博舍

一文述说人工智能(AI)发展史,几经沉浮! 简述人工智能发展史 论文题目大全及答案

一文述说人工智能(AI)发展史,几经沉浮!

人工智能将和电力一样具有颠覆性。--吴恩达

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能(AI)正赋能各个产业,推动着人类进入智能时代。

本文从介绍人工智能及主要的思想派系,进一步系统地梳理了其发展历程、标志性成果并侧重其算法思想介绍,将这段60余年几经沉浮的历史,以一个清晰的脉络呈现出来,以此展望人工智能(AI)未来的趋势。

一、人工智能简介1.1人工智能研究目的

人工智能(ArtificialIntelligence,AI)研究目的是通过探索智慧的实质,扩展人类智能——促使智能主体会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、专家系统等)、会学习(知识表示,机器学习等)、会行动(机器人、自动驾驶汽车等)。一个经典的AI定义是:“智能主体可以理解数据及从中学习,并利用知识实现特定目标和任务的能力。(Asystem’sabilitytocorrectlyinterpretexternaldata,tolearnfromsuchdata,andtousethoselearningstoachievespecificgoalsandtasksthroughflexibleadaptation)”

1.2人工智能的学派

在人工智能的发展过程中,不同时代、学科背景的人对于智慧的理解及其实现方法有着不同的思想主张,并由此衍生了不同的学派,影响较大的学派及其代表方法如下:

其中,符号主义及联结主义为主要的两大派系:

“符号主义”(Symbolicism),又称逻辑主义、计算机学派,认为认知就是通过对有意义的表示符号进行推导计算,并将学习视为逆向演绎,主张用显式的公理和逻辑体系搭建人工智能系统。如用决策树模型输入业务特征预测天气:

“联结主义”(Connectionism),又叫仿生学派,笃信大脑的逆向工程,主张是利用数学模型来研究人类认知的方法,用神经元的连接机制实现人工智能。如用神经网络模型输入雷达图像数据预测天气:

二、人工智能发展史

从始至此,人工智能(AI)便在充满未知的道路探索,曲折起伏,我们可将这段发展历程大致划分为5个阶段期:

起步发展期:1943年—20世纪60年代反思发展期:20世纪70年代应用发展期:20世纪80年代平稳发展期:20世纪90年代—2010年蓬勃发展期:2011年至今

2.1起步发展期:1943年—20世纪60年代

人工智能概念的提出后,发展出了符号主义、联结主义(神经网络),相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序、人机对话等,掀起人工智能发展的第一个高潮。

1943年,美国神经科学家麦卡洛克(WarrenMcCulloch)和逻辑学家皮茨(WaterPitts)提出神经元的数学模型,这是现代人工智能学科的奠基石之一。

1950年,艾伦·麦席森·图灵(AlanMathisonTuring)提出“图灵测试”(测试机器是否能表现出与人无法区分的智能),让机器产生智能这一想法开始进入人们的视野。

1950年,克劳德·香农(ClaudeShannon)提出计算机博弈。

1956年,达特茅斯学院人工智能夏季研讨会上正式使用了人工智能(artificialintelligence,AI)这一术语。这是人类历史上第一次人工智能研讨,标志着人工智能学科的诞生。

1957年,弗兰克·罗森布拉特(FrankRosenblatt)在一台IBM-704计算机上模拟实现了一种他发明的叫做“感知机”(Perceptron)的神经网络模型。

感知机可以被视为一种最简单形式的前馈式人工神经网络,是一种二分类的线性分类判别模型,其输入为实例的特征向量想(x1,x2…),神经元的激活函数f为sign,输出为实例的类别(+1或者-1),模型的目标是要将输入实例通过超平面将正负二类分离。

1958年,DavidCox提出了logisticregression。

LR是类似于感知机结构的线性分类判别模型,主要不同在于神经元的激活函数f为sigmoid,模型的目标为(最大似然)极大化正确分类概率。

1959年,ArthurSamuel给机器学习了一个明确概念:Fieldofstudythatgivescomputerstheabilitytolearnwithoutbeingexplicitlyprogrammed.(机器学习是研究如何让计算机不需要显式的程序也可以具备学习的能力)。

1961年,LeonardMerrickUhr和CharlesMVossler发表了题目为APatternRecognitionProgramThatGenerates,EvaluatesandAdjustsitsOwnOperators的模式识别论文,该文章描述了一种利用机器学习或自组织过程设计的模式识别程序的尝试。

1965年,古德(I.J.Good)发表了一篇对人工智能未来可能对人类构成威胁的文章,可以算“AI威胁论”的先驱。他认为机器的超级智能和无法避免的智能爆炸最终将超出人类可控范畴。后来著名科学家霍金、发明家马斯克等人对人工智能的恐怖预言跟古德半个世界前的警告遥相呼应。

1966年,麻省理工学院科学家JosephWeizenbaum在ACM上发表了题为《ELIZA-acomputerprogramforthestudyofnaturallanguagecommunicationbetweenmanandmachine》文章描述了ELIZA的程序如何使人与计算机在一定程度上进行自然语言对话成为可能,ELIZA的实现技术是通过关键词匹配规则对输入进行分解,而后根据分解规则所对应的重组规则来生成回复。

1967年,Thomas等人提出K最近邻算法(Thenearestneighboralgorithm)。

KNN的核心思想,即给定一个训练数据集,对新的输入实例Xu,在训练数据集中找到与该实例最邻近的K个实例,以这K个实例的最多数所属类别作为新实例Xu的类别。

1968年,爱德华·费根鲍姆(EdwardFeigenbaum)提出首个专家系统DENDRAL,并对知识库给出了初步的定义,这也孕育了后来的第二次人工智能浪潮。该系统具有非常丰富的化学知识,可根据质谱数据帮助化学家推断分子结构。

专家系统(ExpertSystems)是AI的一个重要分支,同自然语言理解,机器人学并列为AI的三大研究方向。它的定义是使用人类专家推理的计算机模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论,可视作“知识库(knowledgebase)”和“推理机(inferencemachine)”的结合。

1969年,“符号主义”代表人物马文·明斯基(MarvinMinsky)的著作《感知器》提出对XOR线性不可分的问题:单层感知器无法划分XOR原数据,解决这问题需要引入更高维非线性网络(MLP,至少需要两层),但多层网络并无有效的训练算法。这些论点给神经网络研究以沉重的打击,神经网络的研究走向长达10年的低潮时期。

2.2反思发展期:20世纪70年代

人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,然而计算力及理论等的匮乏使得不切实际目标的落空,人工智能的发展走入低谷。

1974年,哈佛大学沃伯斯(PaulWerbos)博士论文里,首次提出了通过误差的反向传播(BP)来训练人工神经网络,但在该时期未引起重视。

BP算法的基本思想不是(如感知器那样)用误差本身去调整权重,而是用误差的导数(梯度)调整。通过误差的梯度做反向传播,更新模型权重,以下降学习的误差,拟合学习目标,实现’网络的万能近似功能’的过程。

1975年,马文·明斯基(MarvinMinsky)在论文《知识表示的框架》(AFrameworkforRepresentingKnowledge)中提出用于人工智能中的知识表示学习框架理论。

1976年,兰德尔·戴维斯(RandallDavis)构建和维护的大规模的知识库,提出使用集成的面向对象模型可以提高知识库(KB)开发、维护和使用的完整性。

1976年,斯坦福大学的肖特利夫(EdwardH.Shortliffe)等人完成了第一个用于血液感染病的诊断、治疗和咨询服务的医疗专家系统MYCIN。

1976年,斯坦福大学的博士勒纳特发表论文《数学中发现的人工智能方法——启发式搜索》,描述了一个名为“AM”的程序,在大量启发式规则的指导下开发新概念数学,最终重新发现了数百个常见的概念和定理。

1977年,海斯·罗思(Hayes.Roth)等人的基于逻辑的机器学习系统取得较大的进展,但只能学习单一概念,也未能投入实际应用。

1979年,汉斯·贝利纳(HansBerliner)打造的计算机程序战胜双陆棋世界冠军成为标志性事件。(随后,基于行为的机器人学在罗德尼·布鲁克斯和萨顿等人的推动下快速发展,成为人工智能一个重要的发展分支。格瑞·特索罗等人打造的自我学习双陆棋程序又为后来的强化学习的发展奠定了基础。)

2.3应用发展期:20世纪80年代

人工智能走入应用发展的新高潮。专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。而机器学习(特别是神经网络)探索不同的学习策略和各种学习方法,在大量的实际应用中也开始慢慢复苏。

1980年,在美国的卡内基梅隆大学(CMU)召开了第一届机器学习国际研讨会,标志着机器学习研究已在全世界兴起。

1980年,德鲁·麦狄蒙(DrewMcDermott)和乔恩·多伊尔(JonDoyle)提出非单调逻辑,以及后期的机器人系统。

1980年,卡耐基梅隆大学为DEC公司开发了一个名为XCON的专家系统,每年为公司节省四千万美元,取得巨大成功。

1981年,保罗(R.P.Paul)出版第一本机器人学课本,“RobotManipulator:Mathematics,ProgrammingsandControl”,标志着机器人学科走向成熟。

1982年,马尔(DavidMarr)发表代表作《视觉计算理论》提出计算机视觉(ComputerVision)的概念,并构建系统的视觉理论,对认知科学(CognitiveScience)也产生了很深远的影响。

1982年,约翰·霍普菲尔德(JohnHopfield)发明了霍普菲尔德网络,这是最早的RNN的雏形。霍普菲尔德神经网络模型是一种单层反馈神经网络(神经网络结构主要可分为前馈神经网络、反馈神经网络及图网络),从输出到输入有反馈连接。它的出现振奋了神经网络领域,在人工智能之机器学习、联想记忆、模式识别、优化计算、VLSI和光学设备的并行实现等方面有着广泛应用。

1983年,TerrenceSejnowski,Hinton等人发明了玻尔兹曼机(BoltzmannMachines),也称为随机霍普菲尔德网络,它本质是一种无监督模型,用于对输入数据进行重构以提取数据特征做预测分析。

