人工智能知识体系梳理
本文将从以下几个角度阐述AI的知识体系:基础算法&模型,NLP,机器学习(深度学习),大数据(人工智能)平台核心架构,开发语言选择,主流第三方库(框架)。
简单来说,我们要开始人工智能的工作,基础设施有三个重要部分,1.开发语言(python及其主流的类库和工具包);2.数据计算引擎(spark及其基本算法类库,es,以及大数据存储);3.机器学习(深度学习)框架的熟练运用Scikit-learn,TensorFlow。
更新记录*2021年12月1日对大数据(人工智能)整体架构图做了更新,请查阅“大数据(人工智能)平台核心架构”章节
更新原因:大型的互联网平台,大数据平台目前的趋势都是需要一个成熟和稳定基础设施层,目前的趋势是以容器化技术进行构建,以达到云原生的能力,并在上层依次搭建算法模型、技术和业务的基础设施,以及大数据主流分析计算框架,再辅以针对业务服务的规则引擎,报表引擎。以此形成数据中台,技术中台和业务中台,为大型企业构建自己的大数据产品平台打下坚实的基础。
基础算法首先说说涉及到的基础知识,包括高等数学,线性代数,概率论以及统计学。基础算法有线性回归,逻辑回归,决策树,贝叶斯,神经网络等等。常用算法如下图:
注意算法与模型的关系:算法是指一系列解决问题的清晰指令,它代表着用系统的方法解决问题的策略机制。模型是一种相对抽象的概念,在机器学习领域特指通过各种算法对数据训练后得到的中间件,当有新的数据后会有相应的结果输出,这个中间件就是模型。模型会因算法和训练数据的不同而产生变化。
两个最常用的模型:逻辑回归和决策树。逻辑回归解决分类问题,对看似没有规律,聚合在一起的数据,进行二分化,找到最准确的分类线条是他的主要工作。逻辑回归可以理解为拟合,用一条直线对一些数据点进行拟合(该线称为最佳拟合直线),而拟合过程称作回归。通常都会每个特征上都乘以一个回归系数,而逻辑回归的主要工作就是求这个最佳的回归系数。
逻辑回归参考:逻辑回归算法 逻辑回归原理及其python和sklearn实现
决策树参考:决策树算法原理
NLP(自然语言处理)该领域分为以下三个部分:
1.语音识别:将口语翻译成文本。
2.自然语言理解:计算机理解人类的能力。
3.自然语言生成:计算机生成自然语言。
其中,声学模型,语言模型,语意分析,句法分析非常重要。
具体的搭建方式,参考基于深度学习的中文语音识别系统框架
机器学习与深度学习1.首先看看他们的关系与区别:机器学习就是机器通过一系列「任务」从「经验」(数据)中学习,并且评估「效果」如何,是人工智能传统且重要的应用方式,可替换大量人工重复的劳动。但是如果无法从数据中「学习到」更好的特征表达,也是徒劳。同样的数据,使用不同的表达方法,可能会极大影响问题的难度。一旦解决了数据表达和特征提取问题,很多人工智能任务也就迎刃而解。但是对机器学习来说,特征提取并不简单。特征工程往往需要人工投入大量时间去研究和调整,就好像原本应该机器解决的问题,却需要人一直在旁边搀扶。深度学习便是解决特征提取问题的一个机器学习分支。它可以自动学习特征和任务之间的关联,还能从简单特征中提取复杂的特征。简言之,深度学习是发现内在规律,总结重大特征的机器学习方式。让机器能够像人脑进行演变和进化。
参考机器学习与深度学习的区别
2.机器学习(深度学习)算法与框架推荐:Scikit-Learn和Tensorflow, Keras(Keras更适合作为接口来使用。它提供了更高级别,更直观的抽象集合,使得无论后端科学计算库如何,都可以轻松配置神经网络)
3.深度学习框架选择要素
深度学习框架是一种界面、库或工具,它使我们在无需深入了解底层算法的细节的情况下,能够更容易、更快速地构建深度学习模型。深度学习框架利用预先构建和优化好的组件集合定义模型,为模型的实现提供了一种清晰而简洁的方法。利用恰当的框架来快速构建模型,而无需编写数百行代码,一个良好的深度学习框架具备以下关键特征:
优化的性能易于理解和编码良好的社区支持并行化的进程,以减少计算自动计算梯度4. 深度学习高级开发框架Keras与TensorFlow的比较Keras用Python编写,可以在TensorFlow(以及CNTK和Theano)之上运行。TensorFlow的接口具备挑战性,因为它是一个低级库,新用户可能会很难理解某些实现。而Keras是一个高层的API,它为快速实验而开发。因此,如果希望获得快速结果,Keras会自动处理核心任务并生成输出。Keras支持卷积神经网络和递归神经网络,可以在CPU和GPU上无缝运行。 可以将Keras中的模型大致分为两类: 4.1.序列化模型的层是按顺序定义的。这意味着当我们训练深度学习模型时,这些层次是按顺序实现的4.2.Keras函数API用于定义复杂模型,例如多输出模型或具有共享层的模型。
