进行捕捉,而后结合客户性别、年龄、爱好等进行多维度、标准化营销。首先,各大银行通过推出可互动的高科技机器人代替大堂经理,提升客户体验,降低成本。例如,交通银行的“娇娇”、民生银行的“ONE”、农业银行的“智慧小达人”。其次,近年来建设银行、中国银行等多家银行先后建立“智慧银行”,颠覆了传统的银行模式。客户将在智能机器人的引导下办理各项业务,增强银行的科技感和服务的体验感。
(二)人工智能在投资顾问中的应用
相比传统的投资顾问,智能顾问通过机器学习与神经网络技术,能够通过数据分析处理、构建和完善模型,利用采集的经济数据提供更加快速、可信、客观、可靠的投资方案。同时,人工智能还可以通过搜集资料,进行数据分析,自动撰写各类报告。比如,招股说明书、行业研究报告、尽调报告和投资意向书等。投资顾问先行者Ken-sho能够在两分钟内基于历史数据判断历年来美联储加息前,标准普尔和道琼斯指数的趋势,判断利好行业和潜力公司,而过去依靠人类分析师几天几夜都是很难达到的。花旗银行数据显示2012―2015年年底,智能顾问管理资产规模从0发展到290亿美元,未来将高达5万亿美元。北京资配易投资顾问公司人工智能系统(SIAI)可根据市场信号判断买卖时机和仓位规模。除此之外,国内外还有京东金融推出的智投、小金所的机器人投资顾问。2016年下半年,全球最大的资产管理公司――莱德基金(BlackRock)花费1.5亿~2亿美元收购理财初创公司“未来顾问”(FutureAdvisor)、德意志银行推出的机器人投顾“AnlageFinder”等。
(三)人工智能在保险行业的应用
近年来,随着大数据、云计算、人工智能等新技术的发展和应用,保险业进入了一个更高效、更快捷的时代。首先,一直以来在传统保险行业中,如何存储大量的纸质或者影像的保单、证照、票据等数据是保险公司的一大难题。据统计,一个100人的数据录入团队一年的人力成本在200万元~600万元。然而,人工智能通过参与大数据和深度算法,数据构造后,存储空间可节约90%。其次,如何对存储数据进行传输、搜索和剖析的问题也日益突出。而人工智能通过数据积累和算法迭代,就可以为保险公司的产品定价提供精确数据。同时,通过机器识别参与保险理赔,可降低风险。目前,国内外多家保险公司已经开始布局人工智能。例如,泰康人寿保险智能机器人“TKer”、平安人寿“智能机器人”、合众人寿人工智能“小Ai”、太平洋保险智能运维机器人、弘康人寿引入“人脸识别技术”、日本富国生命保险人工智能平台“WatsonExplorer”、台湾国泰人寿的“Pepper”等。
(四)人工智能在互联网金融领域的应用
互联网金融作为传统金融的补充,通过依托互联网技术和工具提供资金融通和支付结算等业务行为。目前,我国互联网金融发展经历了两个阶段。最初阶段,互联网金融仅仅只是为传统金融业务提供网络化服务,即把保险、理财、基金、信托等金融产品搬到网络进行营销。现在,互联网金融则覆盖第三方支付、P2P网络借贷、大数据金融、众筹和第三方金融服务平台等多种模式。首先,人工智能提高了互联网金融的效率。通过自动问答机器人实现智能客服,在过去两年的“双十一”期间,蚂蚁金服95%的客服均由智能机器人通过语音识别完成了远程客户服务、业务咨询和办理。其次,随着《关于促进互联网健康发展的指导意见》《非银行支付机构网络支付业务管理办法》和《最高人民法院关于审理民间借贷案件适用法律若干问题的规定》等一系列政策的出台,不难发现,互联网金融在理财顾问、征信助手、智能风控和防范金融系统风险等方面被逐步规范化和法制化。例如,长期以来,由于缺乏有效的管理,信息安全、风险控制、资金调节等问题日益突出。根据《2016年全国P2P网贷行业快报》,仅2016年12月,“跑路”的平台就有69家。人工智能的出现可有效地进行监管,规避风险。根据阿里巴巴蚂蚁金服的数据显示,网上银行在花呗和微贷业务中,将虚假信贷交易降低了10倍。利用OCR系统,支付宝证件审批由1天降低到1秒。百度利用大数据和人工智能实现教育信贷秒批。