1985年,朱迪亚·珀尔提出贝叶斯网络(Bayesiannetwork),他以倡导人工智能的概率方法和发展贝叶斯网络而闻名,还因发展了一种基于结构模型的因果和反事实推理理论而受到赞誉。

贝叶斯网络是一种模拟人类推理过程中因果关系的不确定性处理模型,如常见的朴素贝叶斯分类算法就是贝叶斯网络最基本的应用。贝叶斯网络拓朴结构是一个有向无环图(DAG),通过把某个研究系统中涉及的随机变量,根据是否条件独立绘制在一个有向图中,以描述随机变量之间的条件依赖,用圈表示随机变量(randomvariables),用箭头表示条件依赖(conditionaldependencies)就形成了贝叶斯网络。对于任意的随机变量,其联合概率可由各自的局部条件概率分布相乘而得出。如图中b依赖于a(即:a->b),c依赖于a和b,a独立无依赖,根据贝叶斯定理有P(a,b,c)=P(a)*P(b|a)*P(c|a,b)

1986年,罗德尼·布鲁克斯(Brooks)发表论文《移动机器人鲁棒分层控制系统》,标志着基于行为的机器人学科的创立,机器人学界开始把注意力投向实际工程主题。

1986年,辛顿(GeoffreyHinton)等人先后提出了多层感知器(MLP)与反向传播(BP)训练相结合的理念(该方法在当时计算力上还是有很多挑战,基本上都是和链式求导的梯度算法相关的),这也解决了单层感知器不能做非线性分类的问题,开启了神经网络新一轮的高潮。

1986年,昆兰(RossQuinlan)提出ID3决策树算法。

决策树模型可视为多个规则(if,then)的组合,与神经网络黑盒模型截然不同是,它拥有良好的模型解释性。ID3算法核心的思想是通过自顶向下的贪心策略构建决策树:根据信息增益来选择特征进行划分(信息增益的含义是引入属性A的信息后,数据D的不确定性减少程度。也就是信息增益越大,区分D的能力就越强),依次递归地构建决策树。

1989年,GeorgeCybenko证明了“万能近似定理”(universalapproximationtheorem)。简单来说,多层前馈网络可以近似任意函数,其表达力和图灵机等价。这就从根本上消除了Minsky对神经网络表达力的质疑。

“万能近似定理”可视为神经网络的基本理论:⼀个前馈神经⽹络如果具有线性层和⾄少⼀层具有“挤压”性质的激活函数(如sigmoid等),给定⽹络⾜够数量的隐藏单元,它可以以任意精度来近似任何从⼀个有限维空间到另⼀个有限维空间的borel可测函数。

1989年,LeCun(CNN之父)结合反向传播算法与权值共享的卷积神经层发明了卷积神经网络(ConvolutionalNeuralNetwork,CNN),并首次将卷积神经网络成功应用到美国邮局的手写字符识别系统中。

卷积神经网络通常由输入层、卷积层、池化(Pooling)层和全连接层组成。卷积层负责提取图像中的局部特征,池化层用来大幅降低参数量级(降维),全连接层类似传统神经网络的部分,用来输出想要的结果。

2.4平稳发展期:20世纪90年代—2010年

由于互联网技术的迅速发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化,人工智能相关的各个领域都取得长足进步。在2000年代初,由于专家系统的项目都需要编码太多的显式规则,这降低了效率并增加了成本,人工智能研究的重心从基于知识系统转向了机器学习方向。

1995年,Cortes和Vapnik提出联结主义经典的支持向量机(SupportVectorMachine),它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。

支持向量机(SupportVectorMachine,SVM)可以视为在感知机基础上的改进,是建立在统计学习理论的VC维理论和结构风险最小原理基础上的广义线性分类器。与感知机主要差异在于:1、感知机目标是找到一个超平面将各样本尽可能分离正确(有无数个),SVM目标是找到一个超平面不仅将各样本尽可能分离正确,还要使各样本离超平面距离最远(只有一个最大边距超平面),SVM的泛化能力更强。2、对于线性不可分的问题,不同于感知机的增加非线性隐藏层,SVM利用核函数,本质上都是实现特征空间非线性变换,使可以被线性分类。

1995年,Freund和schapire提出了AdaBoost(AdaptiveBoosting)算法。AdaBoost采用的是Boosting集成学习方法——串行组合弱学习器以达到更好的泛化性能。另外一种重要集成方法是以随机森林为代表的Bagging并行组合的方式。以“偏差-方差分解”分析,Boosting方法主要优化偏差,Bagging主要优化方差。

Adaboost迭代算法基本思想主要是通过调节的每一轮各训练样本的权重(错误分类的样本权重更高),串行训练出不同分类器。最终以各分类器的准确率作为其组合的权重,一起加权组合成强分类器。

1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫。深蓝是基于暴力穷举实现国际象棋领域的智能,通过生成所有可能的走法,然后执行尽可能深的搜索,并不断对局面进行评估,尝试找出最佳走法。

1997年,SeppHochreiter和JürgenSchmidhuber提出了长短期记忆神经网络(LSTM)。

LSTM是一种复杂结构的循环神经网络(RNN),结构上引入了遗忘门、输入门及输出门:输入门决定当前时刻网络的输入数据有多少需要保存到单元状态,遗忘门决定上一时刻的单元状态有多少需要保留到当前时刻,输出门控制当前单元状态有多少需要输出到当前的输出值。这样的结构设计可以解决长序列训练过程中的梯度消失问题。

1998年,万维网联盟的蒂姆·伯纳斯·李(TimBerners-Lee)提出语义网(SemanticWeb)的概念。其核心思想是:通过给万维网上的文档(如HTML)添加能够被计算机所理解的语义(Metadata),从而使整个互联网成为一个基于语义链接的通用信息交换媒介。换言之,就是构建一个能够实现人与电脑无障碍沟通的智能网络。

2001年,JohnLafferty首次提出条件随机场模型(Conditionalrandomfield,CRF)。CRF是基于贝叶斯理论框架的判别式概率图模型,在给定条件随机场P(Y∣X)和输入序列x,求条件概率最大的输出序列y*。在许多自然语言处理任务中比如分词、命名实体识别等表现尤为出色。

2001年,布雷曼博士提出随机森林(RandomForest)。随机森林是将多个有差异的弱学习器(决策树)Bagging并行组合,通过建立多个的拟合较好且有差异模型去组合决策,以优化泛化性能的一种集成学习方法。多样差异性可减少对某些特征噪声的依赖,降低方差(过拟合),组合决策可消除些学习器间的偏差。

随机森林算法的基本思路是对于每一弱学习器(决策树)有放回的抽样构造其训练集,并随机抽取其可用特征子集,即以训练样本及特征空间的多样性训练出N个不同的弱学习器,最终结合N个弱学习器的预测(类别或者回归预测数值),取最多数类别或平均值作为最终结果。

2003年,DavidBlei,AndrewNg和MichaelI.Jordan于2003年提出LDA(LatentDirichletAllocation)。

LDA是一种无监督方法,用来推测文档的主题分布,将文档集中每篇文档的主题以概率分布的形式给出,可以根据主题分布进行主题聚类或文本分类。

2003年,Google公布了3篇大数据奠基性论文,为大数据存储及分布式处理的核心问题提供了思路:非结构化文件分布式存储(GFS)、分布式计算(MapReduce)及结构化数据存储(BigTable),并奠定了现代大数据技术的理论基础。

2005年,波士顿动力公司推出一款动力平衡四足机器狗,有较强的通用性,可适应较复杂的地形。

2006年,杰弗里·辛顿以及他的学生鲁斯兰·萨拉赫丁诺夫正式提出了深度学习的概念(DeepingLearning),开启了深度学习在学术界和工业界的浪潮。2006年也被称为深度学习元年,杰弗里·辛顿也因此被称为深度学习之父。

深度学习的概念源于人工神经网络的研究,它的本质是使用多个隐藏层网络结构,通过大量的向量计算,学习数据内在信息的高阶表示。

2010年,SinnoJialinPan和QiangYang发表文章《迁移学习的调查》。

迁移学习(transferlearning)通俗来讲,就是运用已有的知识(如训练好的网络权重)来学习新的知识以适应特定目标任务,核心是找到已有知识和新知识之间的相似性。

2.5蓬勃发展期:2011年至今

随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的技术鸿沟,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了重大的技术突破,迎来爆发式增长的新高潮。

2011年,IBMWatson问答机器人参与Jeopardy回答测验比赛最终赢得了冠军。Waston是一个集自然语言处理、知识表示、自动推理及机器学习等技术实现的电脑问答(Q&A)系统。

2012年,Hinton和他的学生AlexKrizhevsky设计的AlexNet神经网络模型在ImageNet竞赛大获全胜,这是史上第一次有模型在ImageNet数据集表现如此出色,并引爆了神经网络的研究热情。

AlexNet是一个经典的CNN模型,在数据、算法及算力层面均有较大改进,创新地应用了DataAugmentation、ReLU、Dropout和LRN等方法,并使用GPU加速网络训练。

2012年,谷歌正式发布谷歌知识图谱GoogleKnowledgeGraph),它是Google的一个从多种信息来源汇集的知识库,通过KnowledgeGraph来在普通的字串搜索上叠一层相互之间的关系,协助使用者更快找到所需的资料的同时,也可以知识为基础的搜索更近一步,以提高Google搜索的质量。

知识图谱是结构化的语义知识库,是符号主义思想的代表方法,用于以符号形式描述物理世界中的概念及其相互关系。其通用的组成单位是RDF三元组(实体-关系-实体),实体间通过关系相互联结,构成网状的知识结构。

2013年,DurkKingma和MaxWelling在ICLR上以文章《Auto-EncodingVariationalBayes》提出变分自编码器(VariationalAuto-Encoder,VAE)。

