博舍

关于人工智能论文1000字以上【五篇】 人工智能论文一千字怎么写好看的

关于人工智能论文1000字以上【五篇】

论文是一个汉语词语,拼音是lùnwén,古典文学常见论文一词,谓交谈辞章或交流思想。疫情面前所有人应当承担起应有的社会责任以下是为大家整理的关于人工智能论文1000字以上【五篇】,欢迎品鉴!

人工智能论文1000字以上1

摘要:随着社会的飞速发展,科学技术不断进步,工业领域生产模式发生变化,人工智能时代势不可挡,尤其是机器人得到更大范围的推广与应用。工业机器人的突出优势是精准度较高,工作效率高,能够承受较大工作强度,为整个工业领域产量的提升以及质量的提高创造更加优质的条件。由此可见,工业机器人已成为现代工业发展的趋势与方向。文章基于行业发展,详细阐述了工业机器人的特征,探讨其未来发展趋势与方向,以期为整个工业行业的持续性发展提供更大的技术支撑。

关键词:人工智能时代;工业机器人;趋势;

Abstract:

Withtherapiddevelopmentofsociety,thecontinuousprogressofscienceandtechnology,industrialproductionmodechanges,theeraofartificialintelligenceisunstoppable,especiallytherobothasbeenmorewidelypromotedandapplied.Theoutstandingadvantagesofindustrialrobotsarehighaccuracy,highworkefficiency,abletowithstandagreaterintensityofwork,fortheentireindustrialfieldofproductionandqualityimprovementtocreatemorehigh-qualityconditions.Thusitcanbeseenthatindustrialrobothasbecomethetrendanddirectionofmodernindustrialdevelopment.Basedonthedevelopmentoftheindustry,thispaperexpoundsthecharacteristicsoftheindustrialrobotindetail,anddiscussesitsfuturedevelopmenttrendanddirection,inordertoprovidegreatertechnicalsupportforthesustainabledevelopmentoftheentireindustrialindustry.

Keyword:

eraofartificialintelligence;industrialrobot;trend;

随着人工智能时代的到来,互联网技术取得巨大突破,大数据技术成为核心,为工业机器人产品性能的提升提供更加先进的技术支持。在工业机器人发展进程中,其操作趋于简易化,精准度更高,能够广泛应用在诸多领域,投入成本呈现不断降低的趋势。立足工业领域,机器人应用于产品检测、焊接以及搬运等环节。工业机器人的出现强化对人力应用的缓解,在优势上主要体现为较高的生产效率与较高品质的操作,同时,操作持久性更加突出。

1工业机器人的构成以及类型

从构成上分析,工业机器人主要包含三个部分,即本体、驱动以及控制三个系统。从功能上分析,一种机器人的作用体现在对人类手、手臂的模仿。另外一种更具智能化,有效发挥仿生学的特征,能力更显多样化,自由度更高。在当前的工业领域,之所以选择工业机器人,主要源于其较低的单机价格,便于维修,应用效率较高。

2人工智能时代工业机器人核心技术分析

2.1工业机器人以高精度减速机为核心构成,涉及多种技术类型,要求较高

在工业机器人中,关键性结构组成为高精度减速机,涉及多种技术类型。首先,材料成型控制技术十分关键,尤其对减速机减速齿轮的耐磨性与刚性提出更高要求,目的是保证运行的高精度标准。在材料构成方面,要强化对金相组织、材料化学元素以及含量的科学控制。其次,加工技术不容忽视。在减速器中,非标特殊轴承是必不可少的组成部分,结构极具特殊性,需要减速器零件加工尺寸来确认间隙标准,工人技术要求更高。

2.2以电机与高精度伺服驱动器为核心,实现对工业机器人的全方位控制

对于工业机器人的控制,电机与高精度伺服驱动器作用突出,强化对控制系统的管理,尤其是在瞬间力、功率输出方面面临更高的标准。首先,快响应伺服控制技术能实现对位置环、电流环以及速度的有序控制,合理运用干扰观测以及前馈补偿算法。具体讲,要采用指标预测法来构建内部预测模型,达到闭环优化的目的。其次,为了保证工业机器人能够有效发挥识别功能,要依托在线参数自整定技术,强化转动惯量以及PID参数的在线优化,达到参数的精准判定。另外,在线惯量辨识算法明确伺服驱动器的实际工况,强化参数的智能化控制,以现场实际为要求,合理进行参数的调整。

