博舍

人工智能真的像我们想象的那么智能吗 人工智能是真的智能吗

人工智能真的像我们想象的那么智能吗

人工智能最近在我们的个人和职业生活中非常活跃与机器人技术一样,人工智能(AI)长期以来一直被视为“未来技术”。然而,就像机器人一样,我们现在可以肯定人工智能不仅仅是科幻小说,而且远不止于此。人工智能在我们的个人和职业生活中非常活跃,并且在普及方面正迅速赶上移动设备。

在我们的日常活动中没有一项活动,人工智能的使用不会影响我们。从Alexa、Siri到自动驾驶汽车,人工智能正在加紧帮助我们,就像人类一样。当人们想到人工智能时,首先想到的是在复杂道路情况下自动驾驶汽车的愿景,这可以通过使用机器学习和深度学习来实现。但这里出现的主要问题是——人工智能是否像我们认为的那样智能?

什么是人工智能?人工智能是一个宽泛的词,有多种定义,尤其是在涉及通用智能时。约翰麦卡锡在1955年创造了人工智能(AI)一词来描述一个类似于人类智力和解决问题的系统。人工智能已成为执行以前需要人工输入的困难活动的软件的总称,例如在线客户服务或下棋。机器学习和深度学习是深度学习的两个子领域,经常互换使用。

机器学习是人工智能的一个子领域,由ArthurSamuel于1959年创立,专注于使用复杂算法从现有数据中自动识别模式和开发模型,以及对新数据进行预测和推断。广泛使用的定义。

AI真的是“智能”的吗?人工智能经常被称为当今技术的驱动力。因此,它自然会引起热情和巨大的希望。计算机使用的神经网络模型是根据人类大脑的功能建模的,人类大脑在以前无法想象的领域表现出色。

这使我们希望人工智能有一天会超越我们的智能并解决我们所有的问题。语言工具,例如虚拟助手或自动翻译工具,是语言工具功能日益先进的例子。由于AI的底层模型可以从大量数据中学习模式,因此语言工具可以模仿我们。

然而,人工智能越来越多地被用于人力资源、保险和银行等领域的决策过程中。通过通过大量输入数据分析人类行为,机器开始更好地了解我们和我们的偏好。然后,推荐引擎很容易过滤掉内容,并在社交媒体上为我们推荐电影、阅读新闻或穿的东西,帮助我们做出决策。

因此,按照正常人群的说法,当被问及“人工智能”时,这些都是这个时代的例子。

但是,“听起来像人”和“做人”之间存在巨大差异,前者并不一定意味着它总是附有人类的智慧。这正是我们所生活的欺骗。

人工智能并不“实际上”智能例如,当我们将(语音激活)虚拟助手的能力与普通儿童谈论玩具车时的能力进行比较时,该工具需要更多的数据——而且它很难掌握常识,例如常识。人类智能最独特的特征之一是“常识”,任何人工智能机器都无法模仿。

根据Idiap电气工程教授Bourland的说法,AI的所有这些贡献不一定会使人工智能变得智能,并进一步表示,迄今为止不存在这样的系统,可以复制人类智能哪怕是一点点。

随着人工智能一词目前越来越受欢迎,机器学习和深度学习等基础技术所做的主要“智能”工作正变得黯然失色。因此,所使用的“机器”是由人为输入的“智能化”,需要大量的好数据,并不是一个容易的过程。

与人类智力相比,人工智能机器的主要缺点是推理能力。这些机器很容易对问题提供足够的反馈和答案,但是,它们在提供逻辑推理和解释得出结论的过程方面存在缺陷。

在艾伦·图灵最著名的论文(发表于1950年)中,他回答了“机器能思考吗?”这个问题。通过发明“模仿游戏”,至今仍被用来解释机器智能。实验的答案和结果,即使在70年后仍然存在,“没有一个人工智能系统……通过了图灵测试”,这在当今时代是相当令人费解的。

我们讨论的人工智能,是真的人工智能吗

(原标题:我们讨论的人工智能,是真的人工智能吗)

人机未来

虽然人工智能的确存在某种不确定性的风险,但对于类似问题的讨论,需要建立在清晰的定义或限定的范围内才有意义。

当前,科学技术的巨大进步推动了人工智能的迅猛发展,人工智能成了全球产业界、学界的高频词。

然而,当在谈论人工智能可能对人类带来的负面影响或效应时,很多讨论都陷入了某种怪圈,即并不能很好地在限定的范围内讨论相应的问题和对应的责任,最终使得所提建议的价值打了折扣。

