人工智能领域中的一个重要方向:自然语言处理
本文作者:林峰博士,千家网经授权发布
人工智能作为新一轮科技革命和产业变革的重要驱动力量,正在深刻改变世界。而自然语言处理(NaturalLanguageProcessing,简称NLP)已成为人工智能领域中的一个重要方向,它推动着语言智能持续发展和突破,并越来越多地应用于各个行业。
NLP研究能实现人与计算机之间用自然语言进行有效通信的各种理论和方法。而用自然语言与计算机进行通信,有着十分重要的实际应用意义,也有着革命性的理论意义。实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等;前者称为自然语言理解,后者称为自然语言生成。由于理解自然语言需要关于外在世界的广泛知识以及运用操作这些知识的能力,所以NLP也被视为解决人工智能完备(AI-complete)的核心问题之一。可以说,NLP目前是人工智能领域中的关键技术,对它的研究也是充满魅力和挑战的。
最早的NLP研究工作是机器翻译。1949年,美国知名科学家韦恩·韦弗先生首先提出了机器翻译设计方案。20世纪60年代,许多科学家对机器翻译曾有大规模的研究工作,耗费了巨额费用;但他们显然是低估了自然语言的复杂性,语言处理的理论和技术均不成熟,所以进展不大。当时的主要做法是存储两种语言的单词、短语对应译法的大辞典,翻译时一一对应,技术上只是调整语言的同条顺序。但日常生活中语言的翻译远不是如此简单,很多时候还要参考某句话前后的意思。
大约90年代开始,NLP领域发生了巨大的变化。这种变化的两个明显的特征是:(1)对系统的输入,要求研制的NLP系统能处理大规模的真实文本,而不是如以前的研究性系统那样,只能处理很少的词条和典型句子。只有这样,研制的系统才有真正的实用价值。(2)对系统的输出,鉴于真实地理解自然语言是十分困难的,对系统并不要求能对自然语言文本进行深层的理解,但要能从中抽取有用的信息。
同时,由于强调了“大规模”和“真实文本”,因此两方面的基础性工作也得到了重视和加强:(1)大规模真实语料库的研制。大规模的经过不同深度加工的真实文本的语料库,是研究自然语言统计性质的基础;没有它们,统计方法只能是无源之水。(2)大规模、信息丰富的词典的编制工作。规模为几万,十几万,甚至几十万词,含有丰富的信息(如包含词的搭配信息)的计算机可用词典对NLP的重要性是很明显的。
系统的输入与这两个特征在NLP的诸多领域都有所体现,其发展直接促进了计算机自动检索技术的出现和兴起。实际上,随着计算机技术的不断发展,以海量计算为基础的机器学习、数据挖掘等技术的表现也愈发优异。NLP之所以能够度过“寒冬”,再次发展,也是因为统计科学与计算机科学的不断结合,才让人类甚至机器能够不断从大量数据中发现“特征”并加以学习。不过要实现对自然语言真正意义上的理解,仅仅从原始文本中进行学习是不够的,我们需要新的方法和模型。
目前存在的问题主要有两个方面:一方面,迄今为止的语法都限于分析一个孤立的句子,上下文关系和谈话环境对本句的约束和影响还缺乏系统的研究,因此分析歧义、词语省略、代词所指、同一句话在不同场合或由不同的人说出来所具有的不同含义等问题,尚无明确规律可循,需要加强语用学的研究才能逐步解决。另一方面,人理解一个句子不是单凭语法,还运用了大量的有关知识,包括生活知识和专门知识,这些知识无法全部贮存在计算机里。因此一个书面理解系统只能建立在有限的词汇、句型和特定的主题范围内;计算机的贮存量和运转速度大大提高之后,才有可能适当扩大范围。