2.3以实时性为要求,强化控制操作系统的稳定性与精确性

在工业机器人中,运动学控制系统对实时性要求较高。目前,机器人运动控制卡以定制方式为主,同时,强调与操作系统的密切配合,强化数据传输、数据精确性以及稳定性的实现,尤其是对于操作系统的消息处理机制,更要关注稳定性与快速响应的需要,增强实时性,为机器人产业化道路的发展创造条件。

3结合工业机器人应用实际准确掌握发展趋势与方向

3.1工业机器人的发展更显系统性特征,整体性能增强,适用范围更广

立足新时期的发展,工业领域的机器人更显多样性,如焊接机器人、清洁机器人等逐渐投入使用,工程自动化程度显著增强。随着技术水平的不断提升,机器人的造价呈现下降的趋势,但是,性能却不断增强。例如,对于工业领域的机械手,其主要原理是进行人手及手臂的模仿,实现灵活抓取以及搬运的功能,满足自动化操作的目标。纵观当前,机械手应用最为广泛的领域是工业制造业、包装业等。机械手能够在既定的时间内较为准确与高效地完成操作动作,这也成为工业机器人发展的主要方向。目前,信息技术发展迅速,尤其是人工智能技术影响力不断扩大,加之互联网技术的支持,工业机器人发展更显系统性特征,强化在控制系统、诊断系统以及维护系统功能的提升。同时,依托仿真模拟化程序设计,切实增强智能化与自动化水平,整体性能不断提升,在应用方面更显可靠性,适用范围更广。

3.2以工业发展需求为基础,更显生物性与仿生性特点,强化不良工作环境生产效率的提升

立足工业生产,很多环节与环境保护相矛盾,对从业者身心健康产生不利影响,有些操作人类很难完成,这也成为工业机器人得以推广应用的重要因素。例如,对于真空机器人,其之所以在工业中应用,主要原因是半导体工业中,真空传输晶圆这一环节人类无法完成,而真空机器人的引进实现这一问题的解决。另外,在一些恶劣环境中,如适应无阻运动的蛇形机器人,满足水下作业的仿生鱼机器人等,都处于不断研发之中,备受瞩目。也就是说,在工业机器人的发展进程中,更加关注其仿生性与生物性的特征,能够有效实现对人类行为的模仿与替代,成为新时期工业机器人研发的新动向。

3.3基于不断升级与更新的计算机信息技术,工业机器人控制系统更加完善,加快统一化与标准化的实现

在机器人内部,核心构成为控制系统,是发挥功能的重要保障,强化对记忆、示教、通信连接以及坐标设置功能的支持。当前,计算机技术不断升级更新,为工业机器人控制系统的优化与完善提供强大动力,整体控制水平显著提升。具体讲,在控制器方面,由专用封闭式发展为开放式。也就是说,计算机水平的提升使得工业机器人的控制系统突破专供的束缚,更显统一化与标准化的趋势,网络化特征明显。基于此,工业机器人的操作更显便捷性,具备简单的操作常识即可,无需投入人力物力进行培训,在很短的时间内就可以对机器人进行模块功能调整,在根本上使机器人的使用更加方便与快捷,维护管理工作也易于进行。

3.4综合传感器融合配置技术日趋成熟与完善,实现对人类思维与神经的多功能仿生

立足信息时代,人工智能的发展势不可挡,智能化成为工业机器人在未来的发展方向。智能化的机器人,即强调机器人对人类模仿的更高层次,需要具备更高层级的仿生,既要能够模仿人类的动作行为,同时,还需要具有人类的思维与神经。基于此,传感器成为智能工业机器人的重要构成部分,尤其是视觉、力觉、触觉传感器的出现,加快工业机器人智能化的发展速度。例如,对于从事电弧焊接的机器人,采用多传感器融合配置,融电弧传感器、视觉传感器以及机器传感器于一体。在视觉传感器的支持下,机器人能够凭借激光视觉扫描功能,获取焊接过程中所需要的焊炬等数据信息,保证电弧焊接的精准性。另外,远距离遥控机器人的出现代表了综合性传感器融合配置技术上了新的台阶。这种技术在机器人未来发展中将得到更大范围的推广与应用,处于不断完善与成熟中。

4我国工业机器人发展存在的不足与凸显的问题

首先,我国工业机器人起步较晚,发展时间较短,资金投入方面彰显不足,在技术与经验方面彰显无力性,处于不断摸索与提升阶段,研发力度亟待增强。其次,对于我国机器人的发展,在生产技术与可靠性方面相对薄弱,尤其是机器人很多关键部件需要进口,生产成本大幅增加,机器人市场仍需不断扩大,尤其是过高的成本支出,使得工业机器人在生产研发方面缺乏较高的积极性。再次,工业机器人标准化生产的实现需要以规模优势为前提,但是,我国在生产与研发方面的投入尚未达标,给推广与应用造成巨大阻力。