当然,其中的问题源于人工智能缺乏统一的定义,甚至于何为人工智能,当前在学界、业界、产界都没有任何定论。这样的结果之一,就是引发人们对人工智能不必要的恐惧或是认知上的混乱,甚至在传播的过程中造成了不必要的扭曲和误解。

比如,我们常常将现实中的人工智能和科幻电影中的人工智能混为一谈。事实上,这两者完全是两种不同阶段的人工智能。通常,人工智能会被分为弱人工智能、强人工智能(通用人工智能)和超人工智能三大类。我们现在所能做的,最多只是处于弱人工智能阶段,即任何一种人工智能技术只能解决特定领域的特定问题,而不能在不同领域不同问题之间通用。而科幻电影的人工智能,则已经到达了超人工智能阶段。机器智能不仅能解决几乎所有领域的问题,更为关键的是,它们具备和人类一样自主的意识。因此才有所谓的反抗人类或是消灭人类的可能。但实际上,很多科学家甚至认为,哪怕是强人工智能都可能实现不了,因为这并非人工智能研究的主流方向。

另外常常被提及的,比如智能机器人将代替人类工作,未来多少年内将有多少工作被机器人替代。如果要仔细探讨的话,其实至少需要区分代替人类的究竟是AI(人工智能),还是IA(智能增强)?

就目前而言,很多所谓的人工智能技术或产品,都是停留在IA阶段,它们都是只在部分程度上帮助提高人类工作的效率而已,并不能完全取代人类。基于人类社会本身是一个巨大的网络体系,这意味着人工智能要取代人类某些工作,必然要求它是一个体系的整体智能化。因为只有这样,机器与机器之间,或是机器与人类之间才能进行必要的协作。

举例来说,现在已经存在的自动化机床,它们是机器在自主完成某些工作,但它们不能称之为智能制造,因为它们的程序是固定的,没有不确定性。

以此为标准,我们不难发现,现在很多存在的智能产品,或是宣传中的产品,都还是聚焦于个体的智能。尤其是涉及现实物理世界时,这种非体系化的智能导致的问题,将变得极为明显。比如,阅读新闻或购物,系统都可以实现很好的智能推荐,并且它并不担心由此造成任何可能的阻塞,因为它们都在虚拟世界。

但在物理世界,就不会如此简单。比如,地图导航的智能化,虽然可以在一定程度上帮助解决拥堵的问题,但一旦出现机器同时推荐给很多车主同一条路线时,而没有从体系层面上进行分配、优化,那么很可能带来的结果就不是顺畅的道路,而是更加拥堵的道路。

总而言之,虽然人工智能的确存在某种不确定性的风险,但对于类似问题的讨论,需要建立在清晰的定义或限定的范围内才有意义,否则很多建议要么失去焦点,要么过早讨论而变得毫无意义。

□郑伟彬(互联网从业者)

生成式人工智能迎来大爆发,人类真的要失业了吗

去年夏天以来,以ChatGPT为代表的“生成式”人工智能系统接连问世,人们惊艳于它们的智能程度,但也对其未来发展产生担忧。这样的系统可以按需求生产内容,不仅威胁到人们的工作,还可能造成错误信息的激增。

StableDiffusion根据提示自动生成的画作,真假难辨。图源:https://stablediffusionweb.com/

就在10多年前,三位人工智能研究人员取得了一项突破,永远地改变了这个领域。

“AlexNet”系统通过从网上采集的120万张图像进行训练,识别出了从集装箱船到豹子等不同物体,其准确性远远高于以往的计算机。

这一壮举帮助开发人员阿莱克斯·克里泽夫斯基(AlexKrizhevsky)、伊利娅·苏茨克维(IlyaSutskever)和杰弗里·辛顿(GeoffreyHinton)赢得了名为ImageNet的年度神秘竞赛。它还展示了机器学习的潜力,并在科技界引发了一场将人工智能带入主流的竞赛。

从那时起,计算机的人工智能时代基本上在幕后形成。机器学习是一项涉及计算机从数据中学习的基础技术,已普遍应用于识别信用卡欺诈、提高在线内容和广告相关性等领域。如果说从那时起机器人就开始抢走人们的工作,那基本上也是在我们看不到的地方发生的。