除了上述提到的人工智能被用于金融行业中进行信用评估、客户服务、市场研究、预测分析、保?U报价外,人工智能还被应用于贷款催收、企业财务和费用报告等方面。
(作者单位为四川财经职业学院)
人工智能在金融领域应用及监管挑战
人工智能的发展历程2012-2017年全球人工智能并购活动资料来源:FSB金融科技报告2017上世纪90年代以来,机器学习尤其是深度学习的大规模应用,推动了人工智能的快速发展。目前中国的人工智能研究及应用正处于爆发期,并迎来国家层面的统筹规划和全面引导,未来发展空间巨大。从金融领域来看,国际银行业对人工智能的主要应用集中在资本运营、市场分析、客户营销、风险监管等方面。中国银行业紧随国际银行业步伐,开始了应用人工智能技术的探索,其中互联网金融公司在人工智能研究和运用方面抢占了领先优势。但是,人工智能的应用也对金融监管带来挑战:一是监管对象趋于复杂化;二是违法违规行为难以认定;三是智能代理行为增加了监管难度;四是责任主体难以界定。监管机构要正视这种趋势,针对人工智能特点,需要研究完善金融市场交易规则;加强人工智能在金融监管方面的应用;重视对用户隐私的保护。商业银行则一方面要积极加强技术创新,另一方面要注意风险控制。
□杨荇
近年来发展迅速的中国人工智能产业正在迎来国家层面的统筹规划和全面引导。2017年7月,国务院印发《新一代人工智能发展规划》(以下简称《规划》)。《规划》一经发布,即在世界范围内引起关注。那么,人工智能在中国的发展前景如何?其在金融领域如何应用?将给监管体制带来什么样的挑战?本文拟对这些问题进行探析。
■
1.人工智能概念
对于人工智能(ArtificialIntelligence,简称AI),国际上没有一个公认的定义。最早提出这一概念的约翰·麦卡锡认为,“人工智能就是要让机器的行为看起来像人所表现出的智能行为一样。”我国《人工智能辞典》将人工智能定义为“使计算机系统模拟人类的智能活动,完成人用智能才能完成的任务”。此外,还有其他诸多关于人工智能的定义。综合来看,这些概念可以分为两类观点:一类观点是弱人工智能概念,认为不可能制造出能真正推理和解决问题的智能机器,这些所谓的智能机器只是看起来智能,但不会真正拥有智能,也不会具有自主意识。另一类观点是强人工智能概念,认为有可能制造出真正能推理和解决问题的智能机器,并且能够具有知觉和自我意识。强人工智能又可以分为两类:一是类人的人工智能,即机器的思考和推理与人的思维一样;二是非类人的人工智能,即机器拥有和人完全不一样的知觉和意识,使用和人完全不一样的推理方式。
总体来讲,无论是那种人工智能概念,都体现出这三点优势:一是工作稳定性高。人工智能可不知疲倦地进行工作,在分析问题时几乎不受环境影响。二是降低操作风险和道德风险。利用人工智能取代传统人工对金融交易、服务信息审查监管,控制交易活动中潜在的非法行为,可更好地避免操作风险和道德风险。三是有效提高决策效率。人工智能可以快速地对大数据进行筛选和分析,帮助人们更高效率地决策。因此,本文所讨论的人工智能范畴,是包括强人工智能和弱人工智能的广义人工智能概念。
2.人工智能的理论基础
人工智能是计算机学科的一个分支,20世纪70年代以来被称为世界三大尖端技术之一(空间技术、能源技术、人工智能),也被认为是21世纪三大尖端技术(基因工程、纳米科学、人工智能)之一。这是因为近30年来它获得了迅速的发展,并已发展成为一门独立的系统学科。