大数据(人工智能)平台核心架构-数据挖掘(大数据处理)人工智能离不开背后的数据平台,需要实时运算,实时处理的引擎。这里会涉及到大数据平台架构,如何做出更好的人工智能产品,搭建一个高效的数据平台至关重要。
如上图所示,我们可以看到SparkStorm,ES等大数据技术栈在其中所处的关键位置。除了能提供分布式高性能的流式处理以外,如Spark,已有强大的SparkMLlib机器学习库,旨在简化机器学习的工程实践工作,并方便扩展到更大规模。MLlib由一些通用的学习算法和工具组成,包括分类、回归、聚类、协同过滤、降维等,同时还包括底层的优化原语和高层的管道API。那么在数据处理平台(框架)中直接部署&应用需要的机器学习算法,变得非常高效和方便。
*上图中的模型盒子是数据平台锻造算法模型的关键流程,容器部署算法盒子,用数据锻造真实模型,通过模型挑战者等方式选出最优模型。
参考机器学习-数据处理技术栈
开发语言选择
了解了算法,基本概念,机器学习,数据处理之后。让我们回到日常工作中最使用频率最高的话题:开发语言的选择。开发语言的选择要从一下几个角度考虑:团队技术栈的掌握范围和集中度,主流第三方类库的丰富程度和稳定性。
目前的选择是Python和Java,主要的考虑是目前数据团队以Python为主要开发语言,而核心系统,大数据平台团队使用Java
Python作为开发语言的优势:
Python中可用库的数量是其他语言所无法企及的。NumPy已经变得如此普遍,以至于几乎成为了张量运算的标准API,Pandas将R的强大而灵活的数据帧带入Python。对于自然语言处理(NLP),您可以使用久负盛名的NLTK和快如闪电的SpaCy。对于机器学习,有经过实战检验的Scikit-learn。当谈到深度学习时,当前所有的库(TensorFlow,PyTorch,Chainer,ApacheMXNet,Theano等)都是在Python上首先实现的项目。
推荐一个非常棒的在线开发手册
Java的优势:
Java的优势在于团队对他天然的亲近^_^,Anyway, JVM系列语言(Java,Scala,Kotlin,Clojure等)对AI应用开发的来说,也是非常棒的选择。自然语言处理(CoreNLP)、张量运算(ND4J)还是完整的GPU加速深度学习堆栈(DL4J),都可以使用大量的库来管理流水线的各个部分。最重要的是,Java体系里面的大数据技术栈,可以让人工智能平台轻松与Spark和Hadoop等大数据平台进行构建和整合。
参考:最适合的人工智能开发语言
总结:目前人工智能的框架已经非常成熟了,不要重复造轮子,我们是要重新定义一些计算模型和算法实现,来创新网络结构和训练方法,能够在众多普通的移动设备端进行分布式机器学习,甚至不需要多余的硬件支持或抑制内存开销,这样的深度学习算法会更加有效。
人工智能基础
本课程推荐教材及与课程学习目标对应关系如下:
1. 授课教材:《人工智能》丁世飞编著电子工业出版社 2020年第三版ISBN:9787121363955。
(1)教材特点:《人工智能导论(第3版)》主要阐述人工智能的基本原理、方法和应用技术。全书共13章,除第1章讨论人工智能基本概念、第13章讨论人工智能的争论与展望外,其余11章按照“基本智能+典型应用+计算智能”三个模块编排内容。一个模块为人工智能经典的三大技术,分别为知识表示技术、搜索技术和推理技术,主要包括知识表示、确定性推理、搜索策略、不确定性推理;第二个模块为人工智能的典型应用领域,包括机器学习、支持向量机和专家系统;第三个模块为计算智能与群智能,包括神经计算、进化计算、模糊计算和群智能。
本课程主要选用了本教材的第一稿模块,即知识表示技术、搜索技术和推理技术中相关的内容。
(2)使用方法:本教材对应课程学习目标1-5,可以做到对课程内容前半部分的全覆盖,请同学们学习完视频之后,一定要详细阅读教材中的对应部分,并针对课后习题进行联系,能够有效提高学习质量;
2、本课程参考了大量网络上的课程。对应课程学习目标6-8,包括:
https://stanford-cs221.github.io/spring2021/
https://cse.iitkgp.ac.in/~dsamanta/courses/da/
百度飞桨师资培训的机器学习和深度学习的内容。
https://easyai.tech
此外还有参考百度百科、B站、以及知乎和CSDN等各类科技网站。
在此表示感谢!