5如何推动人工智能时代工业机器人的快速发展

随着时代的不断进步,智能机器人技术处于不断创新升级中,因此,工业智能机器人在未来的发展要集中做好如下几个方面的工作。首先,从理论研究方面分析,要重视加强指挥制造技术的探究,尤其是针对机器人中相关零部件的生产,要切实提升产品生产质量,有效应对生产难题,借助新型制造技术与制造模式,缩短机器人生产与推广时间。其次,要结合社会需求,合理增加智能机器人科研项目资金投入,设置专项资金,尤其是面对工业转型发展的新阶段,要扩大对机器人及相关产业的投资量,在根本上为工业智能机器人技术的进步创造条件。再次,立足新时期,要对工业机器人相关条例、规则等进行完善,加快核心技术研发速度,同时,做好研发技术与成功经验的总结分析,推动智能机器人工业化发展进程的加快,构建更加完善的标准体系,强化对人机交互准则的合理优化。

6结束语

综上,工业机器人是多学科相互融合与发展的产物,对工业行业的发展意义巨大。因此,要立足信息时代,在人工智能技术的支撑下,准确掌握工业机器人发展趋势,明确技术特征,促使工业机器人生产制造成本的不断降低,性能逐步增强。同时,要重视仿生学在工业机器人领域的研究与应用,强化控制系统功能的不断升级改造,加快多传感器融合配置技术的发展,大幅提升工业机器人的智能化水平,推动整个行业标准化与统一化建设,拓展机器人应用领域,以便更好发挥工业机器人在人工智能时代的价值。

参考文献

[1]谭文君,董桂才,张斌儒.我国工业机器人行业的发展现状及启示[J].宏观经济管理,2018(04):42-47.

[2]王浩.工业机器人技术的发展与应用综述[J].中国新技术新产品,2018(03):109-110.

[3]蔡济云.工业机器人在自动化控制中的应用研究[J].科技与创新,2018(01):144-145.

人工智能论文1000字以上2

摘要:崔政博士的新著《科学技术知识的政治经济学研究》以马克思的“劳动”概念为中心,提供了一个划定人工智能替代人类劳动的边界框架。该书区分了重复性劳动与创造性劳动,提出创造性劳动是人类劳动的本质也是人工智能不可替代的。但需要进一步指出的是,机器学习已经在认识实践中表现出对人类认知劳动的极大辅助作用,包括:人工智能能够提升科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。以上原因使得我们在创造性劳动中很难将人工智能排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。

关键词:人工智能;创造性劳动;科学知识;默会知识;机器知识

中图分类号:TP18文献标识码:A文章编号:CN61-1487-(2020)01-0154-03

产业科学出现以来,科技创新对经济增长的驱动作用已经成为全球性的共识。崔政博士的新著——《科学技术知识的政治经济学研究》,试图以“劳动”概念的历史分析为切入点,讨论科学技术在当代资本主义经济中所扮演的角色,进而以一种动态的劳动价值论表明当代社会经济运行的内在动因[1]2。该书以马克思的“劳动”概念为核心构建了一个哲学空间,将科学知识、技术创新、资本运行纳入其中,完整地阐述了科学技术对经济社会的塑造作用。该书的叙事方式表达了两个理论取向:第一,对科技创新的分析不同于传统技术创新理论仅关注经济“增长”,而是从更为基础的社会分工出发关注经济“发展”;第二,将科学知识的生产还原到马克思的“科学劳动”概念,实际上已经使用了一种扩展了的“科学”概念,蕴含着当代科学知识生产所具有的实践性、情境化、多主体等特征。

该书更为重要的贡献在于讨论了人工智能技术对于社会生产方式的挑战和变革作用。书中提出:“人工智能的替代效应是建立在对人类劳动数据化和逻辑化的基础上的,探索自在自然的创造性劳动是不可数据化和逻辑化的。因此,人工智能只能围绕既有的对象进行重复性生产,替代重复性劳动;而人类则能够探索自在自然,从而摸索新技术、建构新对象,进行创造性劳动。也就是说,机器所不能替代的人类劳动的‘硬核’是探索自在自然的劳动,是创造对象和掌握技术的‘创造性劳动’。”[1]25作者将马克思的“劳动”概念区分为“重复性劳动”和“创造性劳动”,进而指出人工智能是对机器大工业的否定,它将替代人类劳动中可以重复、可以数据化的部分,但创造性劳动是人类劳动的本质,是人工智能所不能替代的。