那么,机器“智能”从何而来呢?这主要归功于一种实现人工智能的方法——机器学习。机器学习最基本的做法,是使用算法来解析数据、从中学习,然后对真实世界中的事件作出决策和预测。与传统的为解决特定任务、硬编码的软件程序不同,机器学习是用大量的数据来“训练”,通过各种算法从数据中学习如何完成任务。机器学习直接来源于早期的人工智能领域,传统的算法包括决策树、聚类、贝叶斯分类、支持向量机、EM、Adaboost等。从学习方法上来分,机器学习算法可以分为监督学习(如分类问题)、无监督学习(如聚类问题)、半监督学习、集成学习、深度学习和强化学习。
总的来看,当前人工智能的研究可归纳为六个方面:一是计算机视觉(暂且把模式识别、图像处理等问题归入其中);二是自然语言理解与交流(暂且把语音识别、合成归入其中,包括对话);三是认知与推理(包含各种物理和社会常识);四是机器人学(机械、控制、设计、运动规划、任务规划等);五是博弈与伦理(多代理人的交互、对抗与合作,机器人与社会融合等议题);六是机器学习(各种统计的建模、分析工具和计算方法)。
3.人工智能发展现状
2012年以后,得益于数据量的上涨、运算力的提升和机器学习新算法的出现,人工智能在产业应用上得到快速发展。从全球范围来看,人工智能产业领先的国家主要有美国、中国等。截止到2017年6月,全球人工智能企业总数达到2542家,其中美国有1078家,占42%;中国有592家,占23%。美国的人工智能呈现出全产业布局的特征,包括基础层、技术层、应用层均有布局,而中国的人工智能主要集中在应用侧,只在技术层局部有所突破。
目前,中国的人工智能研究及应用正处于爆发期。中国政府高度重视人工智能发展,在2017年7月印发的《新一代人工智能发展规划》中描绘了未来十几年中国人工智能发展的宏伟蓝图:到2020年人工智能总体技术和应用与世界先进水平同步;到2025年人工智能基础理论实现重大突破,部分技术与应用达到世界领先水平;到2030年人工智能理论、技术与应用总体达到世界领先水平,成为世界主要人工智能创新中心。近日,科技部确定了首批国家新一代人工智能开放创新平台,分别依托百度、阿里云、腾讯、科大讯飞公司,建设自动驾驶、城市大脑、医疗影像、智能语音等4个国家新一代人工智能开放创新平台。与互联网技术发展相似,加速积累的技术能力和海量的数据资源,巨大的应用需求和开放的市场环境有机结合,形成了中国人工智能产业发展的独特优势。
展望未来,据英国政府《2017年英国人工智能产业发展报告》估计,预计到2024年,全球人工智能解决方案的市场价值将超过300亿英镑,部分行业在人工智能的帮助下,生产率将提高30%,节约成本近25%。而据领英公司《全球AI领域人才报告》显示,截至2017年一季度,全球AI(人工智能)领域技术人才数量已超过190万。
■
1.在国际金融业的应用
近年来,全球金融业正在人工智能的催化下悄然改变。据金融稳定委员会(FSB)报告,国际银行业对人工智能的应用主要集中在以下几个方面。
(1)面向资本运营,集中在资产配置、投研顾问、量化交易等。人工智能在金融投资顾问方面的运用,通常被称为智能投顾,主要是指为客户提供基于算法的在线投资顾问和资产管理服务。具体又可分为三类:一是应用于销售前端的大类资产配置型智能投顾,主要是通过用户分析为客户解决大类资产配置问题,如Wealthfront;二是应用于投资分析阶段的投研型智能投顾,主要通过海量数据挖掘和逻辑链条解决投资研究的问题,如Kensho;三是应用于策略、交易和分析的智能量化交易系统,主要通过人工智能手段取代交易员,应用于投资交易,如WaterBridge的全天候人工智能交易。根据统计公司Statista的预测,2017年美国智能投顾管理资产规模将达到2248.02亿美元,到2021年将达5095.55亿美元,年复合增长率29.3%。