VAE基本思路是将真实样本通过编码器网络变换成一个理想的数据分布,然后把数据分布再传递给解码器网络,构造出生成样本,模型训练学习的过程是使生成样本与真实样本足够接近。

2013年,Google的TomasMikolov在《EfficientEstimationofWordRepresentationinVectorSpace》提出经典的Word2Vec模型用来学习单词分布式表示,因其简单高效引起了工业界和学术界极大的关注。

Word2Vec基本的思想是学习每个单词与邻近词的关系,从而将单词表示成低维稠密向量。通过这样的分布式表示可以学习到单词的语义信息,直观来看,语义相似的单词的距离相近。Word2Vec网络结构是一个浅层神经网络(输入层-线性全连接隐藏层->输出层),按训练学习方式可分为CBOW模型(以一个词语作为输入,来预测它的邻近词)或Skip-gram模型(以一个词语的邻近词作为输入,来预测这个词语)。

2014年,聊天程序“尤金·古斯特曼”(EugeneGoostman)在英国皇家学会举行的“2014图灵测试”大会上,首次“通过”了图灵测试。

2014年,Goodfellow及Bengio等人提出生成对抗网络(GenerativeAdversarialNetwork,GAN),被誉为近年来最酷炫的神经网络。

GAN是基于强化学习(RL)思路设计的,由生成网络(Generator,G)和判别网络(Discriminator,D)两部分组成,生成网络构成一个映射函数G:Z→X(输入噪声z,输出生成的伪造数据x),判别网络判别输入是来自真实数据还是生成网络生成的数据。在这样训练的博弈过程中,提高两个模型的生成能力和判别能力。

2015年,为纪念人工智能概念提出60周年,深度学习三巨头LeCun、Bengio和Hinton(他们于2018年共同获得了图灵奖)推出了深度学习的联合综述《Deeplearning》。

《Deeplearning》文中指出深度学习就是一种特征学习方法,把原始数据通过一些简单的但是非线性的模型转变成为更高层次及抽象的表达,能够强化输入数据的区分能力。通过足够多的转换的组合,非常复杂的函数也可以被学习。

2015年,MicrosoftResearch的KaimingHe等人提出的残差网络(ResNet)在ImageNet大规模视觉识别竞赛中获得了图像分类和物体识别的优胜。

残差网络的主要贡献是发现了网络不恒等变换导致的“退化现象(Degradation)”,并针对退化现象引入了“快捷连接(Shortcutconnection)”,缓解了在深度神经网络中增加深度带来的梯度消失问题。

2015年,谷歌开源TensorFlow框架。它是一个基于数据流编程(dataflowprogramming)的符号数学系统,被广泛应用于各类机器学习(machinelearning)算法的编程实现,其前身是谷歌的神经网络算法库DistBelief。

2015年,马斯克等人共同创建OpenAI。它是一个非营利的研究组织,使命是确保通用人工智能(即一种高度自主且在大多数具有经济价值的工作上超越人类的系统)将为全人类带来福祉。其发布热门产品的如:OpenAIGym,GPT等。

2016年,谷歌提出联邦学习方法,它在多个持有本地数据样本的分散式边缘设备或服务器上训练算法,而不交换其数据样本。

联邦学习保护隐私方面最重要的三大技术分别是:差分隐私(DifferentialPrivacy)、同态加密(HomomorphicEncryption)和隐私保护集合交集(PrivateSetIntersection),能够使多个参与者在不共享数据的情况下建立一个共同的、强大的机器学习模型,从而解决数据隐私、数据安全、数据访问权限和异构数据的访问等关键问题。

2016年,AlphaGo与围棋世界冠军、职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜。

AlphaGo是一款围棋人工智能程序,其主要工作原理是“深度学习”,由以下四个主要部分组成:策略网络(PolicyNetwork)给定当前局面,预测并采样下一步的走棋;快速走子(Fastrollout)目标和策略网络一样,但在适当牺牲走棋质量的条件下,速度要比策略网络快1000倍;价值网络(ValueNetwork)估算当前局面的胜率;蒙特卡洛树搜索(MonteCarloTreeSearch)树搜索估算每一种走法的胜率。在2017年更新的AlphaGoZero,在此前的版本的基础上,结合了强化学习进行了自我训练。它在下棋和游戏前完全不知道游戏规则,完全是通过自己的试验和摸索,洞悉棋局和游戏的规则,形成自己的决策。随着自我博弈的增加,神经网络逐渐调整,提升下法胜率。更为厉害的是,随着训练的深入,AlphaGoZero还独立发现了游戏规则,并走出了新策略,为围棋这项古老游戏带来了新的见解。

2017年,中国香港的汉森机器人技术公司(HansonRobotics)开发的类人机器人索菲亚,是历史上首个获得公民身份的一台机器人。索菲亚看起来就像人类女性,拥有橡胶皮肤,能够表现出超过62种自然的面部表情。其“大脑”中的算法能够理解语言、识别面部,并与人进行互动。

2018年,Google提出论文《Pre-trainingofDeepBidirectionalTransformersforLanguageUnderstanding》并发布Bert(BidirectionalEncoderRepresentationfromTransformers)模型,成功在11项NLP任务中取得stateoftheart的结果。

BERT是一个预训练的语言表征模型,可在海量的语料上用无监督学习方法学习单词的动态特征表示。它基于Transformer注意力机制的模型,对比RNN可以更加高效、能捕捉更长距离的依赖信息,且不再像以往一样采用传统的单向语言模型或者把两个单向语言模型进行浅层拼接的方法进行预训练,而是采用新的maskedlanguagemodel(MLM),以致能生成深度的双向语言表征。

2019年,IBM宣布推出QSystemOne,它是世界上第一个专为科学和商业用途设计的集成通用近似量子计算系统。

2019年,香港InsilicoMedicine公司和多伦多大学的研究团队实现了重大实验突破,通过深度学习和生成模型相关的技术发现了几种候选药物,证明了AI发现分子策略的有效性,很大程度解决了传统新药开发在分子鉴定困难且耗时的问题。

2020年,Google与Facebook分别提出SimCLR与MoCo两个无监督学习算法,均能够在无标注数据上学习图像数据表征。两个算法背后的框架都是对比学习(contrastivelearning),对比学习的核心训练信号是图片的“可区分性”。

2020年,OpenAI开发的文字生成(textgeneration)人工智能GPT-3,它具有1,750亿个参数的自然语言深度学习模型,比以前的版本GPT-2高100倍,该模型经过了将近0.5万亿个单词的预训练,可以在多个NLP任务(答题、翻译、写文章)基准上达到最先进的性能。

2020年,马斯克的脑机接口(brain–computerinterface,BCI)公司Neuralink举行现场直播,展示了植入Neuralink设备的实验猪的脑部活动。

2020年,谷歌旗下DeepMind的AlphaFold2人工智能系统有力地解决了蛋白质结构预测的里程碑式问题。它在国际蛋白质结构预测竞赛(CASP)上击败了其余的参会选手,精确预测了蛋白质的三维结构,准确性可与冷冻电子显微镜(cryo-EM)、核磁共振或X射线晶体学等实验技术相媲美。

2020年,中国科学技术大学潘建伟等人成功构建76个光子的量子计算原型机“九章”,求解数学算法“高斯玻色取样”只需200秒,而目前世界最快的超级计算机要用6亿年。

2021年,OpenAI提出两个连接文本与图像的神经网络:DALL·E和CLIP。DALL·E可以基于文本直接生成图像,CLIP则能够完成图像与文本类别的匹配。

2021年,德国Eleuther人工智能公司于今年3月下旬推出开源的文本AI模型GPT-Neo。对比GPT-3的差异在于它是开源免费的。

2021年,美国斯坦福大学的研究人员开发出一种用于打字的脑机接口(brain–computerinterface,BCI),这套系统可以从运动皮层的神经活动中解码瘫痪患者想象中的手写动作,并利用递归神经网络(RNN)解码方法将这些手写动作实时转换为文本。相关研究结果发表在2021年5月13日的Nature期刊上,论文标题为“High-performancebrain-to-textcommunicationviahandwriting”。

三、AI未来趋势

人工智能有三个要素:数据、算力及算法,数据即是知识原料,算力及算法提供“计算智能”以学习知识并实现特定目标。人工智能60多年的技术发展,可以归根为算法、算力及数据层面的发展,那么在可以预见的未来,人工智能发展将会出现怎样的趋势呢?

3.1数据层面

数据是现实世界映射构建虚拟世界的基本要素,随着数据量以指数形式增长,开拓的虚拟世界的疆土也不断扩张。不同于AI算法开源,关键数据往往是不开放的,数据隐私化、私域化是一种趋势,数据之于AI应用,如同流量是互联网的护城河,有核心数据才有关键的AI能力。

3.2算力层面

推理就是计算(reasonisnothingbutreckoning)--托马斯.霍布斯

计算是AI的关键,自2010年代以来的深度学习浪潮,很大程度上归功于计算能力的进步。

量子计算发展

在计算芯片按摩尔定律发展越发失效的今天,计算能力进步的放慢会限制未来的AI技,量子计算提供了一条新量级的增强计算能力的思路。随着量子计算机的量子比特数量以指数形式增长,而它的计算能力是量子比特数量的指数级,这个增长速度将远远大于数据量的增长,为数据爆发时代的人工智能带来了强大的硬件基础。

边缘计算发展

边缘计算作为云计算的一种补充和优化,一部分的人工智能正在加快速度从云端走向边缘,进入到越来越小的物联网设备中。而这些物联网设备往往体积很小,为此轻量机器学习(TinyML)受到青睐,以满足功耗、延时以及精度等问题。

类脑计算发展

以类脑计算芯片为核心的各种类脑计算系统,在处理某些智能问题以及低功耗智能计算方面正逐步展露出优势。类脑计算芯片设计将从现有处理器的设计方法论及其发展历史中汲取灵感,在计算完备性理论基础上结合应用需求实现完备的硬件功能。同时类脑计算基础软件将整合已有类脑计算编程语言与框架,实现类脑计算系统从“专用”向“通用”的逐步演进。