无论实现自然语言理解,还是自然语言生成,都远不如人们原来想象的那么简单,而是十分困难的。从现有的理论和技术现状看,通用的、高质量的NLP系统,尤其是应用软件,仍然是较长期的努力目标。就像中国知名科学家周海中先生曾在《自然语言理解的研究历程》一文中指出的那样:“虽然现今市场上出现不少可以进行一定自然语言处理的商品软件,但要想让机器能像人类那样自如地运用自然语言,仍是一项长远而艰巨的任务。”造成困难的根本原因是自然语言文本和对话的各个层次上广泛存在的各种各样的歧义性或多义性。
由于语言学、语言工程、认知科学等主要局限于实验室,目前来看数据处理可能是NLP应用场景最多的一个发展方向。实际上,自从进入大数据时代,各大平台就没有停止过对用户数据的深度挖掘。要想提取出有用的信息,仅提取关键词、统计词频等是远远不够的,必须对用户数据(尤其是发言、评论等)进行语义上的理解。另外,利用离线大数据统计分析的方法进行NLP任务的研究是目前非常有潜力的一种研究范式,尤其是谷歌、推特、百度等大公司在这类应用上的成功经验,引领了目前大数据研究的浪潮。
NLP是为各类企业及开发者提供的用于文本分析及挖掘的核心工具,已经广泛应用在电商、金融、物流、文化娱乐等行业客户的多项业务中。它可帮助用户搭建内容搜索、内容推荐、舆情识别及分析、文本结构化、对话机器人等智能产品,也能够通过合作,定制个性化的解决方案。由于理解自然语言,需要关于外在世界的广泛知识以及运用操作这些知识的能力,所以NLP也被视为解决强人工智能的核心问题之一,其未来一般也因此密切结合人工智能发展,尤其是设计一个模仿人脑的神经网络。
训练NLP文本解析人工智能系统需要采集大量多源头数据集,对科学家来说是一项持续的挑战:需要使用最新的深度学习模型,模仿人类大脑中神经元的行为,在数百万甚至数十亿的注释示例中进行训练来持续改进。当下一种流行的NLP解决方案是预训练,它改进了对未标记文本进行训练的通用语言模型,以执行特定任务;它的思想就是,该模型的参数不再是随机初始化,而是先有一个任务进行训练得到一套模型参数,然后用这套参数对模型进行初始化,再进行训练,以获得更好的预测性见解。
深度学习在NLP中的应用非常广泛,可以说横扫NLP的各个应用,从底层的分词、语言模型、句法分析等到高层的语义理解、对话管理、知识问答等方面都几乎都有深度学习的模型,并且取得了不错的效果。有关研究已从传统的机器学习算法转变成更有表现力的深度学习模型,如卷积神经网络和回归神经网络。不过,目前的深度学习技术还不具备理解和使用自然语言所必需的概念抽象和逻辑推理能力,还有待今后进一步的研究。
目前我们已经进入了以互联网为主要标志的海量信息时代,这些海量信息大部分是以自然语言表示的。一方面,海量信息也为计算机学习人类语言提供了更多的“素材”,另一方面,这也为NLP提供了更加宽广的应用舞台。例如,作为NLP的重要应用,搜索引擎逐渐成为人们获取信息的重要工具,出现了以谷歌、百度等为代表的搜索引擎巨头;机器翻译也从实验室走入寻常百姓家;基于NLP的中文输入法(如搜狗、微软、谷歌等输入法)成为计算机用户的必备工具;带有语音识别的计算机和手机也正大行其道,协助用户更有效地工作和学习。
总之,随着互联网的普及和海量信息的涌现,作为人工智能领域中的一个重要方向,NLP正在人们的日常生活中扮演着越来越重要的角色,并将在科技创新的过程中发挥越来越重要的作用。
人工智能的现状及今后发展趋势展望
论文导读:介绍了人工智能的概念及其目前发展概况,对人工智能的几种类型及应用,如:模式识别、专家系统作了简要的介绍。并对人工智能今后的发展前景进行了分析。关键词:人工智能
1引言
人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
2目前人工智能技术的研究和发展状况
目前,人工智能技术在美国、欧洲和日本依然飞速发展。在AI技术领域十分活跃的IBM公司,已经为加州劳伦斯·利佛摩尔国家实验室制造了ASCIWhite电脑,号称具有人脑的千分之一的智力能力,而正在开发的更为强大的新超级电脑——“蓝色牛仔”(BlueJean),据其研究主任保罗·霍恩称,“蓝色牛仔”的智力水平将大致与人脑相当。