(2)面向市场分析,集中于趋势预测、风险监控、压力测试。人工智能技术能够从零散的历史数据中获得更多信息,帮助识别非线性关系,给出市场预测(价格波动)及其时效性,从而带来直接或间接的更高回报。此外,人工智能技术还能对大型、半结构化和非结构化的数据集进行分析,考虑到市场行为、监管规则和其他趋势的变化,进行反向测试、模型验证和压力测试,避免低估风险,提高透明度。例如,全球第一个以纯人工智能驱动的基金Rebellion曾预测了2008年的股市崩盘,并在2009年9月给希腊债券F评级,比惠誉公司提前了1个月。日本三菱公司发明的机器Senoguchi,每月10日预测日本股市在30天后将上涨还是下跌。经过4年左右的测试,该模型的正确率高达68%。
(3)面向客户营销,集中于身份识别、信用评估和虚拟助手。人工智能技术已经被广泛应用于金融的前台,大型的客户数据被导入聊天程序,使其能够为客户“面对面”的用自然语言交流,提高“获客”能力。2017年4月,富国银行开始试点一款基于FacebookMessenger平台的聊天机器人项目,虚拟助手通过与用户交流,为客户提供账户信息,帮助客户重置密码。而美国银行的智能虚拟助手Erica也正式亮相。用户可使用语音和文字与Erica互动,Erica可以帮助用户查询信用评分、查看消费习惯,随着银行流水收支的变化为4500多万客户提供还款建议、理财指导等。此外,汇丰银行已经使用基于人脸和语音的生物识别技术来验证消费者身份;苏格兰皇家银行使用“LUVO”虚拟对话机器人为客户获取最适合的房屋贷款等等,旨在成为用户“可信任的金融咨询师”。
(4)面向金融监管,集中于识别异常交易和风险主体。人工智能技术能够用于识别异常交易和风险主体,检测和预测市场波动、流动性风险、金融压力、房价、工业生产、GDP以及失业率,抓住可能对金融稳定造成的威胁。当前,一些国际监管机构,例如澳大利亚证券及投资委员会(ASIC)、新加坡货币当局(MAS)及美国证券交易委员会(SEC),都在使用人工智能进行可疑交易识别。具体做法包括从证据文件中识别和提取利益主体,分析用户的交易轨迹、行为特征和关联信息,更快更准确地打击地下洗钱等犯罪活动。
2.在中国金融业的应用
在中国,银行业也紧随国际银行业步伐,开始了应用人工智能技术的探索,其中互联网金融公司在人工智能研究和运用方面抢占了领先优势。例如,阿里旗下的蚂蚁金服已将人工智能运用于互联网小贷、保险、征信、资产配置及客户服务等领域并取得了良好效果。腾讯优图是腾讯旗下人脸检测应用,也与腾讯征信、微众银行、财付通开展合作,实现了对用户的信用评估。
(1)智能客服。交通银行在2015年底推出国内首个智慧型人工智能服务机器人“娇娇”,目前已在上海、江苏、广东、重庆等省份的营业网点上岗。该款机器人采用了全球领先的智能交互技术,交互准确率达95%以上,是国内第一款真正“能听会说、能思考会判断”的智慧型服务机器人。工商银行在“企业通”平台基础上,利用数据对接和智能设备,优化业务流程,创新推出了对公客户的自助开户服务,客户仅需到网点一次,就可以完成账户开立、结算产品领取、资料打印、预留印鉴等业务处理。
(2)智能投顾。目前我国提供此服务的公司很多,其中银行系(如广发智投、招行摩羯智投、工行“AI”投等)、基金系(如南方基金超级智投宝、广发基金基智理财等)、大型互联网公司系(如百度金融、京东智投、同花顺)和第三方创业公司(如弥财、蓝海财富、拿铁财经等)都在智能投顾上有所应用。
(3)智能量化交易。在中国现行的金融监管体制下,目前银行在这方面的应用相对较少,但京东金融、蚂蚁金服、科大讯飞、因果树等进行了积极的探索。例如,因果树每周都通过机器来自动甄选优质项目并推出超新星企业,帮助企业在未来6个月内顺利拿到下一轮融资的概率提高到了30%左右。而嘉实基金则研发了一套从市场预测、资产配置到产品选择的完善的投资决策系统“嘉实FAS系统”,并实现了超过大盘收益率的投资回报水平。