人工智能计算中心成为智能化时代的关键基础设施

人工智能计算中心基于最新人工智能理论,采用领先的人工智能计算架构,是融合公共算力服务、数据开放共享、智能生态建设、产业创新聚集的“四位一体”综合平台,可提供算力、数据和算法等人工智能全栈能力,是人工智能快速发展和应用所依托的新型算力基础设施。未来,随着智能化社会的不断发展,人工智能计算中心将成为关键的信息基础设施,推动数字经济与传统产业深度融合,加速产业转型升级,促进经济高质量发展。

3.3算法层面机器学习自动化(AutoML)发展

自动化机器学习(AutoML)解决的核心问题是:在给定数据集上使用哪种机器学习算法、是否以及如何预处理其特征以及如何设置所有超参数。随着机器学习在许多应用领域取得了长足的进步,这促成了对机器学习系统的不断增长的需求,并希望机器学习应用可以自动化构建并使用。借助AutoMl、MLOps技术,将大大减少机器学习人工训练及部署过程,技术人员可以专注于核心解决方案。

向分布式隐私保护方向演进

当前全球多个国家和地区已出台数据监管法规,如HIPAA(美国健康保险便利和责任法案)、GDPR(欧盟通用数据保护条例)等,通过严格的法规限制多机构间隐私数据的交互。分布式隐私保护机器学习(联邦学习)通过加密、分布式存储等方式保护机器学习模型训练的输入数据,是打破数据孤岛、完成多机构联合训练建模的可行方案。

数据和机理融合

AI模型的发展是符合简单而美的定律的。从数据出发的建模从数据中总结规律,追求在实践中的应用效果。从机理出发的建模以基本物理规律为出发点进行演绎,追求简洁与美的表达。

一个好的、主流的的模型,通常是高度总结了数据规律并切合机理的,是“优雅”的,因为它触及了问题的本质。就和科学理论一样,往往简洁的,没有太多补丁,而这同时解决了收敛速度问题和泛化问题。

神经网络模型结构发展

神经网络的演进一直沿着模块化+层次化的方向,不断把多个承担相对简单任务的模块组合起来。

神经网络结构通过较低层级模块侦测基本的特征,并在较高层级侦测更高阶的特征,无论是多层前馈网络,还是卷积神经网络,都体现了这种模块性(近年Hinton提出的“胶囊”(capsule)网络就是进一步模块化发展)。因为我们处理的问题(图像、语音、文字)往往都有天然的模块性,学习网络的模块性若匹配了问题本身内在的模块性,就能取得较好的效果。

层次化并不仅仅是网络的拓扑叠加,更重要的是学习算法的升级,仅仅简单地加深层次可能会导致BP网络的梯度消失等问题。

多学派方法融合发展

通过多学派方法交融发展,得以互补算法之间的优势和弱点。如1)贝叶斯派与神经网络融合,NeilLawrence组的DeepGaussianprocess,用简单的概率分布替换神经网络层。2)符号主义、集成学习与神经网络的融合,周志华老师的深度随机森林。3)符号主义与神经网络的融合:将知识库(KG)融入进神经网络,如GNN、知识图谱表示学习。4)神经网络与强化学习的融合,如谷歌基于DNN+强化学习实现的AlphaGo让AI的复杂任务表现逼近人类。

基于大规模无(自)监督预训练发展

Ifintelligenceisacake,thebulkofthecakeisunsupervisedlearning,theicingonthecakeissupervisedlearning,andthecherryonthecakeisreinforcementlearning(RL)–YannLecun

监督学习需要足够的带标签数据,然而人工标注大量数据既耗时又费力,在一些领域(如医学领域)上几乎不太可能获得足量的标注数据。通过大规模无(自)监督预训练方法利用现实中大量的无标签数据是一个研究的热点,如GPT-3的出现激发了对大规模自监督预训练方法继续开展探索和研究。未来,基于大规模图像、语音、视频等多模态数据的跨语言的自监督预训练模型将进一步发展,并不断提升模型的认知、推理能力。

基于因果学习方法发展

当前人工智能模型大多关注于数据特征间相关性,而相关性与更为本源的因果关系并不等价,可能导致预测结果的偏差,对抗攻击的能力不佳,且模型往往缺乏可解释性。另外,模型需要独立同分布(i.i.d.)假设(现实很多情况,i.i.d.的假设是不成立的),若测试数据与训练数据来自不同的分布,统计学习模型往往效果不佳,而因果推断所研究的正是这样的情形:如何学习一个可以在不同分布下工作、蕴含因果机制的因果模型(CausalModel),并使用因果模型进行干预或反事实推断。

可解释性AI(XAI)发展

可解释的人工智能有可能成为未来机器学习的核心,随着模型变得越来越复杂,确定简单的、可解释的规则就会变得越来越困难。一个可以解释的AI(ExplainableAI,简称XAI)意味着AI运作的透明,便于人类对于对AI监督及接纳,以保证算法的公平性、安全性及隐私性。

后记

随着数据、算力及算法取得不断的突破,人工智能可能进入一个永恒的春天。本文主要从技术角度看待AI趋势是比较片面的,虽然技术是“高大上”的第一生产力,有着自身的发展规律,但不可忽视的是技术是为需求市场所服务的。技术结合稳定的市场需求,才是技术发展的实际导向。

文章首发于“算法进阶”,公众号阅读原文可访问Github博客

人工智能发展论文

人工智能发展论文

随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。以下是小编精心准备的人工智能发展论文,大家可以参考以下内容哦!

摘要:人工智能属于一门综合性的边缘学科。诞生时间为20世纪50年代左右,大概历经了四个时代,第一个时代为神经网络时代,第二个时代为弱方法时代,第三个时代为知识工程时代第四个时代为知识工业时代。它在发展过程中包含的基础有计算机科学,信息论,神经心理学,哲学,统计学等多种学科。至今为止,人工神经网络技术和遗传算法都已经应用于工业,军事等领域。

关键词:人工智能发展;识别率;人脸识别;遗传算法

1智能计算机的发展

1.1人工智能简述

人工智能[1](ArtificialIntelligence,简称AI)是计算机学科的一个分支,属于为世界三大尖端技术空间技术、能源技术、人工智能其中之一,最近几十年来,人工智能的发展非常的迅速,在很多的地方都得到了应用,尤其是在科学领域。

人工智能源自于对人的模仿,其最终目的是服务于人类,但是,就像世界上没有相同的两片叶子,也没有完全相同的两个人,也就像没有一家服务企业可以满足一个国家人的所有要求一样,人工智能产业中也会涌现许多实力强大的企业,一些企业也会在某个领域内形成自己的竞争优势,甚至会出现垄断型企业。人工智能产业在国内外都还是处于刚刚发展阶段,人工智能产业的竞争也会伴随不断增长变化的需求而演化,企业也会为了满足并提升社会大众越来的生活品质而不断进步,不断完善自身。

1.2人工智能研究的发展概况

未来,随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。在我们的日常生活中,人们对人工智能技术的期望一直都拥有着很高的热情和期盼,但是,在客观事实上,人工智能技术进步不但要考虑软件、硬件技术的限制,也还要考虑人们对自身能力理解程度的制约,因此未来人工智能技术将在不断限制的过程中不断突破不断成长,从而保持着逐步的发展。比如人脸识别技术,当该技术以一次问世时,人们对人工智能充满了信心,但当大多数人亲自使用时,却发现它对人脸的识别率还是不够高;

近年来,人脸识别技术得益于机器学习与大数据,又有了非常令人欣喜的进步,拥有足够的多的人力模型数据,计算机对具体提供的数量足够多的人脸模型数据进行针对性训练,就可以达到一个极高的识别正确率。但是对一个具体的个例可以做到百分百识别,并不能就此完全肯定对人群大众使用就都能达到同样级别的水平,对于大量的人脸数据依然需要不断地整理系统的统计,所以,距离完美的识别率人类还有很长的路要走。不仅是人脸识别,OCR、语音识别、机器翻译等人工智能技术在现实的应用中都会面临准确率的标准。也希望无论是企业还是社会群体大众,用一份积极包容的心态,为人工智能产业的发展营造一个优良的可持续发展环境。

人工智能应用研究有许许多多的可行性。专家系统内部含有大量的某个领域的专家水平的知识与经验,经过运用人类的知识和解决问题的途径进行推理、汇总、判断、解决,来处理某个领域的疑难棘手问题。人工智能系统在很多领域的应用也都在促进着人工智能的理论和技术的不断发展。专家系统也是人工智能应用研究最活跃和最广泛的应用领域之一,涉及社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。人工智能在计算机领域内,得到了原来越多的重视。并在机器人等中得到了很多的实际应用。

人工智能是研究人类智能活动的可循规律,创建具有一定人类智能的电子系统,它主要是通过让计算机去完成原本是需要人类智慧才能去解决的问题,换而言之,就是研究如何应用计算机的软硬件来模拟人类智慧行为的基本理论、方法和技术。例如:繁重的科学工程和数学计算本来是要人脑来承担的,但是,现今,计算机不但能高效准确的完成这种计算,而且还能够比人脑做得更加的完美,因此,当今社会也不再把这种程度的计算看成是“需要人类智慧高强度才能完成的复杂任务”,由此可见,高强度复杂工作的定义随着人类社会时代的发展和科学技术的不断进步而不断变化,人工智能这门科学的具体目标也自然随着社会科学的.变化而发展。它一方面不断地通过科学技术获得新的进展,另一方面又勇敢的转向更有意义、更加困难的目标。

2人工智能的前沿

2.1智能信息检索技术

现今社会,智能信息检索技术的发展日新月异。而人工智能在信息检索技术中的应用,主要集中表现在网络信息的检索。网络信息检索,也即网络信息搜索,是指互联网用户在网络终端,通过特定的网络搜索工具或是通过浏览的方式,查找并获取信息的行为。运用人工智能技术,可以快速准确的在大数据的基础之上获得所需信息。

2.2遗传算法

遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程进行搜索找出最优解的方法。遗传算法是通过一类问题可能潜在的解集的其中一个集群开始的,而一个集群群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有本身特征的实体。比如,它决定了个体所要表现出的外部形状,如单眼皮,双眼皮的特征是由染色体中控制这一特征的某种基因组合决定的。由此可见,从一开始通过表象得到实际的基因的编码程序为一种算法。我们通常将基因的编码工作简单化,如二进制编码,在第一代种群产生之后,遵循适者生存,按照自然法则优胜劣汰,选择最优的结果,并借助交叉和变异,得到一种新的集合。这种办法会得到一种比以前更加优秀,更加适者生存的种群。

3结束语

人工智能对人类科学来说是一门极富挑战性的科研究,想要从事这项研究工作必须懂得计算机知识,心理学、统计学、哲学等等。人工智能是一种涵盖了非常广泛的知识的科学,它包含了很多不同的领域,如机器学习,计算机视觉、软件工程、操作系统等等,总而言之,人类科学对人工智能研究的一个主要目的是使机器通过一系列的操作能够胜任一些通常需要人类智能才能完成的复杂工作。在不同的时代、不同的社会环境、不同的人对这种“复杂”程度的理解是不一样的,每个时代的科学发展也是不同的,希望在科学不断发展的今天,人工智能的发展也会带来许许多多的惊喜。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008(9).