人工智能 (AI) 体系结构
你当前正在访问MicrosoftAzureGlobalEdition技术文档网站。如果需要访问由世纪互联运营的MicrosoftAzure中国技术文档网站,请访问https://docs.azure.cn。
人工智能(AI)体系结构设计项目06/25/2023人工智能(AI)是计算机模拟人类智能行为的功能。通过AI,计算机可以分析图像、理解语音、以自然方式交互,以及使用数据进行预测。
AI概念算法算法是用于解决问题或分析一组数据的一系列计算和规则。它就像一个流程图,其中包含提出问题的分步说明,只不过是以数学和编程代码形式进行编写。算法可以描述如何确定宠物是猫、狗、鱼、鸟还是蜥蜴。另一种更复杂的算法可以描述如何识别书面或口头语言、分析其字词、将其翻译为其他语言,然后检查翻译的准确性。
机器学习机器学习(ML)是一种AI技术,可使用数学算法来创建预测模型。该技术使用特定算法分析数据字段,并通过使用在数据中发现的模式来“学习”该数据以生成模型。然后,使用那些模型做出与新数据有关的明智预测或决策。
预测模型将根据已知数据进行验证,通过为特定业务方案选择的性能指标进行衡量,然后根据需要进行调整。此学习和验证过程被称为“训练”。通过定期重新训练,ML模型会随着时间的推移而改进。
规模化机器学习
Microsoft的机器学习产品有哪些?
深度学习深度学习是一种ML,可以自行确定其预测是否准确。该技术也使用算法分析数据,但其操作规模比ML大。
深度学习使用的人工神经网络由多个算法层组成。每层均可查看传入数据,执行自己的专用分析,并生成其他层可以理解的输出。然后,系统会将此输出传递至下一层,在其中以不同的算法执行其自己的分析,依此类推。
每个神经网络都有许多层,而且有时使用多个神经网络,因此计算机可以通过自己的数据处理来学习。与ML相比,此技术需要更多的数据,更高的计算能力。
深度学习与机器学习
Azure上深度学习模型的分布式训练
Azure上深度学习模型的批量评分
Azure上PythonScikit-Learn和深度学习模型的训练
Azure上PythonScikit-Learn和深度学习模型的实时评分
机器人机器人是一种可执行特定任务的自动化软件程序。你可将其视为没有身体的机器人。早期机器人相对简单,使用相对简单的算法逻辑处理重复性任务和大型任务。例如,搜索引擎使用Web爬网程序自动浏览和编录Web内容。
机器人现已变得更加复杂,不仅可使用AI和其他技术来模拟人类活动和决策,通常还可通过文本消息甚至语音直接与人类交互。例如,可以预订餐位的机器人、帮助客户服务交互的聊天机器人(或对话AI)以及将突发新闻或科学数据发布到社交媒体网站的社交机器人。
Microsoft提供了Azure机器人服务,这是专为企业级机器人开发构建的托管服务。
关于Azure机器人服务
负责任的机器人的十个准则
Azure参考体系结构:企业级对话机器人
工作负载示例:Azure上提供的用于酒店预订的对话式聊天机器人
自治系统自治系统是不断发展的新类的一部分,突破了基本自动化的局限。自治系统不是像机器人一样,几乎没有变化或毫无变化地重复执行特定任务,而是赋予计算机智能功能,使其适应不断变化的环境,以实现预期目标。
智能建筑已采用自治系统自动控制照明、通风、空调及安全等操作。更复杂的示例是自导向机器人,可用于探测坍塌的矿井,以全面反映其内部情况,确定结构稳固的部分,分析透气性,并在没有远程端实时人工监视的情况下需要救援时检测被困矿工的生命体征。
MicrosoftAI中的自治系统和解决方案有关MicrosoftAI的常规信息详细了解MicrosoftAI,并随时了解相关新闻:
MicrosoftAI学校
AzureAI平台页
MicrosoftAI平台页
MicrosoftAI博客
GitHub上的MicrosoftAI:示例、参考体系结构和最佳做法
Azure体系结构中心
高级体系结构类型预生成AI预生成AI就是可供使用的现成AI模型、服务和API。这些工具可帮助你向应用、网站和流添加智能功能,而不必收集数据,然后生成、训练和发布自己的模型。
例如,预生成AI可能是预训练模型,可以按原样合并,也可以用于为进一步自定义训练提供基准。再比如基于云的API服务,你可以随意调用该服务以所需方式处理自然语言。