(4)风险控制和管理。这主要包括以下三个方面:一是数据搜集和处理;二是风险控制和预测模型;三是信用评级和风险定价。例如,一个传统的贷款业务可能需要2至3天来审批,而一个基于人工智能模型的自动审批方案可能只需要几秒钟就可以完成,同时有些传统风控模型的迭代周期可能要数个月甚至数年,但是人工智能的模型迭代可以非常便捷和自动。中国银行推出贸易融资业务反洗钱核查项目,综合运用文本分析、图像识别、机器学习等人工智能技术,将原本每单审核时间从手工2小时下降到2分钟,效率与质量得到极大提升,银行人工成本大幅降低。
3.人工智能在金融领域的发展空间
(1)增强金融机构黏客能力,获取市场竞争主动权。
人工智能的飞速发展,使得机器能够在很大程度上模拟人的功能,实现批量人性化和个性化地服务客户,这对于身处服务价值链高端的金融业将带来深刻影响,人工智能将成为银行沟通客户、发现客户金融需求的重要手段,进而增强银行对客户的黏性。它将对金融产品、服务渠道、服务方式、风险管理、授信融资、投资决策等带来新一轮的变革。人工智能技术在前端可以用于服务客户,在中台支持授信、各类金融交易和金融分析中的决策,在后台用于风险防控和监督,它将大幅改变金融现有格局,金融服务更加个性化与智能化。
(2)降低金融机构运营成本,提高工作效率。
金融机构能够利用人工智能和机器学习发展新的业务需求,降低成本和管理收益风险,提高运作效率,优化客户流程。据中国银行业协会发布的《2016年度中国银行业服务改进情况报告》显示,2016年银行业金融机构离柜交易达1777.14亿笔,同比增长63.68%;银行业离柜业务率为84.31%,同比提高6.55个百分点;离柜交易金额达1522.54万亿元。其中,有15家银行的离柜业务率已经超过了90%。未来,越来越多的金融机构将加入到运用人工智能来增强自身竞争力的进程中。
权威机构和专家普遍对人工智能在金融领域应用前景持乐观态度。人工智能学会主席BenGoertzel认为,10年以后人工智能可能会介入世界上大部分的金融交易。海外咨询机构科尔尼(A.T.Kearney)预计,机器人投资顾问未来3到5年将成为主流,年复合增长率将达68%。到2020年,机器人投资顾问管理的资产规模有望达到2.2万亿美元。花旗银行研究预测,未来10年人工智能投资顾问管理的资产将实现指数级增长,总额将达到5万亿美元。德勤在《银行业展望:银行业重塑》报告中指出,机器智能决策的应用将会加速发展。智能算法在预测市场和人类行为的过程中会越来越强,人工智能将会影响行业竞争,市场将变得更有效率。
■
1.监管对象趋于复杂化
在当前的监管法规体系中,被监管对象往往是法人和自然人。由于人工智能技术的发展,投资账户的所有者和经营者可能发生变化。对于所有权为集合主体的账户,采用穿透原则将难以追溯至行为主体,这是因为实际的控制人并不是某个主体,而是智能代理。因而,监管面临的挑战是复杂的,投资人认为账户不是他们中的任何一人操作的,实际控制人不是他们。智能代理服务商只提供了智能代理“产品”,并没有实际控制账户。这时,监管部门就不得不面对如何监管既不是自然人也不是法人的“智能代理”的问题。
2.违法违规行为难以认定
例如,大量投资人雇佣同一款表现优异的智能代理,管理其自身账户的投资。由于同一款智能代理的操作逻辑相似,那么这些账户虽然法律上是各自独立,并不关联,但其实际操作可能表现为“一致行动人”的现象。因此,即使监管机构的大数据分析系统能够很灵敏地“捕捉”到这个现象,但是如何认定这种“英雄所见略同”式的行为,将是一个监管难题。
3.智能代理行为增加了监管难度