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2013(9).

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2013(7).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2014(7).

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2011(5).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2015(7).

[7]曾雪峰.论人工智能的研究与发展[J].现代商贸工业,2009(8).

[8]王梓坤.论混沌与随机.北京师范大学学报,1994,30(2):199-202.

[9]陈明.基于进化遗传算法的优化计算[J].软件学报,2008,9(11):876-879.

[10]陈火旺.遗传程序设计(之一)[J].计算机科学,2005.22(6):12-15.

【人工智能发展论文】相关文章:

人工智能学术论文范文10-03

人工智能专家系统论文09-30

可持续性发展合作医疗论文08-09

人工智能时代作文(6篇)09-26

人工智能时代作文6篇09-25

【实用】人工智能作文五篇08-29

人工智能作文(集锦15篇)08-22

人工智能作文(合集15篇)08-22

人工智能作文(通用15篇)08-21

【推荐】人工智能作文10篇08-11

有关人工智能发展历史及未来前景的论文

**

人工智能的历史

**人工智能的历史源远流长。在古代的神话传说中,技艺高超的工匠可以制作人造人,并为其赋予智能或意识。现代意义上的AI始于古典哲学家用机械符号处理的观点解释人类思考过程的尝试。20世纪40年代基于抽象数学推理的可编程数字计算机的发明使一批科学家开始严肃地探讨构造一个电子大脑的可能性。

1956年,在达特茅斯学院举行的一次会议上正式确立了人工智能的研究领域。会议的参加者在接下来的数十年间是AI研究的领军人物。他们中有许多人预言,经过一代人的努力,与人类具有同等智能水平的机器将会出现。同时,上千万美元被投入到AI研究中,以期实现这一目标。

最终研究人员发现自己大大低估了这一工程的难度。由于JamesLighthill爵士的批评和国会方面的压力,美国和英国政府于1973年停止向没有明确目标的人工智能研究项目拨款。七年之后受到日本政府研究规划的刺激,美国政府和企业再次在AI领域投入数十亿研究经费,但这些投资者在80年代末重新撤回了投资。AI研究领域诸如此类的高潮和低谷不断交替出现;至今仍有人对AI的前景作出异常乐观的预测。

尽管在政府官僚和风投资本家那里经历了大起大落,AI领域仍在取得进展。某些在20世纪70年代被认为不可能解决的问题今天已经获得了圆满解决并已成功应用在商业产品上。与第一代AI研究人员的乐观估计不同,具有与人类同等智能水平的机器至今仍未出现。图灵在1950年发表的一篇催生现代智能机器研究的著名论文中称,“我们只能看到眼前的一小段距离……但是,我们可以看到仍有许多工作要做”。

目录1先驱1.1神话,幻想和预言中的AI1.2自动人偶1.3形式推理1.4计算机科学2人工智能的诞生:1943–19562.1控制论与早期神经网络2.2游戏AI2.3图灵测试2.4符号推理与“逻辑理论家”程序2.51956年达特茅斯会议:AI的诞生3黄金年代:1956–19743.1研究工作3.1.1搜索式推理3.1.2自然语言3.1.3微世界3.2乐观思潮3.3经费4第一次AI低谷:1974–19804.1问题4.2停止拨款4.3来自大学的批评4.4感知器与联结主义遭到冷落4.5“简约派(theneats)”:逻辑,Prolog语言和专家系统4.6“芜杂派(thescruffies)”:框架和脚本5繁荣:1980–19875.1专家系统获得赏识5.2知识革命5.3重获拨款:第五代工程5.4联结主义的重生6第二次AI低谷:1987–19936.1AI之冬6.2躯体的重要性:NouvelleAI与嵌入式推理7AI:1993–现在7.1里程碑和摩尔定律7.2智能代理7.3“简约派”的胜利7.4幕后的AI7.5HAL9000在哪里?**

先驱

**McCorduck写道:“某种形式上的人工智能是一个遍布于西方知识分子历史的观点,是一个急需被实现的梦想,”先民对人工智能的追求表现在诸多神话,传说,故事,预言以及制作机器人偶(automaton)的实践之中。

神话,幻想和预言中的AI希腊神话中已经出现了机械人和人造人,如赫淮斯托斯的黄金机器人和皮格马利翁的伽拉忒亚。中世纪出现了使用巫术或炼金术将意识赋予无生命物质的传说,如贾比尔的Takwin,帕拉塞尔苏斯的何蒙库鲁兹和JudahLoew的魔像。19世纪的幻想小说中出现了人造人和会思考的机器之类题材,例如玛丽·雪莱的《弗兰肯斯坦》和卡雷尔·恰佩克的《罗素姆的万能机器人》。SamuelButler的《机器中的达尔文(DarwinamongtheMachines)》一文(1863)探讨了机器通过自然选择进化出智能的可能性。至今人工智能仍然是科幻小说的重要元素。自动人偶

加扎利的可编程自动人偶(1206年)许多文明中都有创造自动人偶的杰出工匠,例如偃师(中国西周),希罗(希腊),加扎利和WolfgangvonKempelen等等。已知最古老的“机器人”是古埃及和古希腊的圣像,忠实的信徒认为工匠为这些神像赋予了思想,使它们具有智慧和激情。赫耳墨斯·特里斯墨吉斯忒斯(HermesTrismegistus)写道“当发现神的本性时,人就能够重现他”。

形式推理

人工智能的基本假设是人类的思考过程可以机械化。对于机械化推理(即所谓“形式推理(formalreasoning)”)的研究已有很长历史。中国,印度和希腊哲学家均已在公元前的第一个千年里提出了形式推理的结构化方法。他们的想法为后世的哲学家所继承和发展,其中著名的有亚里士多德(对三段论逻辑进行了形式分析),欧几里得(其著作《几何原本》是形式推理的典范),花剌子密(代数学的先驱,“algorithm”一词由他的名字演变而来)以及一些欧洲经院哲学家,如奥卡姆的威廉和邓斯·司各脱。

马略卡哲学家拉蒙·柳利(1232-1315)开发了一些“逻辑机”,试图通过逻辑方法获取知识。柳利的机器能够将基本的,无可否认的真理通过机械手段用简单的逻辑操作进行组合,以求生成所有可能的知识。Llull的工作对莱布尼兹产生了很大影响,后者进一步发展了他的思想。

莱布尼兹猜测人类的思想可以简化为机械计算在17世纪中,莱布尼兹,托马斯·霍布斯和笛卡儿尝试将理性的思考系统化为代数学或几何学那样的体系。霍布斯在其著作《利维坦》中有一句名言:“推理就是计算(reasonisnothingbutreckoning)。”莱布尼兹设想了一种用于推理的普适语言(他的通用表意文字),能将推理规约为计算,从而使“哲学家之间,就像会计师之间一样,不再需要争辩。他们只需拿出铅笔放在石板上,然后向对方说(如果想要的话,可以请一位朋友作为证人):‘我们开始算吧。’”这些哲学家已经开始明确提出形式符号系统的假设,而这一假设将成为AI研究的指导思想。

在20世纪,数理逻辑研究上的突破使得人工智能好像呼之欲出。这方面的基础著作包括布尔的《思维的定律》与弗雷格的《概念文字》。基于弗雷格的系统,罗素和怀特海在他们于1913年出版的巨著《数学原理》中对数学的基础给出了形式化描述。这一成就激励了希尔伯特,后者向20世纪20年代和30年代的数学家提出了一个基础性的难题:“能否将所有的数学推理形式化?”这个问题的最终回答由哥德尔不完备定理,图灵机和AlonzoChurch的λ演算给出。他们的答案令人震惊:首先,他们证明了数理逻辑的局限性;其次(这一点对AI更重要),他们的工作隐含了任何形式的数学推理都能在这些限制之下机械化的可能性。邱奇-图灵论题暗示,一台仅能处理0和1这样简单二元符号的机械设备能够模拟任意数学推理过程。这里最关键的灵感是图灵机:这一看似简单的理论构造抓住了抽象符号处理的本质。这一创造激发科学家们探讨让机器思考的可能。

计算机科学

用于计算的机器古已有之;历史上许多数学家对其作出了改进。19世纪初,查尔斯·巴贝奇设计了一台可编程计算机(“分析机”),但未能建造出来。爱达·勒芙蕾丝预言,这台机器“将创作出无限复杂,无限宽广的精妙的科学乐章”。(她常被认为是第一个程序员,因为她留下的一些笔记完整地描述了使用这一机器计算伯努利数的方法。)

第一批现代计算机是二战期间建造的大型译码机(包括Z3,ENIAC和Colossus等)。后两个机器的理论基础是图灵和约翰·冯·诺伊曼提出和发展的学说。

在摩尔学校的电气工程的ENIAC计算机.