Azure认知服务认知服务为开发者提供了使用预生成API和集成工具包创建应用程序的机会,这些应用程序可以听、说、看、理解,甚至可以开始推理。认知服务中的服务目录可分为五大支柱类别:视觉、语音、语言、Web搜索和决策/建议。
Azure认知服务文档
免费试用Azure认知服务
选择Azure认知服务技术
在Azure中选择自然语言处理技术
AIBuilder中的预生成AI模型AIBuilder是MicrosoftPowerPlatform中的一项新功能,可提供点击式接口,即使用户没有编码或数据科学技能,也可以向应用添加AI。(AIBuilder中的一些功能尚未正式发布,仍处于预览状态。有关详细信息,请参阅按区域划分的功能可用性页。)
你可以生成和训练自己的模型,但AIBuilder还可提供立即可用的精选预生成AI模型。例如,你可基于预生成模型在MicrosoftPowerApps中添加一个组件,以识别名片中的联系信息。
Azure上的PowerApps
AIBuilder文档
AIBuilder中的AI模型类型
AIBuilder中的预生成AI模型概述
自定义AI尽管预生成AI很有用(而且越来越灵活),但从AI中获取所需内容的最佳方式或许是自己构建系统。显然,这是一个深奥复杂的主题,除了刚介绍的内容以外,我们先看一些基本概念。
代码语言AI的核心概念是使用算法来分析数据和生成模型,以采用有效方式进行描述(或评分)。算法是由开发者和数据科学家(有时由其他算法)使用编程代码编写的。目前,最常用于AI开发的两种编程语言是Python和R。
Python是一种通用的高级编程语言。其语法简单易学,强调可读性。没有编译步骤。Python具有大型标准库,但它也支持模块和包添加功能。这有助于模块化,也有助于根据需要扩展功能。Python的AI和ML库生态系统较大,并且不断增长,其中包括Azure中随时可用的许多库。
Azure产品主页上的Python
面向Python开发人员的Azure
适用于Python的Azure机器学习SDK
有关机器学习与Python和AzureNotebooks结合使用的简介
Scikit-learn。用于Python的开源ML库
PyTorch。具有丰富生态系统的开源Python库,可用于深度学习、计算机视觉、自然语言处理等
TensorFlow。开源符号数学库还用于ML应用程序和神经网络
教程:在AzureFunctions中使用Python和TensorFlow应用机器学习模型
R是一种语言和环境,适用于统计计算和图形。从在线映射广泛的社交趋势和市场营销趋势到开发财务和气候模型,均可使用此语言。
Microsoft已完全采用R编程语言,并为R开发者提供了许多不同的选项,以便他们在Azure中运行自己的代码。
在Azure机器学习中以交互方式使用R。
教程:通过Azure机器学习在R中创建逻辑回归模型
培训训练是机器学习的核心。这是“教”算法创建模型的迭代过程,用于分析数据,然后根据结果做出准确预测。此过程实际上有三个常规阶段:训练、验证和测试。
在训练阶段,会对一组已知的优质数据进行标记,以便可以识别单个字段。将标记的数据提供给为做出特定预测配置的算法。完成操作后,该算法会输出一个模型,以一组参数的形式描述发现的模式。在验证过程中,会对新数据进行标记并将其用于测试模型。算法会根据需要进行调整,并可能会经历更多训练。最后,测试阶段使用没有任何标记或预选目标的实际数据。如果模型的结果是准确的,则将其视为准备就绪,可以进行部署。
使用Azure机器学习训练模型超参数优化超参数是控制训练过程本身的数据变量。这些变量是控制算法运作方式的配置变量。因此,超参数通常是在模型训练开始之前进行设置,并且在训练过程中不是按参数方式进行修改。超参数优化涉及运行训练任务中的试用版,评估作业完成程度,然后根据需要进行调整。此过程会生成多个模型,每个模型都会使用不同的超参数系列进行训练。
使用Azure机器学习优化模型的超参数模型选择训练和超参数优化过程会生成大量候选模型。这些模型具有许多不同的差异,包括准备数据所需的工作量、模型的灵活性、处理时间量,当然还包括其结果的准确性。根据需求和约束条件选择最佳训练模型被称为“模型选择”,但这更像是训练前的预规划,毕竟是选择最佳训练模型。