现在不是了。人工智能领域的另一项突破刚刚撼动了科技界。这一次,机器在众目睽睽之下运行,它们可能终于准备好取代数百万的工作岗位了。

一个11月底发布的查询和文本生成系统ChatGPT,以一种科幻小说领域之外很少见到的方式闯入了公众的视线。它由总部位于旧金山的研究公司OpenAI创建,是新一波所谓的“生成式”人工智能系统中最引人注目的一种,这种系统可以根据要求生成内容。

如果你在ChatGPT中键入一个查询,它将以一段简短的段落作为响应,列出答案和一些上下文内容。例如,你问它谁赢得了2020年美国总统大选,它会列出结果,并告诉你乔·拜登何时就职。

ChatGPT界面。

ChatGPT使用简单,能够在瞬间得出看起来像人类生成的结果,有望将人工智能推入日常生活。微软向OpenAI(由AlexNet创始人苏茨克维联合创立)投资数十亿美元的消息,几乎证实了这项技术将在下一阶段的人工智能革命中发挥核心作用。

ChatGPT是一系列日益引人注目的人工智能公众展示的最新例子。另一个OpenAI系统,自动书写系统GPT-3,在2020年年中发布时震惊了科技界。其他公司的所谓大型语言模型紧随其后,去年扩展到图像生成系统,如OpenAI的Dall-E2、来自StabilityAI的开源StableDiffusion和Midjourney。

这些突破引发了人们争相寻找这项技术的新应用。数据平台ScaleAI首席执行官亚历山大·王(AlexandrWang)将其称为“应用案例的寒武纪大爆发”,将其比作现代动物生命开始繁荣的史前时刻。

如果计算机可以编写和创建图像,那么在正确的数据训练下,还有什么是它们无法生成的吗?谷歌已经展示了两个实验系统,可以根据简单的线索生成视频,还有一个可以回答数学问题。StabilityAI等公司已将这项技术应用于音乐。

这项技术还可以用于向软件开发人员建议新的代码行,甚至整个程序。制药公司梦想着用它以更有针对性的方式合成新药。生物技术公司Absci本月表示,已经利用人工智能设计出了新的抗体,可以将一种药物进入临床试验所需的大约四年时间缩短两年多。

但随着科技行业竞相将这项新技术强加给全球受众,人们需要考虑潜在的深远社会影响。

例如,让ChatGPT以12岁孩子的风格写一篇关于滑铁卢战役的文章,你就能让一个小学生的家庭作业手到擒来。更严重的是,人工智能有可能被故意用来产生大量错误信息,还可能会自动取代大量工作,远远超出最容易躺枪的创造性工作。

微软人工智能平台主管埃里克•博伊德(EricBoyd)表示:“这些模型将改变人与电脑互动的方式。它们将以一种前所未有的方式理解你的意图,并将其转化为计算机行为”。因此,他补充说,这将成为一项基础技术,“涉及几乎所有现有的东西”。

可靠性问题

生成式人工智能的倡导者表示,这些系统可以提高工人的生产力和创造力。微软称,公司旗下GitHub部门的软件开发人员,已经使用一个代码生成系统生成了40%的代码。

谷歌研究科技对社会影响的高级副总裁詹姆斯•马尼卡(JamesManyika)表示,对于任何需要在工作中提出新想法的人来说,这类系统的输出可以“解锁思维”。它们内置在日常软件工具中,可以提出想法、检查工作,甚至生成大量内容。

然而,尽管生成式人工智能易于使用,并有可能颠覆很大一部分科技领域,但对构建这项技术并试图在实践中应用的公司,以及许多可能在不久之后在工作或个人生活中遇到这项技术的人,都构成了深刻的挑战。

最重要的是可靠性问题。计算机可能会给出听起来可信的答案,但人们不可能完全相信它们说的任何话。其通过研究大量数据,根据概率假设做出最佳猜测,却不能真正明白它产生的结果。

圣菲研究所教授梅兰妮·米切尔(MelanieMitchell)表示:“它们对一次谈话之外的事情一无所知,无法了解你,也不知道词语在现实世界中意味着什么。”它们只是针对线索,产生大量听起来有说服力的答案,是聪明但无脑的模仿者,无法保证它们的输出不只是数字幻觉。