**

人工智能的诞生:1943–1956

**

在20世纪40年代和50年代,来自不同领域(数学,心理学,工程学,经济学和政治学)的一批科学家开始探讨制造人工大脑的可能性。1956年,人工智能被确立为一门学科。

**

控制论与早期神经网络

**最初的人工智能研究是30年代末到50年代初的一系列科学进展交汇的产物。神经学研究发现大脑是由神经元组成的电子网络,其激励电平只存在“有”和“无”两种状态,不存在中间状态。维纳的控制论描述了电子网络的控制和稳定性。克劳德·香农提出的信息论则描述了数字信号(即高低电平代表的二进制信号)。图灵的计算理论证明数字信号足以描述任何形式的计算。这些密切相关的想法暗示了构建电子大脑的可能性。

IBM702:第一代AI研究者使用的电脑.

这一阶段的工作包括一些机器人的研发,例如W。GreyWalter的“乌龟(turtles)”,还有“约翰霍普金斯兽”(JohnsHopkinsBeast)。这些机器并未使用计算机,数字电路和符号推理;控制它们的是纯粹的模拟电路。

WalterPitts和WarrenMcCulloch分析了理想化的人工神经元网络,并且指出了它们进行简单逻辑运算的机制。他们是最早描述所谓“神经网络”的学者。马文·闵斯基是他们的学生,当时是一名24岁的研究生。1951年他与DeanEdmonds一道建造了第一台神经网络机,称为SNARC。在接下来的五十年中,闵斯基是AI领域最重要的领导者和创新者之一。

游戏AI

1951年,ChristopherStrachey使用曼彻斯特大学的FerrantiMark1机器写出了一个西洋跳棋(checkers)程序;DietrichPrinz则写出了一个国际象棋程序。ArthurSamuel在五十年代中期和六十年代初开发的国际象棋程序的棋力已经可以挑战具有相当水平的业余爱好者。游戏AI一直被认为是评价AI进展的一种标准。

图灵测试

1950年,图灵发表了一篇划时代的论文,文中预言了创造出具有真正智能的机器的可能性。由于注意到“智能”这一概念难以确切定义,他提出了著名的图灵测试:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。这一简化使得图灵能够令人信服地说明“思考的机器”是可能的。论文中还回答了对这一假说的各种常见质疑。图灵测试是人工智能哲学方面第一个严肃的提案。

符号推理与“逻辑理论家”程序50年代中期,随着数字计算机的兴起,一些科学家直觉地感到可以进行数字操作的机器也应当可以进行符号操作,而符号操作可能是人类思维的本质。这是创造智能机器的一条新路。

1955年,Newell和(后来荣获诺贝尔奖的)Simon在J.C.Shaw的协助下开发了“逻辑理论家(LogicTheorist)”。这个程序能够证明《数学原理》中前52个定理中的38个,其中某些证明比原著更加新颖和精巧。Simon认为他们已经“解决了神秘的心/身问题,解释了物质构成的系统如何获得心灵的性质。”(这一断言的哲学立场后来被JohnSearle称为“强人工智能”,即机器可以像人一样具有思想。)

**

1956年达特茅斯会议:AI的诞生

**

1956年达特矛斯会议的组织者是MarvinMinsky,约翰·麦卡锡和另两位资深科学家ClaudeShannon以及NathanRochester,后者来自IBM。会议提出的断言之一是“学习或者智能的任何其他特性的每一个方面都应能被精确地加以描述,使得机器可以对其进行模拟。”与会者包括RaySolomonoff,OliverSelfridge,TrenchardMore,ArthurSamuel,Newell和Simon,他们中的每一位都将在AI研究的第一个十年中作出重要贡献。会上纽厄尔和西蒙讨论了“逻辑理论家”,而麦卡锡则说服与会者接受“人工智能”一词作为本领域的名称。1956年达特矛斯会议上AI的名称和任务得以确定,同时出现了最初的成就和最早的一批研究者,因此这一事件被广泛承认为AI诞生的标志。

**

黄金年代:1956–1974

**达特茅斯会议之后的数年是大发现的时代。对许多人而言,这一阶段开发出的程序堪称神奇:计算机可以解决代数应用题,证明几何定理,学习和使用英语。当时大多数人几乎无法相信机器能够如此“智能”。研究者们在私下的交流和公开发表的论文中表达出相当乐观的情绪,认为具有完全智能的机器将在二十年内出现。ARPA(国防高等研究计划署)等政府机构向这一新兴领域投入了大笔资金。

**

研究工作

**

从50年代后期到60年代涌现了大批成功的AI程序和新的研究方向。下面列举其中最具影响的几个。

**

搜索式推理

**许多AI程序使用相同的基本算法。为实现一个目标(例如赢得游戏或证明定理),它们一步步地前进,就像在迷宫中寻找出路一般;如果遇到了死胡同则进行回溯。这就是“搜索式推理”。

这一思想遇到的主要困难是,在很多问题中,“迷宫”里可能的线路总数是一个天文数字(所谓“指数爆炸”)。研究者使用启发式算法去掉那些不太可能导出正确答案的支路,从而缩小搜索范围。

Newell和Simon试图通过其“通用解题器(GeneralProblemSolver)”程序,将这一算法推广到一般情形。另一些基于搜索算法证明几何与代数问题的程序也给人们留下了深刻印象,例如HerbertGelernter的几何定理证明机(1958)和Minsky的学生JamesSlagle开发的SAINT(1961)。还有一些程序通过搜索目标和子目标作出决策,如斯坦福大学为控制机器人Shakey而开发的STRIPS系统。

**

自然语言

**

AI研究的一个重要目标是使计算机能够通过自然语言(例如英语)进行交流。早期的一个成功范例是DanielBobrow的程序STUDENT,它能够解决高中程度的代数应用题。

一个语义网的例子

如果用节点表示语义概念(例如“房子”,“门”),用节点间的连线表示语义关系(例如“有—一个”),就可以构造出“语义网(semanticnet)”。第一个使用语义网的AI程序由RossQuillian开发;[54]而最为成功(也是最有争议)的一个则是RogerSchank的“概念关联(ConceptualDependency)”。

JosephWeizenbaum的ELIZA是第一个聊天机器人,可能也是最有趣的会说英语的程序。与ELIZA“聊天”的用户有时会误以为自己是在和人类,而不是和一个程序,交谈。但是实际上ELIZA根本不知道自己在说什么。它只是按固定套路作答,或者用符合语法的方式将问题复述一遍。

**

微世界

**

60年代后期,麻省理工大学AI实验室的MarvinMinsky和SeymourPapert建议AI研究者们专注于被称为“微世界”的简单场景。他们指出在成熟的学科中往往使用简化模型帮助基本原则的理解,例如物理学中的光滑平面和完美刚体。许多这类研究的场景是“积木世界”,其中包括一个平面,上面摆放着一些不同形状,尺寸和颜色的积木。

在这一指导思想下,GeraldSussman(研究组长),AdolfoGuzman,DavidWaltz(“约束传播(constraintpropagation)”的提出者),特别是PatrickWinston等人在机器视觉领域作出了创造性贡献。同时,Minsky和Papert制作了一个会搭积木的机器臂,从而将“积木世界”变为现实。微世界程序的最高成就是TerryWinograd的SHRDLU,它能用普通的英语句子与人交流,还能作出决策并执行操作。

**

乐观思潮

**

第一代AI研究者们曾作出了如下预言:1958年,H.A.Simon,AllenNewell:“十年之内,数字计算机将成为国际象棋世界冠军。”“十年之内,数字计算机将发现并证明一个重要的数学定理。”

1965年,H.A.Simon:“二十年内,机器将能完成人能做到的一切工作。”

1967年,MarvinMinsky:“一代之内……创造‘人工智能’的问题将获得实质上的解决。”

1970年,MarvinMinsky:“在三到八年的时间里我们将得到一台具有人类平均智能的机器。”

经费

1963年6月,MIT从新建立的ARPA(即后来的DARPA,国防高等研究计划局)获得了二百二十万美元经费,用于资助MAC工程,其中包括Minsky和McCarthy五年前建立的AI研究组。此后ARPA每年提供三百万美元,直到七十年代为止。ARPA还对Newell和Simon在卡内基梅隆大学的工作组以及斯坦福大学AI项目(由JohnMcCarthy于1963年创建)进行类似的资助。另一个重要的AI实验室于1965年由DonaldMichie在爱丁堡大学建立。[65]在接下来的许多年间,这四个研究机构一直是AI学术界的研究(和经费)中心。

经费几乎是无条件地提供的:时任ARPA主任的J.C.R.Licklider相信他的组织应该“资助人,而不是项目”,并且允许研究者去做任何感兴趣的方向。这导致了MIT无约无束的研究氛围及其hacker文化的形成,但是好景不长。

**

第一次AI低谷:1974–1980

**

到了70年代,AI开始遭遇批评,随之而来的还有资金上的困难。AI研究者们对其课题的难度未能作出正确判断:此前的过于乐观使人们期望过高,当承诺无法兑现时,对AI的资助就缩减或取消了。同时,由于MarvinMinsky对感知器的激烈批评,联结主义(即神经网络)销声匿迹了十年。70年代后期,尽管遭遇了公众的误解,AI在逻辑编程,常识推理等一些领域还是有所进展。

问题

70年代初,AI遭遇了瓶颈。即使是最杰出的AI程序也只能解决它们尝试解决的问题中最简单的一部分,也就是说所有的AI程序都只是“玩具”。AI研究者们遭遇了无法克服的基础性障碍。尽管某些局限后来被成功突破,但许多至今仍无法满意地解决。

计算机的运算能力。当时的计算机有限的内存和处理速度不足以解决任何实际的AI问题。例如,RossQuillian在自然语言方面的研究结果只能用一个含二十个单词的词汇表进行演示,因为内存只能容纳这么多。1976年HansMoravec指出,计算机离智能的要求还差上百万倍。他做了个类比:人工智能需要强大的计算能力,就像飞机需要大功率动力一样,低于一个门限时是无法实现的;但是随着能力的提升,问题逐渐会变得简单。