作者提出:“人工智能可以在将重复性劳动数据化的基础上,对人类劳动进行模仿,从而取代任何形式的重复性劳动。但人工智能却不能取代人类的创造性劳动,创造性劳动是通过探索自在自然,经过反复的摸索与实验、征服反常和偶然、掌握技术、创造对象、实现对象从无到有的过程的劳动,这是一种原生性的劳动。”[1]27作者认为,创造性劳动是对马克思的“自在自然”的探索,“自在自然”是在人类的现有认知能力之外,却以反常和失败等形式向人类显现其自身。然而,在认知实践当中,机器学习已经可以帮助人类探索认知能力之外的“自然”,当然这种“自然”并不以反常或失败的形式存在。作者也指出:“尤其是在大数据和云计算的背景之下,机器学习的速度远超人类的认知极限,甚至可能在数据中找到人尚未发现的方法和规则。”[1]35因此,在认知劳动方面,我们可以在作者的概念框架下进一步区分出人工智能对人类“创造性劳动”的辅助作用,具体表现为三个方面:人工智能提高科学知识生产效率;人工智能擅于提取和传递默会知识;人工智能可以产生某种机器知识。

一、人工智能能够提升科学知识生产效率

机器学习的广泛使用可以提升科学知识生产的效率,主要表现在文献研究和实验室研究两个方面。人工智能系统可以通过自然语言理解获取、阅读和总结所有相关文献。例如,一个叫做Iris的人工智能系统的运行方式是:从某个研究主题的演讲切入,先使用自然语言处理算法分析演講的脚本,挖掘从开放渠道获取的研究文献,然后将相关研究文献分组并进行可视化,再通过人工标注文献使机器匹配精度增加,当机器能够理解文献的内容和结构时,可以帮助科研人员总结出该研究主题下的所有研究问题、假设、实验结果等,从而将前人工作完整呈现。此外,机器学习的使用还能够加快实验研究的进程。例如,2016年5月,澳大利亚国立大学的研究团队使用机器学习重复了物质的玻色—爱因斯坦凝聚态的实验室发现过程,从反复设置调整实验设备的各种参数到产生凝聚态物质,机器学习只用了一个小时,而凭借这一发现获得诺贝尔奖的三位科学家是在直觉的基础上经过多年实验才制造出了物质的凝聚态。由此可见,作为技术的人工智能的进步已经开始反向促进作为基础研究的科学知识的生产。

二、人工智能擅于提取和传递默会知识

波兰尼(MichaelPolyani)提出了默会知识(tacitknowledge)的概念,以区别于可以明述的知识(explicitknowledge),明述知识是用语言文字来表达的知识,如科学知识,默会知识则是我们知道但通常不加言述或者不能充分言述的知识[2]。默会知识具有以下几个特点:难以用语言文字描述,不易传播、记录和积累;获取默会知识主要依靠亲身体验;默会知识呈分布式存在,难以整合。这些特点导致我们很难有效运用默会知识,而机器学习的大规模运用使得人工智能系统非常擅于处理默会知识。作者敏锐地意识到了这一特点——“以往我们所说的‘默会知识’、手工技艺技巧,以及复杂程度远超人类认知能力之外的一些潜在规则,也都不再是一个个‘黑箱’,机器可以基于将人类劳动的过程还原成物理量和数据,再通过机器学习找到其内在的规律,从而取代人类劳动。”[1]56

在当前人类社会所有已经产生的信息中,文字只占极少的比例,大量的信息以图片和视频方式呈现,其中蕴含了大量需要通过亲身体验才能获取的默会知识。如果有办法将事物状态用图片或视频记录下来,就有可能使用机器学习从中萃取出知识。很多电影公司已经使用人工智能系统观看大量人类历史上的影视作品,从而归纳提取出经典桥段,创作出新的配乐、台词和预告片以供人类借鉴。更为重要的是,由人工智能系统获取的默会知识是以神经网络参数集的形式存在的,这对人类而言仍然不可描述,也难以在人类之间传递,但却非常易于在人工智能系统间传播。例如,一台掌握驾驶技能的自动驾驶汽车只要将参数集分享出来就可以快速让所有汽车学会这项技能,而且可以实现机器间的协同行动。