已经有事实展示,这项技术如何产生看起来有模有样但实际不可信的结果。

例如,去年年底,Facebook母公司Meta展示了一个名为Galactica的生成系统,它是根据学术论文进行训练的。人们很快发现,这个系统会根据要求发布乍一看可信但实际上是虚假的研究,导致Facebook在几天后撤回了系统。

ChatGPT的创建者也承认其有缺点。OpenAI表示,系统有时会给出“无意义”的答案,因为在训练人工智能时,“目前没有真相来源”。OpenAI补充说,使用人类直接训练它,而不是让它自己学习(这一种被称为“监督学习的方法”,可以由训练资料中学到或创建一个模式,并依此模式推测新的实例)并不奏效,因为系统通常比人类这个老师更善于找到“理想答案”。

一种潜在的解决方案是在生成系统的结果发布之前提交合理性检查检查。马尼卡说,谷歌的实验性LaMDA系统于2021年宣布,对每个线索提出了大约20种不同的响应,然后评估每种响应的“安全性、毒性和合理性”。“我们打电话去检验,看看这是真的吗?”

然而,斯坦福大学计算机科学副教授珀西·梁(PercyLiang)表示,任何依赖人类来验证人工智能输出结果的系统都存在问题。他说,这可能会教会人工智能如何“生成具有欺骗性但看上去可信的东西,实际上可以愚弄人类”。“事实是,真相难以捕捉,而人类并不擅长于此,这可能令人担忧。”

PhotobyArsenyTogulevonUnsplash

而这项技术的支持者说,有一些实用的方法可以使用它,而不必试图回答这些更深层次的哲学问题。微软联合创始人保罗•艾伦(PaulAllen)创立的人工智能研究所A12的顾问兼董事会成员奥伦•埃齐奥尼(OrenEtzioni)表示,就像互联网搜索引擎既能提供有用的结果,也能提供错误的信息一样,人们将设法最大限度地利用这些系统。

他说:“我认为消费者只会学会使用这些工具来造福自己。我只是希望这不会让孩子们在学校作弊。”

但让人类去猜测机器生成的结果是否准确,可能并不总是正确的答案。研究人工智能应用的科技行业组织“人工智能伙伴关系”首席执行官丽贝卡•芬利(RebeccaFinlay)表示,在专业环境中使用机器学习系统已经表明,人们“过度相信人工智能系统和模型得出的预测”。

她补充说,问题在于,“当我们与这些模型互动时,人们会将结果对于人类有何意义的不同方面灌输给它们”,这意味着他们忘记了系统并没有真正“理解”他们所说的话。

这些信任和可靠性问题,为不良行为者滥用人工智能提供了可能。对于任何故意试图误导的人来说,这些机器可能成为虚假信息工厂,能够生产大量内容,淹没社交媒体和其他渠道。在正确的例子训练下,它们可能还会模仿特定人物的写作风格或说话声音。

埃齐奥尼说:“制造虚假内容将非常容易、廉价和普遍。”

StabilityAI负责人伊马德•穆斯塔克(EmadMostaque)表示,这是人工智能普遍存在的一个固有问题。他说:“这是一种人们可以道德或不道德地、合法或非法地、符合伦理地或不符合地使用的工具。坏人已经拥有了先进的人工智能。”

他声称,唯一的防御措施就是尽可能大规模地推广这项技术,并向所有人开放。

这在人工智能专家中是一个有争议的解决方案,他们中的许多人主张限制对底层技术的使用。微软的博伊德表示,其“与我们的客户合作,了解他们的用例,以确保人工智能在这种情况下真的是一个负责任的用途。”

他补充说,微软还会努力防止人们“试图欺骗模型,做一些我们真的不想看到的事情”。微软为其客户提供工具,扫描人工智能系统的输出,以查找他们想要阻止的冒犯性内容或特定术语。

微软此前经历了惨痛的教训,认识到聊天机器人可能会失控:聊天机器人Tay在发表种族主义和其他煽动性言论后,不得不在2016年被匆忙召回。

在某种程度上,技术本身可能有助于控制新人工智能系统的滥用。例如,马尼卡表示,谷歌已经开发了一种语言系统,可以以99%的准确率检测出语音是否为合成。他补充说,谷歌的任何研究模型都不会生成真人的图像,从而限制了所谓深度造假的可能性。

人类的工作面临威胁

生成式人工智能的兴起,也引发了关于人工智能和自动化对就业影响的又一轮争论,这已经是一个老生常谈的话题。机器会取代工人吗?或者,通过接管重复性工作,它们会提高现有工人的生产力,并增加他们的成就感吗?