自动化机器学习(AutoML)自动化机器学习(也称为AutoML)是机器学习模型开发中耗时的迭代性任务实现自动化的过程。此过程可以显著减少获取生产就绪ML模型所需的时间。自动化ML可帮助执行模型选择、超参数优化、模型训练和其他任务,不需要用户具有广博的编程知识或域知识。
什么是自动化机器学习?计分评分(也称为“预测”)是在给定一些新输入数据后根据训练机器学习模型生成值的过程。创建的值(或分数)可以表示对未来值的预测,但也可能表示可能的类别或结果。评分过程可生成多种不同类型的值:
推荐项和相似性分数的列表
有关时序模型和回归模型的数值
概率值,指示新输入属于某个现有类别的可能性
与新项最相似的类别或群集的名称
分类模型的预测类或结果
批量评分是指在某个固定时间段内收集数据,然后分批进行处理时的评分。此过程可能包括生成业务报表或分析客户忠诚度。
实时评分就是正在执行且尽可能快地执行的评分。经典示例是信用卡欺诈行为检测,但在语音识别、医学诊断、市场分析以及许多其他应用中也可以使用实时评分。
有关Azure上自定义AI的常规信息GitHub上的MicrosoftAI:示例、参考体系结构和最佳做法
AzureGitHub存储库上的自定义AI。即一系列脚本和教程,可帮助开发者在其AI工作负载中有效使用Azure
适用于Python的Azure机器学习SDK
Azure机器学习服务示例笔记本(Python)。即有关示例笔记本的GitHub存储库,用于演示Azure机器学习PythonSDK
适用于R的Azure机器学习SDK
AzureAI平台产品/服务下面是可用于根据需求开发AI解决方案的Azure技术、平台和服务的细分。
Azure机器学习此服务是企业级机器学习服务,可更快地构建和部署模型。Azure机器学习提供了Web界面和SDK,以便你可以大规模快速训练并部署机器学习模型和管道。请将这些功能与开放源代码Python框架(如PyTorch、TensorFlow和scikit-learn)配合使用。
Microsoft的机器学习产品有哪些?
Azure机器学习产品主页
Azure机器学习数据体系结构指南概述
Azure机器学习文档概述
什么是Azure机器学习?总体定位,其中包含指向多个学习资源、SDK、文档等内容的链接
Azure机器学习参考体系结构Azure上PythonScikit-Learn和深度学习模型的训练
Azure上深度学习模型的分布式训练
Azure上Python机器学习模型的批量评分
Azure上深度学习模型的批量评分
Azure上PythonScikit-Learn和深度学习模型的实时评分
使用Azure机器学习的Python模型的机器学习操作化(MLOps)
Azure上R机器学习模型的批量评分
Azure上R机器学习模型的实时评分
AzureDatabricks上Spark机器学习模型的批量评分
企业级聊天机器人
在Azure上生成实时建议API
Azure自动化机器学习Azure为自动化ML提供广泛支持。开发者可以使用无代码UI或通过代码优先的笔记本体验来构建模型。
Azure自动化机器学习产品主页
Azure自动化ML信息图(PDF)
教程:使用Azure机器学习中的自动化ML创建分类模型
教程:使用自动化机器学习预测出租车费
使用Python配置自动化ML试验
将CLI扩展用于Azure机器学习
使用Azure机器学习CLI自动执行机器学习活动
Azure认知服务这是一系列全面的AI服务和认知API,可帮助你构建智能应用。这些特定于域的预训练AI模型可以使用你的数据进行自定义。
认知服务产品主页
Azure认知服务文档
Azure认知搜索这是AI支持的云搜索服务,可用于移动应用和Web应用开发。此服务可搜索专用异类内容,带有用于AI扩充的选项(如果内容为非结构化内容或内容在采用其原始格式时无法搜索)。
Azure认知搜索产品主页
AI扩充入门
Azure认知搜索文档概述
在Azure中选择自然语言处理技术
快速入门:在Azure门户中创建Azure认知搜索认知技能集
Azure机器人服务这是一个专门设计的机器人开发环境,具有快速入门的现成模板。
Azure机器人服务产品主页
Azure机器人服务文档概述