    三、人工智能可以产生某种机器知识

如果说默会知识还是“可意会而不可言传”的知识,那么AlphaGoZero在围棋上的表现已经表明人工智能系统产生了某种既无法“意会”也无法“言传”的机器知识。AlphaGoZero在没有人类以往的经验或指导、不提供基本规则以外的任何领域知识的情况下,就使用机器学习在短时间内探索了大量人类从未尝试过的走法。机器发现的知识不仅完全超出了人类的经验,也超出了人类的理性,成为人类几乎无法理解的知识。由此,产生了讨论某种“机器认识论”的可能性,GregoryWheeler在《MachineEpistemologyandBigData》一文中提出:机器学习对事物间隐蔽的相关性的发现和掌握已经远超人类,因此机器知识更多的是一种相关性知识。[3]321董春雨教授在《机器认识论何以可能?》一文中也指出:“人类必须正视机器在其擅长的领域,通过特殊的认识方式所获得和积累的知识。”[4]

机器知识与科学知识或默会知识的核心差别在于:机器知识依赖数据,科学知识或默会知识依赖信息。信息是事物可观察的表征,或者说信息是事物的外在表现。任何一个物体的信息量都非常大,要精确描述一个物体,就需要将其中所有基本粒子的形态以及它们之间的关系都描述出来,同时还要将该物体与周围环境的关系都描述出来。而数据是已经描述出来的部分信息,关于一个物体的数据通常要比信息少得多,例如只包含它的形状、重量、颜色和种属关系等。只有当信息经过适当的处理,当它被用来进行比较、得出结论和建立联系时,它才會转化为知识。而知识可以理解为伴随着经验、判断、直觉和价值的信息,作为认知主体的人在其中扮演了关键角色。

相较之下,机器知识可以被刻画为数据在时空中的关系,这些关系表现为某种模式,对模式的识别就是认知,识别出来的模式就是知识,用模式去预测就是知识的应用。这些数据在时空中的关系只在少数情况下才能用数学工具进行表达,而多数情况下知识表现为数据间的相关性的集合,这些相关性只有一小部分可以被人类感知和理解。这源于人类感受能力的局限性:人类只能感受部分外界信息,人类的感官经验局限在三维的物理空间和一维的时间。因此,当数据无法被感知,它们之间的关系又无法用数学工具表达时,这些数据间的关系就超出了人类的理解能力之外而属于机器知识。当前机器学习的主流形式——人工神经网络的最大特点就是发现并记忆数据中的相关性,例如在看了很多汽车图片后会发现汽车都有四个轮胎,人类对图片这类直观的数据间的相关性也能发现并记忆一部分,这就是默会知识。但当数据量很大且不直观时,例如股票市场的数据或者核电站的内部数据,人类就无法应对了。而随着人工神经网络层级和数量的增加,人工智能系统能够处理大规模的复杂数据,这就是机器知识。机器知识当前的主要表现形式类似于AlphaGoZero中的神经网络的全部参数。

概言之,科学知识和默会知识多是基于信息的因果性知识,而机器知识多是基于数据的相关性知识。此外,科学知识是易于记录、易于陈述、易于传递的;默会知识是难以记录、难以陈述、可传递的;机器知识则是可记录、不可陈述、易于在机器间传递的。

四、人工智能发展的局限性

当然,基于人工神经网络的机器学习仍有两个核心的局限性导致人工智能系统还不足以承担创造性劳动。第一个局限是,人工神经网络需要依赖特定领域的先验知识,也就是需要特定场景下的训练,这是因为人工神经网络的学习本质上是对相关性的记忆,人工神经网络将训练数据中相关性最高的因素作为判断标准。这个问题在自动驾驶汽车中表现的非常突出,鉴于道路交通情境的复杂性和交通标示的多样性,自动驾驶系统难以避免很多交通事故。第二个局限是,人工神经网络无法解释产生某个结果的原因,这种不可解释性在许多涉及安全和公共政策的领域显现的比较突出,例如在智能医疗中,人工神经网络在影像识别和辅助诊断中都对其结果缺乏医学上的解释性,都需要专业医生的复核。

基于人工神经网络的人工智能系统在记忆和识别这两个基础智能方面超越了人类,但在推理、想象等高级智能方面还相差较远。与人类相比,人工智能无法承担创造性劳动的原因还不止于以上的局限性,还包括:人工智能没有常识和物理世界的模型;人工智能没有自主和自发的通用语言能力;人工智能没有想象力,需要大量常识、反事实假设和推理能力;最重要的是人工智能没有自我意识。自我意识的缺乏导致能够产生机器知识的人工智能系统仍然无法被视为认知主体,其知识的“创造性劳动”是一种无意识认识活动。