虽然从技术层面上讲,智能代理行为可以从内控程序上加以控制,但对于其具体代理行为的监管边界以及责任主体,目前的监管法规均未涉及。
4.责任主体难以界定
如果个别研发人员设计出一个恶意的智能代理,并被一些集合性质的基金所使用,就可能引发个别股票价格的异动。对于这样的违规行为,现有监管法规将难以界定责任主体。
■
人工智能在金融领域加快应用是未来的发展方向,监管机构既要正视这种趋势,积极抢占人工智能发展高地,又必须重视人工智能应用给金融领域造成的冲击,未雨绸缪地开展前瞻性研究和战略性部署。
1.针对人工智能特点,研究完善金融市场交易规则
我国有关人工智能金融领域应用的市场交易规则几乎空白,应针对其潜在影响,积极研究相关金融市场的交易规则,为人工智能发展创造良好的市场环境。
2.加快人工智能在金融监管方面的应用
人工智能在金融领域的应用,对金融监管模式和手段提出了新的要求。面对人工智能的快速发展,我国金融监管部门应积极引入人工智能,进一步提高监管效率。
3.重视对用户隐私的保护
当前,我国有关隐私保护的法律制度还不健全,金融消费者的隐私保护意识较为薄弱,个人信息泄露的现象时有发生,无论从保护公民基本权利,还是从发展人工智能的需要考虑,都亟须完善我国金融隐私权保护制度,加强相关行政监管,明确金融机构相关告知义务、信息安全保障义务,以及出现问题后的赔偿责任,有效保证人工智能在金融领域应用中的信息安全。
对于商业银行而言,一是大型金融集团要做好前期资金技术的投放,提前介入,加强技术创新;要加快业务创新,在行业转型上保持领先地位,要增强技术及维护人员储备,尤其是智能型、复合型人才的引进及培养,提高核心竞争力,适应发展要求。二是加强风险控制。在数据处理方面,人工智能技术极大地扩展了数据来源,因而更多的数据被纳入分析体系。同时,金融工具能自动进化交易策略,甚至模拟专家进行决策,这会隐含许多新的风险。必须对前期数据来源、智能化程序设计等环节进行严格审查,加强风险控制。尤其在恐怖袭击、监管变革和实施卖空禁令等个别极端情况下,还需要专家进行必要的风险检测及应对。
(作者单位:中国工商银行城市金融研究所。本文系个人观点,不代表所在机构)
人工智能在金融领域发展中,主要面临哪些风险
用户隐私被泄露
人工智能的背后,是局域大数据及智能算法的继续升级,人工智能系统通常具有记忆功能,通过收集、统计、分析用户的数据不断提升自己的智能型。如果被黑客入侵,用户隐私可能被泄露,轻则用户信息被不法分子掌握,重则危害用户财产安全甚至人身安全。
故障排解和行为监管成本急速上升
人工智能自身的负载性及系统风险性的增加导致故障排解成本将大幅度提升。在现有法律监管体系下,对机器及运行程序故障造成的损害,难以有效界定责任主体及责任份额。
技术面临失控风险
人工智能在短期内的影响取决于谁来控制,长期影响取决于它是否受到控制。一旦应用环境和数据脱离用户的可控范围,尚无技术避开人工智能失控带来的风险。
人工智能风险防控政策建议
加强访问控制和身份认证
人工智能的安全性很大程度上已超出人工智能用户的控制,开发者和使用者必须提供强有力的安全防御支持,将人工智能与网络安全防御技术相结合,使用密码技术来保证机密数据的安全,统一用户身份管理、授权管理、访问管理,以增强信息安全性。
出台审计措施和相关的监管措施
需要采取必要的验证和升级措施,出台相关评价方案对人工智能软、硬件环境进行严格评价,同时对服务器、客户端、软件配置、负荷管理等进行实时监控和安全测试,及时发现系统故障及受感染恶意控制的情况,一旦出现问题立即报警。
不能过度依赖人工智能