计算复杂性和指数爆炸。1972年RichardKarp根据StephenCook于1971年提出的Cook-Levin理论证明,许多问题只可能在指数时间内获解(即,计算时间与输入规模的幂成正比)。除了那些最简单的情况,这些问题的解决需要近乎无限长的时间。这就意味着AI中的许多玩具程序恐怕永远也不会发展为实用的系统。

常识与推理。许多重要的AI应用,例如机器视觉和自然语言,都需要大量对世界的认识信息。程序应该知道它在看什么,或者在说些什么。这要求程序对这个世界具有儿童水平的认识。研究者们很快发现这个要求太高了:1970年没人能够做出如此巨大的数据库,也没人知道一个程序怎样才能学到如此丰富的信息。

莫拉维克悖论。证明定理和解决几何问题对计算机而言相对容易,而一些看似简单的任务,如人脸识别或穿过屋子,实现起来却极端困难。这也是70年代中期机器视觉和机器人方面进展缓慢的原因。

框架和资格问题。采取逻辑观点的AI研究者们(例如JohnMcCarthy)发现,如果不对逻辑的结构进行调整,他们就无法对常见的涉及自动规划(planningordefaultreasoning)的推理进行表达。为解决这一问题,他们发展了新逻辑学(如非单调逻辑(non-monotoniclogics)和模态逻辑(modallogics))。

停止拨款

由于缺乏进展,对AI提供资助的机构(如英国政府,DARPA和NRC)对无方向的AI研究逐渐停止了资助。早在1966年ALPAC(AutomaticLanguageProcessingAdvisoryCommittee,自动语言处理顾问委员会)的报告中就有批评机器翻译进展的意味,预示了这一局面的来临。NRC(NationalResearchCouncil,美国国家科学委员会)在拨款二千万美元后停止资助。1973年Lighthill针对英国AI研究状况的报告批评了AI在实现其“宏伟目标”上的完全失败,并导致了英国AI研究的低潮(该报告特别提到了指数爆炸问题,以此作为AI失败的一个原因)。DARPA则对CMU的语音理解研究项目深感失望,从而取消了每年三百万美元的资助。到了1974年已经很难再找到对AI项目的资助。

HansMoravec将批评归咎于他的同行们不切实际的预言:“许多研究者落进了一张日益浮夸的网中”。还有一点,自从1969年Mansfield修正案通过后,DARPA被迫只资助“具有明确任务方向的研究,而不是无方向的基础研究”。60年代那种对自由探索的资助一去不复返;此后资金只提供给目标明确的特定项目,比如自动坦克,或者战役管理系统。

来自大学的批评

一些哲学家强烈反对AI研究者的主张。其中最早的一个是JohnLucas,他认为哥德尔不完备定理已经证明形式系统(例如计算机程序)不可能判断某些陈述的真理性,但是人类可以。HubertDreyfus讽刺六十年代AI界那些未实现的预言,并且批评AI的基础假设,认为人类推理实际上仅涉及少量“符号处理”,而大多是具体的,直觉的,下意识的“窍门(knowhow)”。JohnSearle于1980年提出“中文房间”实验,试图证明程序并不“理解”它所使用的符号,即所谓的“意向性(intentionality)”问题。Searle认为,如果符号对于机器而言没有意义,那么就不能认为机器是在“思考”。

AI研究者们并不太把这些批评当回事,因为它们似乎有些离题,而计算复杂性和“让程序具有常识”等问题则显得更加紧迫和严重。对于实际的计算机程序而言,“常识”和“意向性”的区别并不明显。Minsky提到Dreyfus和Searle时说,“他们误解了,所以应该忽略”。在MIT任教的Dreyfus遭到了AI阵营的冷遇:他后来说,AI研究者们“生怕被人看到在和我一起吃中饭”。ELIZA程序的作者JosephWeizenbaum感到他的同事们对待Dreyfus的态度不太专业,而且有些孩子气。虽然他直言不讳地反对Dreyfus的论点,但他“清楚地表明了他们待人的方式不对”。

Weizenbaum后来开始思考AI相关的伦理问题,起因是KennethColby开发了一个模仿医师的聊天机器人DOCTOR,并用它当作真正的医疗工具。二人发生争执;虽然Colby认为Weizenbaum对他的程序没有贡献,但这于事无补。1976年Weizenbaum出版著作《计算机的力量与人类的推理》,书中表示人工智能的滥用可能损害人类生命的价值。

感知器与联结主义遭到冷落

感知器是神经网络的一种形式,由FrankRosenblatt于1958年提出。与多数AI研究者一样,他对这一发明的潜力非常乐观,预言说“感知器最终将能够学习,作出决策和翻译语言”。整个六十年代里这一方向的研究工作都很活跃。

1969年Minsky和Papert出版了著作《感知器》,书中暗示感知器具有严重局限,而FrankRosenblatt的预言过于夸张。这本书的影响是破坏性的:联结主义的研究因此停滞了十年。后来新一代研究者使这一领域获得重生,并使其成为人工智能中的重要部分;遗憾的是Rosenblatt没能看到这些,他在《感知器》问世后不久即因游船事故去世。

“简约派(theneats)”:逻辑,Prolog语言和专家系统

早在1958年,JohnMcCarthy就提出了名为“纳谏者(AdviceTaker)”的一个程序构想,将逻辑学引入了AI研究界。1963年,J.AlanRobinson发现了在计算机上实现推理的简单方法:归结(resolution)与合一(unification)算法。然而,根据60年代末McCarthy和他的学生们的工作,对这一想法的直接实现具有极高的计算复杂度:即使是证明很简单的定理也需要天文数字的步骤。70年代RobertKowalsky在Edinburgh大学的工作则更具成效:法国学者AlainColmerauer和PhillipeRoussel在他的合作下开发出成功的逻辑编程语言Prolog。

Dreyfus等人针对逻辑方法的批评观点认为,人类在解决问题时并没有使用逻辑运算。心理学家PeterWason,EleanorRosch,阿摩司·特沃斯基,DanielKahneman等人的实验证明了这一点。[McCarthy则回应说,人类怎么思考是无关紧要的:真正想要的是解题机器,而不是模仿人类进行思考的机器。

“芜杂派(thescruffies)”:框架和脚本

对McCarthy的做法持批评意见的还有他在MIT的同行们。MarvinMinsky,SeymourPapert和RogerSchank等试图让机器像人一样思考,使之能够解决“理解故事”和“目标识别”一类问题。为了使用“椅子”,“饭店”之类最基本的概念,他们需要让机器像人一样作出一些非逻辑的假设。不幸的是,这些不精确的概念难以用逻辑进行表达。GeraldSussman注意到,“使用精确的语言描述本质上不精确的概念,并不能使它们变得精确起来”。

Schank用“芜杂(scruffy)”一词描述他们这一“反逻辑”的方法,与McCarthy,Kowalski,Feigenbaum,Newell和Simon等人的“简约(neat)”方案相对。

在1975年的一篇开创性论文中,Minsky注意到与他共事的“芜杂派”研究者在使用同一类型的工具,即用一个框架囊括所有相关的常识性假设。例如,当我们使用“鸟”这一概念时,脑中会立即浮现出一系列相关事实,如会飞,吃虫子,等等。我们知道这些假设并不一定正确,使用这些事实的推理也未必符合逻辑,但是这一系列假设组成的结构正是我们所想和所说的一部分。他把这个结构称为“框架(frames)”。Schank使用了“框架”的一个变种,他称之为“脚本(scripts)”,基于这一想法他使程序能够回答关于一篇英语短文的提问。多年之后的面向对象编程采纳了AI“框架”研究中的“继承(inheritance)”概念。

**

繁荣:1980–1987

**

在80年代,一类名为“专家系统”的AI程序开始为全世界的公司所采纳,而“知识处理”成为了主流AI研究的焦点。日本政府在同一年代积极投资AI以促进其第五代计算机工程。80年代早期另一个令人振奋的事件是JohnHopfield和DavidRumelhart使联结主义重获新生。AI再一次获得了成功。

**

专家系统获得赏识

**

专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。最早的示例由EdwardFeigenbaum和他的学生们开发。1965年起设计的Dendral能够根据分光计读数分辨混合物。1972年设计的MYCIN能够诊断血液传染病。它们展示了这一方法的威力。

专家系统仅限于一个很小的知识领域,从而避免了常识问题;其简单的设计又使它能够较为容易地编程实现或修改。总之,实践证明了这类程序的实用性。直到现在AI才开始变得实用起来。

1980年CMU为DEC(DigitalEquipmentCorporation,数字设备公司)设计了一个名为XCON的专家系统,这是一个巨大的成功。在1986年之前,它每年为公司省下四千万美元。全世界的公司都开始研发和应用专家系统,到1985年它们已在AI上投入十亿美元以上,大部分用于公司内设的AI部门。为之提供支持的产业应运而生,其中包括Symbolics,LispMachines等硬件公司和IntelliCorp,Aion等软件公司。

**

**

知识革命

**

**

专家系统的能力来自于它们存储的专业知识。这是70年代以来AI研究的一个新方向。PamelaMcCorduck在书中写道,“不情愿的AI研究者们开始怀疑,因为它违背了科学研究中对最简化的追求。智能可能需要建立在对分门别类的大量知识的多种处理方法之上。”“70年代的教训是智能行为与知识处理关系非常密切。有时还需要在特定任务领域非常细致的知识。”知识库系统和知识工程成为了80年代AI研究的主要方向。

第一个试图解决常识问题的程序Cyc也在80年代出现,其方法是建立一个容纳一个普通人知道的所有常识的巨型数据库。发起和领导这一项目的DouglasLenat认为别无捷径,让机器理解人类概念的唯一方法是一个一个地教会它们。这一工程几十年也没有完成。

**

重获拨款:第五代工程

**

1981年,日本经济产业省拨款八亿五千万美元支持第五代计算机项目。其目标是造出能够与人对话,翻译语言,解释图像,并且像人一样推理的机器。令“芜杂派”不满的是,他们选用Prolog作为该项目的主要编程语言。其他国家纷纷作出响应。英国开始了耗资三亿五千万英镑的Alvey工程。美国一个企业协会组织了MCC(MicroelectronicsandComputerTechnologyCorporation,微电子与计算机技术集团),向AI和信息技术的大规模项目提供资助。DARPA也行动起来,组织了战略计算促进会(StrategicComputingInitiative),其1988年向AI的投资是1984年的三倍。

**

联结主义的重生

**

1982年,物理学家JohnHopfield证明一种新型的神经网络(现被称为“Hopfield网络”)能够用一种全新的方式学习和处理信息。大约在同时(早于PaulWerbos),DavidRumelhart推广了“反传法(en:Backpropagation)”,一种神经网络训练方法。这些发现使1970年以来一直遭人遗弃的联结主义重获新生。

**

一个四节点的Hopfield网络.