五、结语

人工智能系统在提升科学知识生产效率、处理默会知识以及产生机器知识方面的优势,使得我们在创造性劳动中很难将其排除在外,未来可能的创造性劳动方式应当是某种人机协作或人机融合。脑机接口(brain-computerinterface)是当前一个重要的人机协作研究方向,而其中最激进的方式是马斯克提出的Neuralink,即通过柔性电极对接在人脑的神经网络上,Neuralink要解决的是人类的信号输入与输出,但其问题在于人类的高级思维(如逻辑推理或描述场景)必须依赖语言,而目前基于人工神经网络的机器学习能力主要是对环境的识别能力,还远没有达到语言和逻辑推理,但人类智能通过语言进行沟通。这背后就隐含了人类的科学知识与人工智能系统的机器知识之间的不可通约,以上例子也表明基于人机协作的创造性劳动还有很大的技术障碍需要克服。

参考文献:

[1]崔政.科学技术知识的政治经济学研究[M].石家庄:河北人民出版社,2019.

[2]郁振华.当代英美认识论的困境及出路——基于默会知识维度[J].中国社会科学,2018(7).

[3]GregoryWheeler.Machineepistemologyandbigdata[A].inMcIntyre,Lee,andAlexRosenberg,eds.TheRoutledgeCompaniontoPhilosophyofSocialScience[C].Taylor&Francis,2016.

[4]董春雨,薛永红.机器认识论何以可能?[J].自然辩证法研究,2019(8).

人工智能论文1000字以上3

【摘要】随着现代信息技术的飞速发展,我们迎来了伟大的人工智能时代。人工智能的伟大在于给各行各业都带来了巨大的冲击,对会计行业而言,运用了越來越多的人工智能技术,科技的进步,使人工智能不仅正逐步取代部分会计人员的一些低技能的低端工作,它还可以完成人类大部分的工作。本文将从了解人工智能出发,结合人工智能时代下会计行业的发展变化分析人工智能给会计行业带来的诸多机遇与挑战。

【关键词】人工智能会计发展机遇和挑战

一、人工智能概述

(一)人工智能的发展

1950年,艾伦,麦席森,图灵发表了一篇划时代之作《制作机器会思考吗?》里面提出了测试机器是否具有智能的方法,并因此摘得“人工智能之父”的桂冠。约翰,麦卡锡在1956年的达特茅斯学术会议上,第一次提出人工智能(ArtificialIntelligence,AI)。1997年,IBM公司“深蓝”电脑击败了人类的世界国际象棋冠军更是人工智能技术的一个完美表现。2017年7月,国务院印发了《新一代人工智能发展规划》,这是我国首个面向2030年的人工智能技术的战略发展蓝图,也表现出我国对发展人工智能技术的重视与支持,同时,人工智能人选“2017年度中国媒体十大流行语”。

人工智能是计算机科学的一个分支,可以对人的意识、思维的信息过程的模拟,人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

(二)人工智能的意义

人工智能的出现代表我国经济正在快速的发展,科技水平不断的提高,同时人工智能也慢慢的融入并改变着我们的生活,推动时代的发展。人工智能现在正朝着教育、金融、服务、医疗、信贷等诸多领域发展,比如经济领域、空间技术、主动控制、计算机规划和制作,其首要运用领域是制作主动化工厂、医疗、物流和家庭效能;在商业领域中,无人驾驶轿车在机器人工作中占有智能轿车技术的主导地位;在金融领域,有了人工智能的监督和把关,那些企图利用系统或其他漏洞进行金融犯罪的不法之徒将无处藏身:那么,人工智能对会计行业的发展又有那些意义呢?

二、人工智能时代下会计的发展变化

人工智能在会计、审计、税务等行业的广泛运用,使得传统、简单、重复性的基础会计工作岗位将面临被智能化取代,人工智能已成为促进会计行业转型发展的重要推手。近三年来,德勤、普华永道、安永、毕马威4大国际会计师事务所通过利用财务机器人进行会计、审计等工作,使得数据的准确性、工作效率、管理决策水平等明显提升,由此可见,人工智能早已潜移默化的影响到了会计工作的方方面面。