基于深度学习的人工智能将会创造更多价值是发展趋势,它能为人类服务甚至取代某些工作,但用户不应过度依赖人工智能,仍要掌握安全主动权,做好保护措施,通过技术、服务和管理相互配合的方式,形成共同遵循的安全规范,营造保障人工智能健康发展的可信环境。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:1.人工智能时代,AI人才都有哪些特征?http://www.duozhishidai.com/article-1792-1.html2.大数据携手人工智能,高校人才培养面临新挑战http://www.duozhishidai.com/article-7555-1.html3.人工智能,机器学习和深度学习之间,主要有什么差异http://www.duozhishidai.com/article-15858-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
人工智能发展应用中的安全风险及应对策略
(4)应用场景的影响。谷歌公司机器人阿尔法狗战胜韩国围棋九段棋手李世石和围棋世界冠军柯洁,唤醒了世人对人工智能的高度关注。百度指数数据显示,从2015年底开始,“人工智能”热度逐渐升温,且持续到现在。2015-2016年,其媒体关注度已经暴涨6倍。
2.发展现状
目前,人工智能蓬勃发展,技术进步迅速,其应用已经渗透到我们的日常生活中,如人脸识别、刷脸支付、语音助手、无人机、服务机器人、自动驾驶和智能系统等。与互联网、大数据、物联网、云服务融合的人工智能应用给我们带来了更多的便利。专家认为,人工智能的应用将使劳动生产率提高90%;至2035年,人工智能将使年度经济增长率提高一倍。
但是,业界普遍认为真正的人工智能尚处于发展的初级阶段(认知智能发展阶段),即弱人工智能阶段,有“技能”,但远远谈不上有“智能”,还没能出现像人一样思考和行动的真正的人工智能产品,离通过“图灵测试”这一衡量人工智能技术水平的标准为时尚远。有专家认为,人工智能目前处于婴儿期,其智商大抵相当于3岁的孩子,说不好、笑不真、想不清、行不稳,这四“不”客观地描写了人工智能目前的现状。
02安全风险
1.国家安全
国家安全包括国土安全、政权安全、制度安全和意识形态安全等。2017年7月,美国智库发表题为《人工智能与国家安全》的研究报告,认为人工智能将会是国家安全领域的颠覆性力量,其影响可与核、航空航天、信息和生物技术比肩,将深刻改变军事、信息和经济领域安全态势。该报告强调人工智能通过变革军事优势、信息优势和经济优势影响国家安全。其中,军事领域引入人工智能几乎是不可阻挡的,而人工智能技术与生俱来的军民两用特性则要求决策者必须调和商业与国家安全之间的利益。而且,利用“换脸”、“换声”等人工智能技术可以制作具有欺骗性的假时事新闻。已有案例说明,利用人工智能技术在社交平台大量制作散发虚假新闻可以在政府首脑选举中影响选民的抉择。
2.社会安全
传统犯罪借助人工智能,将会衍生出新型犯罪形态、犯罪行为、手段和方法,出现无法辨识是机器人犯罪还是真实人犯罪的尴尬场景。2018年3月,美国发生了两起涉及自动驾驶的车祸。3月19日,优步(Uber)一辆自主驾驶汽车在美国亚利桑那州坦佩市发生致命车祸,一名49岁的女子晚上推着自行车穿过马路时被汽车撞死。3月23日,一名工程师驾驶特斯拉ModelX型号汽车在加州101公路和85公路交接处发生致命车祸,车祸发生时汽车启用了自动驾驶(或自动辅助驾驶)功能。这些案例说明,人工智能产品如果没有彻底解决安全可靠性问题,将会危及社会公共安全和人身安全。
3.网络安全
网络和大数据的发展推动了人工智能的进步,网络攻击智能化趋势也给网络安全保护提出更高要求。有关人工智能与网络安全关系的研究表明,一旦人工智能运用到网络攻击活动,将使得网络攻击活动更加难以预警和防范,关键信息基础设施也将会面临新的安全风险威胁。如人工智能技术运用到木马病毒制作传播,将会出现难以防御的超级病毒木马,传统应对方法将不足以制止这些恶意程序传播扩散的速度。此外,人工智能的技术研发与应用也存在一些不确定性的安全风险。