最明显的是,涉及大量设计或写作元素的工作面临风险。当StableDiffusion在去年夏末问世时,它对即时图像与提示相匹配的承诺,让商业艺术和设计界不寒而栗。

一些科技公司已经在尝试将这项技术应用于广告,其中就包括ScaleAI,其已经在广告图像方面训练了一个人工智能模型。王说,借助这个工具,小零售商和品牌可以得到专业的包装图像,而此前为产品拍摄此类图像价格高昂,他们无法负担。

Dall-E2解释生成原理的视频截图

这可能会威胁到内容创造者的生计。穆斯塔克说:“它彻底改变了整个媒体行业。世界上每一个主要的内容提供商之前都以为他们需要一个元宇宙策略:他们需要的是一个媒体生成策略。”

据一些面临失业的人说,这不仅仅事关生计。当歌手兼词曲作者尼克·凯夫看到ChatGPT写的听起来像他自己作品的歌曲时,他惊呆了。他在网上写道:“歌曲产生于痛苦,我的意思是,它们是基于人类复杂的、内在的创作斗争过程,而据我所知,算法是没有感觉的。数据没有感知。”

对科技持乐观态度的人相信,科技会放大而不是取代人类的创造力。斯坦福大学的梁说,有了人工智能图像生成器,设计师可以变得“更有野心”。“你可以创建完整的视频或全新的系列,而不仅仅是创建单个图像。”

版权制度最终可能发挥重要作用。应用这项技术的一些公司声称,出于“合理使用”,它们可以自由地使用所有可用数据来训练自己的系统。“合理使用”是美国的一项法律例外,允许有限度地使用受版权保护的材料。

其他人不同意这个说法。盖帝图像和三名艺术家上周在美国和英国对StabilityAI和其他公司提起诉讼,指控这些人工智能公司肆意使用受版权保护的图像来训练其系统,这是这一领域首个法律诉讼。

一名代表两家人工智能公司的律师表示,这个领域的所有人都已准备好应对诉讼,这是为这个行业制定基本规则不可避免的一步。对科技行业而言,围绕数据在训练人工智能方面作用的争论,可能会变得与智能手机时代初期的专利战一样重要。

最终,为人工智能新时代设定条款的将是法院,甚至是立法者,如果他们认为这项技术打破了现有版权法所基于的旧假设的话。

在那之前,随着计算机竞相吸收世界上更多的数据,生成式人工智能领域迎来了自由狩猎的季节。

原标题:《生成式人工智能迎来大爆发,人类真的要纷纷失业了吗?》

阅读原文

人工智能ai简称(chatGPT)真的可以改变我们的生活方式吗

人工智能(AI)具有巨大的潜力来改变我们的生活方式。以下是一些方面的例子:1.自动化和智能助理:人工智能技术可以帮助自动化日常任务,例如智能助理能够帮助我们管理日程、发送电子邮件、提供个性化建议等,从而提高效率和便利性。智能家居和物联网:AI能够嵌入到家庭设备和物联网设备中,使我们的家居环境更加智能化。例如,智能音箱能够回答问题、控制家电,智能家居系统能够自动调节温度、照明等,提供更舒适和便捷的生活体验。2.个性化和推荐系统:AI能够分析和理解我们的兴趣、喜好和行为,通过个性化推荐系统提供适合我们的产品、服务和内容,提供更加个性化和定制化的体验。医疗诊断和治疗:AI在医疗领域的应用有巨大的潜力,例如通过图像识别和数据分析来辅助医生进行疾病诊断、药物研发等,还可以提供个性化的医疗和健康管理。交通和运输:自动驾驶技术是AI在交通和运输领域的重要应用之一,它有望提高交通安全性、减少交通拥堵,并改变出行方式。3.教育和学习:AI可以为教育提供更加个性化和互动的学习体验,通过自适应学习系统、虚拟教育助手等帮助学生更好地学习和掌握知识。虽然AI的发展还在不断进行中,但已经在各个领域带来了许多改变和创新。随着技术的进一步发展和应用的推进,我们可以预见人工智能将继续改变我们的生活方式,并带来更多的便利、效率和创新。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