(一)会计工作效率提高了。人工智能技术与财务管理系统的对接,实现了系统自动识别票据、生成会计记账凭证、记录明细账户以及生成总账和各类报表。作业过程中系统按时间顺序记录每笔业务,对每一笔账务进行核实和验证。财务机器人还实现了信息的语音、扫描录入,财务软件可自动生成证、帐、表,这将更加高效准确地完成基础会计核算工作,提高此项工作的效率,会计人员因此节省了大量用于基础核算工作的时间,从而能将更多的精力投入在企业内部管理型的工作上,同时又提高了管理工作的效率。

(二)会计信息质量提高了。受自身能力、专业素质以及外部环境等因素的影响,会计信息数据的滞后性和人为失误在所难免。人工智能将会计模型和方法程序化,它既减少了人为失误又极大地提升了数据处理能力,工作重心逐渐转向数据的挖掘、分析等重要环节和高附加值工作中,同时,会计档案由纸质变成电子档案更便于信息系统的管理、流程化的管理和监控,避免了人工作业的失误以及造假的可能,数据信息和记录的真实性和精准度得到保证。

(三)会计职能重心转移了。人工智能虽然可以替人做一些简单、繁冗、重复性的基础会计工作,但并不能完全替代会计人员,随着人工智能与会计信息系统的不断结合,从事简单记账工作的初级会计人员将会越来越少,而中高级会计人员将会集中于行业中涉及分析、预测和统筹的领域。因而会计职能的重心将向预测、决策、规划、控制、评价等目前人工智能无法取代的管理会计的职能转移。

(四)会计人员从业压力加大了。随着人工智能被引入到会计行业中,一方面,简单的会计核算工作将被智能化财务软件逐步替代,普通核算类型工作的岗位势必减少,基层会计人员面临失业的压力:另一方面,由于财务软件能够高效完成基础财务工作,企业更需要财会人员发挥管理会计的职能,会计从业人员需要将工作重心转移到决策分析和经营管理上,使其有从财务会计到管理会计转型的压力。

三、认清挑战,抓住机遇

人工智能的发展与应用是社会经济发展过程中的必然产物,它的到来就像一把双刃剑,虽然可以对会计行业整体工作效率与工作方式带来提升,但是人工智是不能完全代替会计人员的工作的。比如,智能化的设备无法完全替代充满人情味的服务。李开复也指出,社交能力强、应变能力强、协商能力强的人,永远不会被人工智能取代。人类的感情,想象、创造等特质也是人工智能所无法企及的。所以,对于会计从业人员而言,人工智能只是一种行业对于自身的探索以及进步,顺应这种变化,会计人员应当认清挑战,抓住机遇。

一方面,会计从业人员应调整好心态,快速适应行业的变革,重新找回自己的价值。努力提升自己的专业分析能力和管理能力,成为人工智能代替不了的高级会计工作者。比如:财务战略制定,纳税筹划,风险控制,合理避税、财务分析等。同时,向复合型人才发展。正如任正非所说,称职的CFO应随时可以接任CEO。会计人员应当开阔眼界,放大格局,不能只着眼于本职工作,还应该了解工作其他岗位的工作内容,比如销售类、生产类等部门的业务,提高自己的企业价值以及行业地位,做一名复合型人才。

另一方面,人工智能技术在财会领域的突破离不开懂会计知识的专业人员的配合,财务人员要努力学习新技能,加强计算机、信息技术的知识储备,协助人工智能会计信息系统的研发,担当人工智能会计系统的设计者和监督者。

参考文献:

[1]闰钰.企业人工智能时代下对会计行业的思考[J].商场现代化.2018(1Z)

[2]杨秀琴.浅议人工智能时代财务会计与管理会计的融合发展趋势[J].现代商业.2018(18)

[3]李牧阳,沈舒航.AI运用给会计行业带来的问题和思考[J],中国管理信息化.2019(42)

人工智能论文1000字以上4

【摘要】STEM教育已经成为世界发达国家基础教育研究的热点,通过加强科学、技术、工程、数学等学科之间的联系,打通学科壁垒,采取更加灵活的学习方式,让学习者在真实情景下开展深度学习,有利于创新人才和高水平技术人才的培养。

【关键词】STEM教育;人工智能;机器人;编程创新

随着现代信息技术的迅猛发展,人工智能这个“技术英豪”已在全世界如火如荼地“跑马圈地”,迅速跻身技术创新的第一梯队。未来十年,我们将进入不可想象的智能化社会。智能机器人是信息技术发展的前沿领域,智能机器人教育具有实践性强、探索性强和综合性强的特点,有利于学生迅速接触前沿研究,打开思路,拓宽视野,开展智能机器人教学研究活动,让小学生从小触摸人工智能,感受它的非凡魅力,是小学阶段实现STEM教育理念、提高学生动手能力、培养学生创新精神的最好途径。