3技术应用
随着AI的技术的发展,现代几乎各种技术的发展都涉及到了人工智能技术,可以说人工智能已经广泛应用到许多领域,其典型的应用包括:
3.1符号计算
计算机最主要的用途之一就是科学计算,科学计算可分为两类:一类是纯数值的计算,例如求函数的值;另一类是符号计算,又称代数运算,这是一种智能化的计算,处理的是符号。符号可以代表整数、有理数、实数和复数,也可以代表多项式,函数,集合等。随着计算机的普及和人工智能的发展,相继出现了多种功能齐全的计算机代数系统软件,其中Mathematic和Maple是它们的代表,由于它们都是用C语言写成的,所以可以在绝大多数计算机上使用。
3.2模式识别
模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。这里,我们把环境与客体统称为“模式”。论文参考网。用计算机实现模式(文字、声音、人物、物体等)的自动识别,是开发智能机器的一个关键的突破口,也为人类认识自身智能提供线索。计算机识别的显著特点是速度快、准确性和效率高。识别过程与人类的学习过程相似。以“语音识别”为例:语音识别就是让计算机能听懂人说的话,一个重要的例子就是七国语言(英、日、意、韩、法、德、中)口语自动翻译系统。该系统实现后,人们出国预定旅馆、购买机票、在餐馆对话和兑换外币时,只要利用电话网络和国际互联网,就可用手机、电话等与“老外”通话。
3.3机器翻译
机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻译类。词典类翻译软件代表是“金山词霸”了,堪称是多快好省的电子词典,它可以迅速查询英文单词或词组的词义,并提供单词的发音,为用户了解单词或词组含义提供了极大的便利。汉化翻译软件的典型代表是“东方快车2000”,它首先提出了“智能汉化”的概念,使翻译软件的辅助翻译作用更加明显。
3.4机器学习
机器学习是机器具有智能的重要标志,同时也是机器获取知识的根本途径。有人认为,一个计算机系统如果不具备学习功能,就不能称其为智能系统。机器学习主要研究如何使计算机能够模拟或实现人类的学习功能。机器学习是一个难度较大的研究领域,它与认知科学、神经心理学、逻辑学等学科都有着密切的联系,并对人工智能的其他分支,如专家系统、自然语言理解、自动推理、智能机器人、计算机视觉、计算机听觉等方面,也会起到重要的推动作用。
3.5问题求解
人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。论文参考网。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。
3.6逻辑推理与定理证明
逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。医疗诊断和信息检索都可以和定理证明问题一样加以形式化。因此,在人工智能方法的研究中定理证明是一个极其重要的论题。
3.7自然语言处理
自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。
3.8分布式人工智能
分布式人工智能在20世纪70年代后期出现,是人工智能研究的一个重要分支。分布式人工智能系统一般由多个Agent(智能体)组成,每一个Agent又是一个半自治系统,Agent之间以及Agent与环境之间进行并发活动,并通过交互来完成问题求解。
3.9计算机视觉