03应对人工智能安全风险的对策建议
人工智能的安全风险取决于技术发展及其安全可控的程度,短期风险可以预见,长期风险受制于现有认知能力难以预测和判断。因此,一方面,人类社会要积极推动人工智能技术研发和应用;另一方面,要为人工智能的发展应用规划一条安全边界,防止其被恶意运用、滥用,给人类社会造成不可逆转的伤害。
1.加强人工智能安全风险的研究
树立正确的安全观,科学对待人工智能安全风险。研究掌握在人工智能技术研发和应用过程中会出现哪些风险,并从法律、政策、技术和监管等方面进行有效防控管控。
2.加强人工智能立法研究和法律规范
人工智能理论、方法、技术及其应用引发社会关系、社会结构和行为方式的变化,产生不可预知的安全风险和新的法律问题。建议运用法律手段,重点防控人工智能行为主体及其行为的异化。从现有情况看,人工智能法律研究应主要聚焦在人工智能产品主体,如智能机器人的法律地位、行为的法律属性以及法律责任如何确定等方面。在立法方面应加强对人工智能技术应用可能出现的法律问题的前瞻性研究探索。
3.加强人工智能安全防控体系建设
按照趋利避害原则,处理好人工智能发展应用与安全防控的关系,既要促进人工智能发展应用,又要推动其在安全、可靠和可控的轨道上前行。要加强对人工智能安全防控体系建设的战略规划部署,围绕人工智能安全风险点,借鉴已有经验,有步骤地推进人工智能安全综合防控体系建设。
4.加强人工智能产品服务的安全监管
要及时制定人工智能安全产品和服务技术标准规范,规范和引导产品研发推广。加强对人工智能安全产品和服务的市场监管执法和相关产品上市前的安全测试。对有安全缺陷的产品和服务要依法处理,对造成危害后果的要依法追究法律责任。要积极运用人工智能技术提高安全监管能力,善于运用人工智能技术改进和加强安全监管执法,提高安全监管执法的能力和效率。
5.加强人工智能技术研发的管控
人工智能的快速发展引起了国际社会对于道德伦理问题的关注和担心,应当为人工智能技术研发划出“红线”,设置禁区,禁止研究开发危害人类生存安全的人工智能技术和产品,防止人工智能技术的滥用。美国科幻小说家阿西莫夫在1950年出版的小说《我,机器人》中提出了著名的“机器人三大法则”,第一定律:机器人不得伤害人类个体,或者目睹人类个体将遭受危险时袖手不管;第二定律:机器人必须服从人类发出的命令,当该命令与第一定律冲突时例外;第三定律:机器人在不违反第一、第二定律的情况下要尽可能保护自己的生存。2017年1月,美国著名人工智能研究机构未来生命研究院(FLI)在加利福尼亚州召开主题为“有益的人工智能(BeneficialAI)”的阿西洛马会议,法律、伦理、哲学、经济、机器人和人工智能等众多学科和领域的专家,共同达成了23条人工智能原则(“阿西洛马人工智能原则”,被称为人工智能发展的“23条军规”),呼吁全世界在发展人工智能的时候严格遵守这些原则,共同保障人类未来的利益和安全。23条规则规定,人工智能研究的目标应该建立有益的智能,而不是无向的智能。应该设计高度自主的人工智能系统,以确保其目标和行为在整个运行过程中与人类价值观相一致。对于人工智能造成的风险,尤其是那些灾难性的和存在价值性的风险,必须付出与其所造成的影响相称的努力,以用于进行规划和缓解风险。同时,人工智能军事化问题也是国际法律界关注的热点。目前,国际上限制致命性人工智能武器的呼声不绝于耳,有上百家人工智能领先企业呼吁禁止发展致命性人工智能武器。国际社会应当共同努力,加强合作,反对人工智能军事化,共同应对人工智能安全风险。返回搜狐,查看更多