Azure参考体系结构:企业级对话机器人
工作负载示例:Azure上提供的用于酒店预订的对话式聊天机器人
MicrosoftBot框架
GitHubBotBuilder存储库
Azure上的ApacheSparkApacheSpark是并行处理框架,支持使用内存中处理来提升大数据分析应用程序的性能。Spark提供了用于内存中群集计算的基元。Spark作业可在内存中加载和缓存数据,并可重复查询,查询速度比基于磁盘的应用程序(如Hadoop)快得多。
AzureHDInsight中的ApacheSpark是Microsoft的ApacheSpark在云中的实现。HDInsight中的Spark群集可与Azure存储和AzureDataLakeStorage兼容,因此你可以使用HDInsightSpark群集处理Azure中存储的数据。
适用于ApacheSpark的Microsoft机器学习库,即MMLSpark(MicrosoftMLforApacheSpark)。它是一个开源库,在Spark生态系统中添加了许多深度学习和数据科学工具、网络功能和生产级性能。详细了解MMLSpark功能。
AzureHDInsight概述。有关功能、群集体系结构和用例的基本信息,以及指向快速入门和教程的指针。
教程:在AzureHDInsight中生成ApacheSpark机器学习应用程序
HDInsight上的ApacheSpark最佳做法
配置HDInsightApacheSpark群集设置
HDInsight中的机器学习
MMLSpark的GitHub存储库:适用于ApacheSpark的Microsoft机器学习库
在HDInsight上创建ApacheSpark机器学习管道
用于机器学习的AzureDatabricksRuntimeAzureDatabricks是一个基于ApacheSpark的分析平台,具有一键设置、简化的工作流以及一个供数据科学家、工程师和商业分析师相互协作的交互工作区。
用于机器学习的DatabricksRuntime(DatabricksRuntimeML)可用于启动具有分布式训练所需全部库的Databricks群集。此工具可为机器学习和数据科学提供随时可用的环境。而且,其中包含多个常用库,包括TensorFlow、PyTorch、Keras和XGBoost。它还支持使用Horovod进行分布式训练。
AzureDatabricks产品主页
AzureDatabricks文档
AzureDatabricks中的机器学习功能
操作指南:用于机器学习的DatabricksRuntime
AzureDatabricks上Spark机器学习模型的批量评分
AzureDatabricks上的深度学习概述
客户案例各个行业都在以令人鼓舞的创新方式应用AI。下面是大量客户案例研究和成功案例:
ASOS:在线零售商使用Azure机器学习服务解决难题
KPMG使用Azure认知服务帮助金融机构节省数百万美元的合规成本
Volkswagen:机器翻译用40种语言表达Volkswagen
Buncee:NYC学校使用AzureAI为各个年龄各种层次的读者提供支持
InterSystems:数据平台公司以史无前例的速度生成重要信息,改善了IT健康状况
Zencity:数据驱动型初创公司提供资金帮助本地政府改善居民的生活质量
Bosch依靠IoT创新,帮助驱动程序防止严重事故,提高流量安全性
AutomationAnywhere:机器人进程自动化平台开发者使用Azure认知服务扩充其软件
Wix使用Azure认知搜索在1.5亿个网站上部署可缩放的智能搜索
AsklepiosKlinikAltona:使用MicrosoftHoloLens2和3D可视化效果提高手术精准度
AXAGlobalP&C:全球保险公司使用基于云的HPC对复杂的自然灾害建模
浏览更多AI客户案例
后续步骤若要了解Microsoft提供的人工智能开发产品,请参阅MicrosoftAI平台页。
有关如何开发AI解决方案的训练,请参阅MicrosoftAI学校。
GitHub上的MicrosoftAI:示例、参考体系结构和最佳做法安排了基于Microsoft开源AI的存储库,并提供教程和学习材料。