计算机视觉是一门用计算机实现或模拟人类视觉功能的新兴学科。其主要研究目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力不仅包括对三维环境中物体形状、位置、姿态、运动等几何信息的感知,而且还包括对这些信息的描述、存储、识别与理解。
目前,计算机视觉已在人类社会的许多领域得到成功应用。例如,在图像、图形识别方面有指纹识别、染色体识字符识别等;在航天与军事方面有卫星图像处理、飞行器跟踪、成像精确制导、景物识别、目标检测等;在医学方面有图像的脏器重建、医学图像分析等;在工业方面有各种监测系统和生产过程监控系统等。
1/2 1 2 下一页 尾页
人工智能在教育测评领域的应用与研究现状
摘要:在教育领域,在线教育在过去十多年里飞速发展,积累了大量的数据,为人工智能的研究奠定了数据基础,也对人工智能的应用提出了新的需求。本文分析了人工智能在教育领域的主要应用,并对未来的应用和研究方向进行了探讨。
近年来,人工智能在社会生活的各个领域都得到了越来越广泛的应用,如零售行业中分析消费者消费习惯的商业智能、汽车制造中的自动驾驶等。在教育领域,在线教育在过去十多年里飞速发展,积累了大量的数据,为人工智能的研究奠定了数据基础,也对人工智能的应用提出了新的需求。
一、人工智能在教育领域的主要应用
目前,人工智能在教育领域的应用主要包括四类:
第一类是“行为探测”,如考场的作弊监控系统。类似的应用还有前不久新闻里报道的“魔镜系统”,即通过人脸识别,实时探测学生是否在认真听讲。不过,是否应该在课堂教学中运用这样的系统还存在很大争议。
第二类应用被称为“预测模型”,如通过学生学习过程中的行为数据,预测学生是否有高辍学风险,或者预测学生成绩是否及格等。已有的研究主要集中在MOOC领域。学者们使用学生上线时间、观看视频时间、次数、参与讨论情况、作业提交情况等数据,预测学生是否能完成某一课程,从而使教师能及早为有困难的学生提供帮助,提高MOOC的效率。
第三类应用为“学习模型”,如在线的自适应学习系统,即根据学生兴趣、学习能力、知识掌握情况等因素,为学生提供适宜的学习内容。有一些研究试图为学生提供符合其认知模式的学习内容,如为对图像敏感的学生提供以视觉刺激为主的学习资料,但目前研究者们还没有发展出非常成熟的应用。
第四类应用“智能测评”与“学习模型”紧密相关。在自适应学习中,系统需要首先对学生的能力、知识掌握情况等进行测评。智能测评旨在以传统测评无法比拟的效率,完成对学生的测评和诊断任务。
二、人工智能在教育测评中的应用
智能测评包括人工智能在传统测试的各个环节中的应用。教育测评的过程本质上是把某种潜在特质(看不见、摸不着又确实存在的能力、素养或心理特质)用一种科学的方法进行量化,用数值来表示被试在该项特质上的发展水平。传统的测评主要有三个环节:命题、答题和评分。人工智能在这三个环节中的应用即为机器命题、机器答题和自动评分。
1.机器命题
传统命题是由学科专家或专业的命题人员,根据考试的目的,设计试题的过程。命题质量是决定整个测评质量的关键因素,整个试卷在内容上应该是所有需要考评的内容的代表性抽样。试卷难度应当满足测试目的:选拔性考试通常偏难,而达标考核的难度则依据相应标准来确定。
在线学习系统和计算机自适应考试的发展,大大增加了对试题数量的需求。一次传统的纸笔考试可能只需要50题左右,但在自适应考试中,需要给每个考生不同的试题,所需的题目数量就成倍增加。同时,自适应考试和在线学习系统中测试的频次往往较高,因此也需要更多的试题。传统的命题成本较高,耗费时间较久,且存在一定的错误率,而机器命题能大幅节约命题成本,提高命题效率。此外,由于机器命题没有泄露试题的风险,提高了考试安全性。因此,机器命题在过去十多年里得到了较快的发展。