**

1986年由Rumelhart和心理学家JamesMcClelland主编的两卷本论文集“分布式并行处理”问世,这一新领域从此得到了统一和促进。90年代神经网络获得了商业上的成功,它们被应用于光字符识别和语音识别软件。

第二次AI低谷:1987–1993

80年代中商业机构对AI的追捧与冷落符合经济泡沫的经典模式,泡沫的破裂也在政府机构和投资者对AI的观察之中。尽管遇到各种批评,这一领域仍在不断前进。来自机器人学这一相关研究领域的RodneyBrooks和HansMoravec提出了一种全新的人工智能方案。

AI之冬

“AI之冬(en:AIwinter)”一词由经历过1974年经费削减的研究者们创造出来。他们注意到了对专家系统的狂热追捧,预计不久后人们将转向失望。事实被他们不幸言中:从80年代末到90年代初,AI遭遇了一系列财政问题。

变天的最早征兆是1987年AI硬件市场需求的突然下跌。Apple和IBM生产的台式机性能不断提升,到1987年时其性能已经超过了Symbolics和其他厂家生产的昂贵的Lisp机。老产品失去了存在的理由:一夜之间这个价值五亿美元的产业土崩瓦解。

XCON等最初大获成功的专家系统维护费用居高不下。它们难以升级,难以使用,脆弱(当输入异常时会出现莫名其妙的错误),成了以前已经暴露的各种各样的问题(例如资格问题(en:qualificationproblem))的牺牲品。专家系统的实用性仅仅局限于某些特定情景。

到了80年代晚期,战略计算促进会大幅削减对AI的资助。DARPA的新任领导认为AI并非“下一个浪潮”,拨款将倾向于那些看起来更容易出成果的项目。

1991年人们发现十年前日本人宏伟的“第五代工程”并没有实现。事实上其中一些目标,比如“与人展开交谈”,直到2010年也没有实现。与其他AI项目一样,期望比真正可能实现的要高得多。

躯体的重要性:NouvelleAI与嵌入式推理

80年代后期,一些研究者根据机器人学的成就提出了一种全新的人工智能方案。他们相信,为了获得真正的智能,机器必须具有躯体–它需要感知,移动,生存,与这个世界交互。他们认为这些感知运动技能对于常识推理等高层次技能是至关重要的,而抽象推理不过是人类最不重要,也最无趣的技能(参见Moravec悖论)。他们号召“自底向上”地创造智能,这一主张复兴了从60年代就沉寂下来的控制论。

另一位先驱是在理论神经科学上造诣深厚的DavidMarr,他于70年代来到MIT指导视觉研究组的工作。他排斥所有符号化方法(不论是McCarthy的逻辑学还是Minsky的框架),认为实现AI需要自底向上地理解视觉的物理机制,而符号处理应在此之后进行。

在发表于1990年的论文“大象不玩象棋(ElephantsDon’tPlayChess)”中,机器人研究者RodneyBrooks提出了“物理符号系统假设”,认为符号是可有可无的,因为“这个世界就是描述它自己最好的模型。它总是最新的。它总是包括了需要研究的所有细节。诀窍在于正确地,足够频繁地感知它。”在80年代和90年代也有许多认知科学家反对基于符号处理的智能模型,认为身体是推理的必要条件,这一理论被称为“具身的心灵/理性/认知(embodiedmind/reason/cognition)”论题。

AI:1993–现在

现已年过半百的AI终于实现了它最初的一些目标。它已被成功地用在技术产业中,不过有时是在幕后。这些成就有的归功于计算机性能的提升,有的则是在高尚的科学责任感驱使下对特定的课题不断追求而获得的。不过,至少在商业领域里AI的声誉已经不如往昔了。“实现人类水平的智能”这一最初的梦想曾在60年代令全世界的想象力为之着迷,其失败的原因至今仍众说纷纭。各种因素的合力将AI拆分为各自为战的几个子领域,有时候它们甚至会用新名词来掩饰“人工智能”这块被玷污的金字招牌。AI比以往的任何时候都更加谨慎,却也更加成功。

**

里程碑和摩尔定律

**1997年5月11日,深蓝成为战胜国际象棋世界冠军卡斯帕罗夫的第一个计算机系统。2005年,Stanford开发的一台机器人在一条沙漠小径上成功地自动行驶了131英里,赢得了DARPA挑战大赛头奖。2009年,蓝脑计划声称已经成功地模拟了部分鼠脑。

这些成就的取得并不是因为范式上的革命。它们仍然是工程技术的复杂应用,但是计算机性能已经今非昔比了。事实上,深蓝计算机比ChristopherStrachey在1951年用来下棋的FerrantiMark1快一千万倍。这种剧烈增长可以用摩尔定律描述:计算速度和内存容量每两年翻一番。计算性能上的基础性障碍已被逐渐克服。

**

智能代理

**

90年代,被称为“智能代理(en:intelligentagents)”的新范式被广泛接受。[132]尽管早期研究者提出了模块化的分治策略,但是直到JudeaPearl,AlanNewell等人将一些概念从决策理论和经济学中引入AI之后现代智能代理范式才逐渐形成。当经济学中的“理性代理(rationalagent)”与计算机科学中的“对象”或“模块”相结合,“智能代理”范式就完善了。

智能代理是一个系统,它感知周围环境,然后采取措施使成功的几率最大化。最简单的智能代理是解决特定问题的程序。已知的最复杂的智能代理是理性的,会思考的人类。智能代理范式将AI研究定义为“对智能代理的学习”。这是对早期一些定义的推广:它超越了研究人类智能的范畴,涵盖了对所有种类的智能的研究。

这一范式让研究者们通过学习孤立的问题找到可证的并且有用的解答。它为AI各领域乃至经济学,控制论等使用抽象代理概念的领域提供了描述问题和共享解答的一种通用语言。人们希望能找到一种完整的代理架构(像Newell的en:SOAR那样),允许研究者们应用交互的智能代理建立起通用的智能系统。

**

“简约派”的胜利

**

越来越多的AI研究者们开始开发和使用复杂的数学工具。人们广泛地认识到,许多AI需要解决的问题已经成为数学,经济学和运筹学领域的研究课题。数学语言的共享不仅使AI可以与其他学科展开更高层次的合作,而且使研究结果更易于评估和证明。AI已成为一门更严格的科学分支。Russell和Norvig(2003)将这些变化视为一场“革命”和“简约派的胜利”。

JudeaPearl发表于1988年的名著将概率论和决策理论引入AI。现已投入应用的新工具包括贝叶斯网络,隐马尔可夫模型,信息论,随机模型和经典优化理论。针对神经网络和进化算法等“计算智能”范式的精确数学描述也被发展出来。

**

幕后的AI

**

AI研究者们开发的算法开始变为较大的系统的一部分。AI曾经解决了大量的难题,这些解决方案在产业界起到了重要作用。应用了AI技术的有数据挖掘,工业机器人,物流,语音识别,银行业软件,医疗诊断和Google搜索引擎等。

AI领域并未从这些成就之中获得多少益处。AI的许多伟大创新仅被看作计算机科学工具箱中的一件工具。NickBostrom解释说,“很多AI的前沿成就已被应用在一般的程序中,不过通常没有被称为AI。这是因为,一旦变得足够有用和普遍,它就不再被称为AI了。”

90年代的许多AI研究者故意用其他一些名字称呼他们的工作,例如信息学,知识系统,认知系统或计算智能。部分原因是他们认为他们的领域与AI存在根本的不同,不过新名字也有利于获取经费。至少在商业领域,导致AI之冬的那些未能兑现的承诺仍然困扰着AI研究,正如NewYorkTimes在2005年的一篇报道所说:“计算机科学家和软件工程师们避免使用人工智能一词,因为怕被认为是在说梦话。”

**

HAL9000在哪里?

**

1968年亚瑟·克拉克和史丹利·库柏力克创作的《“2001太空漫游”》中设想2001年将会出现达到或超过人类智能的机器。他们创造的这一名为HAL-9000的角色是以科学事实为依据的:当时许多顶极AI研究者相信到2001年这样的机器会出现。

“那么问题是,为什么在2001年我们并未拥有HAL呢?”MarvinMinsky问道。Minsky认为,问题的答案是绝大多数研究者醉心于钻研神经网络和遗传算法之类商业应用,而忽略了常识推理等核心问题。另一方面,JohnMcCarthy则归咎于资格问题(en:qualificationproblem)。RayKurzweil相信问题在于计算机性能,根据摩尔定律,他预测具有人类智能水平的机器将在2029年出现。JeffHawkins认为神经网络研究忽略了人类大脑皮质的关键特性,而简单的模型只能用于解决简单的问题。还有许多别的解释,每一个都对应着一个正在进行的研究计划。目前以自然语言理解问题为突破口,以本源语义为对象,通过对“理解”与“智能”的界定研究,人类级别的人工智能研究已经取得进展。

**

End.

**

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