机器命题有两种主要的模式:强理论模型和弱理论模型。所谓强理论模型,是指在比较扎实的认知理论基础上进行命题。比如部分数学题,解题所需要的能力可以分解为问题提炼、数学表达、运算执行等几个部分。通过分析一组类似试题的考生作答数据,测量学专家们可以较为精确地计算出每个步骤的难度以及这个步骤在整个题目中的权重。随后,计算机自动替换题目中的一个或几个元素,生成新题。这样的新题可以在“母题”的基础上进行较多的变化,新的难度也在很大程度上可控。
不过,教育领域的大部分考试都缺少对应的认知理论支撑。因此,机器命题更多使用弱理论模型。具体过程大致如下:命题专家先找出性能好的题目作为母题,再对题目进行非常详细的分析,构成多层次的题目模型,即把题目分解成背景、内容、问题、辅助信息与选项等部分。接下来,专家再确定可以替换的部分。计算机先分析可替换部分的文本难度、问题的难度,再从语料库和数据库中找到合适的内容,进行替换,形成新题。这类新题和母题的相似度很高,难度也基本保持不变。
数学和英语是机器命题应用较多的学科,特别是英语的语法和阅读理解题,已经有一些商业软件可以完成命题。例如,“ItemDistiller”软件主要被用来命以单句为主的语法题,“EAQC(enhancedautomaticquestioncreator)”软件则多用于命阅读理解题。
尽管机器命题能节约成本,提高效率,但也存在一定的局限。首先,命题过程仍然离不开命题专家对母题的选择和分析。其次,机器在设计干扰项时比较死板,只会依据母题的模版生成干扰项,而不会根据题目的特点重新设计。第三,由于开放性问题(如简答题等)的标准答案设计需要另一套设计模型,机器命题目前也较少被用于此类问题。最后,机器命题十分依赖语料库。英语的语料库发展比较快,计算语言学的研究已经完成了对词的难度、词和词之间的距离等的量化,为机器命题奠定了良好的基础。而对其他没有成熟语料库的语言来说,好的机器命题则难以实现。
2.自动评分
这里将要讨论的评分不包括扫描仪读取答题卡,而是指在传统考试中需要由评分员进行打分的开放性问题,如口语考试、简答题、作文题等。评分员打分耗时耗力,机器自动评分可以节约时间和成本,大大提高效率。
自动评分一般包括三个步骤。首先,要把语言或手写的文字转化为电脑可以读取、分析的文本。这一步依赖自然语言处理系统,目前中文也有一些软件可以便捷地完成处理。
第二步,分析文本。常用的分析方法有两种,一种被称为“隐含语义分析”,另一种则是“人工神经网络”。所谓隐含语义分析,是指把被试的回答转换成数字矩阵,计算与标准答案矩阵之间的距离。这种方法多用于简答题。对于较长的回答,如作文,则更多使用人工神经网络。人工神经网络简单说来就是找出本文的特征,如关键词出现的频率、复杂句式出现的频率、连接词的频率等,根据本文的特征来完成打分。让计算机学习已经由专家完成了评分的答案,每一种分值都需要一定数量的案例,从而完成特征的选取。
最后一步就是打分。打分也有两种方法:分类和回归模型。当题目的分值较低时(如可能的得分是0到5分),分类法较为常用。计算机把被试的回答和已经学习过的不同分值的回答进行对比,把回答归入最接近的一组,就完成了打分。当题目的分值较高时(如高考中作文为60分),则多用回归模型,即通过机器学习已经由专家完成打分的大量案例,建立回归模型。新的文本特征作为自变量“X”,通过回归模型,计算出最终得分“Y”。
目前已经有一些成熟的自动评分软件,如“ProjectEssayGrade”,美国ETS开发的“E-Rater”等。新一代的评分软件不仅可以完成评分,还能根据评分模型,给学生提出改进建议。当然,自动评分还存在很多局限。一方面,机器学习的资料是不同专家的评分,本身就存在一定的不一致性,因此,自动评分的结果与人工评分还会有一定的差异。另一方面,自动评分也十分依赖语料库的建设,对于计算语言学没有深入研究的语种,就难以建立比较精准的模型。此外,自动评分在面对“创作型写作”时,往往很难给出准确的判断。
3.机器答题
机器答题可以大大降低试测成本。在题库建设中,所有的新题都需要经过试测,计算其各项性能指标后,才能在实际考试中使用。招募被试进行试测需要花费大量时间和成本。此外,试测过程中,也可能存在考务安全的问题。目前也在大力加快题库建设,但由于保密问题,很难实现在高考这样的高利害考试中使用试测过的试题。机器答题也可以大大降低泄露试题的风险。机器答题的复杂程度更高,目前还没有成熟的、商业化的应用。我国的科大讯飞正在积极研发,日本、欧美也有一些团队在进行研究。
三、人工智能与教育测评的未来研究方向
人工智能在命题、答题和评分中的研究和应用都在不断推进过程中。但不少研究者认为,目前的这些应用没有改变测评的基本内容和形式,只在一定程度上降低了成本、提高了效率。在线学习平台已经积累的数据,应该能够支撑研究者们进行更多的探索,突破原有的测评方式,例如应用学习过程中的行为数据完成测试等。研究者们开创了一个新的领域——“分析测量学”,即通过大数据分析而非传统的考试,对学生进行测评。
墨尔本大学教育学院的研究团队已经进行了初步的探索。他们通过分析学生在一项游戏化学习过程中的1600多个行为数据,对学生的合作问题解决能力、批判性思维能力、创新领导力等几项核心素养进行评估。分析测量学仍然遵循测量学的基本逻辑:首先要建立理论框架;随后在学科和认知理论的基础上,进行新型“命题”,即通过数据挖掘找到高相关的信息,同时通过传统命题的思路赋予这些数据实践意义;随后再通过理论与数据结合的方式,对不同的行为进行评分;最后运用测量学模型估算被试的能力。这种“分析测量”将改变测试的场景、命题和评分方式,给测量领域带来更具深远意义的变革。
人工智能在高效实现个性化学习方面有着无可比拟的优势,未来在教育领域的应用必将更为广泛。但在我们热情迎接人工智能时代的同时,研究者和实践者们仍需保持谨慎。人类认知的拼图还远没有拼完整,因此我们要理智地对待根据已有大数据得出的结论,防止推论过度泛化。此外,如何保护学生、教师和学校的隐私和秘密,合理使用数据,也是急需我们思考和解决的问题。
计算机人工智能识别系统应用领域,人工智能论文3000字以上
人工智能论文3000字以上
《计算机人工智能识别技术的应用瓶颈探赜》
【摘要】21世纪以来,随着计算机技术、信息技术和网络技术的快速发展,人工智能识别技术应运而生,成为一种新兴计算机技术,在各行各业、各个领域的应用范围不断扩大,为经济增长、社会发展提供重要基础保障。然而,就当前应用情况来看,计算机人工智能识别技术的应用面临一系列瓶颈问题。基于此,文章通过研究和探析计算机人工智能识别技术应用瓶颈问题,为计算机人工智能识别技术的应用和发展奠定坚实基础。
【关键词】计算机人工智能识别技术应用瓶颈
作为一种自动化、智能化、科学化计算机技术,计算机人工智能识别技术通过将人类思维模式从抽象化到具体化,进行准确识别、科学判断和准确模拟,最终通过计算机程序完整体现出来。计算机人工智能识别技术被广泛运用于各个领域,与其他计算机技术相比,人工智能识别技术的应用前景更为广阔,能够为人类提供更为高效、便捷和优质服务。近年来,计算机人工智能识别技术在我国相关领域中取得一系列显着应用成效,然而由于发展时间较短,尚未形成一套完整的运行体系,整个应用过程依然面临诸多瓶颈问题。因此,本文研究具备一定的实践意义。
1、计算机人工智能识别技术的含义及类型
1.1、人工智能识别技术的含义
人工智能识别技术,实质上指的是基于计算机技术和人工智能平台所衍生出来的一种科学技术,人工智能识别技术能够对人类各种思维模式、行为方式进行准确识别和完整模拟,经过智能化、自动化,所形成的一种自动智能化机器。在实际应用过程中,计算机人工智能识别技术装置可以对相关物品信息进行扫描、识别。比如:超市中所利用的扫描装置,就是一种人工智能识别装置