一、开展人工智能教育的背景

国务院在2017年印发的《新一代人工智能发展规划》宣布:举全国之力,在2030年一定要抢占人工智能全球制高点!人工智能正式上升为国家战略。2018年7月,中国第二届STEM大会在深圳福田召开,大会邀请了国内外著名的专家学者开设主题讲座,介绍最新的STEM教学理论和实践成果,掀起了福田STEM教育的热潮。在新一轮的教育规划中,福田区加快教育综合改革,以“智能教育”作为未来的发展方向,建立与中心区匹配的智能教育服务体系。STEM是用科学、数学知识和先进技术,以工程思维解决现实世界的问题。其教育的核心是:发现问题—设计解决方法—利用科学、技术、数学知识实施解决方法—将解决方法传达给大家。基于学校学科融合的办学理念,我校积极探索STEM教育的模式,开设机器人STEM课程,开展教师的课题研究和学生的探究性小课题研究、积极组织学生参与区、市级机器人创客比赛活动,积极投身人工智能的教学研究行列,培养学生的STEM素养。

二、以课程建设为核心,提升学生的STEM素养

机器人STEM课程是一门激发学生学习人工智能知识兴趣、培养学生综合能力、挖掘学生潜能为统领,以设计、组装、编程、运行机器人为主要学习内容,以培养学生观察能力、分析能力、想象力、逻辑思维能力、动手能力和提升学生的信息技术核心素养为主要目标的课程。机器人配备了各种功能的零件:如砖、轴、轮子等机械部分,大型电机、中型电机等动力部分,光电、触碰、红外等传感器,还有机器人的核心部件——控制器。学生通过动手创作,发挥自己的想象力和创造力,将零件组装整合,搭建各种具有实用功能的机器人。在搭建各种主题作品的过程中,锻炼了学生的动手能力,培养了学生的逻辑思维和解决问题的能力。他们在做中学、在玩中学、在学中玩,享受人工智能带来的无穷乐趣。

如果没有给机器人赋予运行的程序,机器人就是一堆塑料。因此,编程是机器人STEM课程的核心。在编写程序的过程中,学生需要把一个复杂的大问题,分解成一个个可以解决的小问题,循序渐进,逐步解决整个问题。在编写程序的过程中,学生首先要要清楚机器人的搭建结构和运行原理,其次还要清楚各种传感器的功能,通过编写程序来控制各种传感器,使机器人感知外界的环境信息,并对感知到的信息做出决策和响应,以使机器人能够顺利完成指定的任务。

以笔者执教的《走进人工智能》一课为例,该课伊始,笔者激趣导入,播放了特奥机器人飞速弹奏《野蜂飞舞》的精彩视频,勾起了学生学习人工智能知识的好奇心,产生探究科学的勇气,让学生对机器人技术有强烈求知的欲望。接着,采用任务驱动法教学,让学生通过微课程学习EV3编程技术,循序渐进地完成两个任务:1.让乐高机器人沿直线匀速运动;2.让乐高机器人沿直线匀速运动并且到达指定地点;最后的终极挑战环节,笔者让学生用乐高的配件搭建机械臂,编写程序,让乐高机器人模拟宇航员调整太阳能电池板,学生在設计、编程、调试中学得开心,玩得快乐,创意飞扬。

三、以课题研究为引领,推动师生专业化成长

课题研究是学校发展的源动力,是促进师生专业成长的重要途径。机器人教育作为一门具有高度综合渗透性、前瞻未来性、创新实践性的学科,如何为学生学习的“思维体操”提供了一个崭新的“表演舞台”,使教学取得“效率高、印象深、氛围雅、感受新”的明显效应,一直是我们在进行机器人教学研究中最为关注的问题。为此,我校信息技术教师申请了福田区教育科学“十三五”规划课题《基于STEM教育理念下的机器人搭建与编程教学研究》,学生申请了2018年深圳市中小学生探究性小课题《乐高机器人的搭建与编程》,师生在研究中努力学习,敢于实践,勇于创新,取得了很大的进步。

以学生的探究性小课题为例,学生采用PBL项目式学习方式开展小课题研究,学生的学习方式由过去的像容器一样被“满堂灌”转变为学生间“合作、交流、探究”式学习,掌握了隐含在问题背后的科学知识,形成解决问题的技能和自主学习的能力。在研究的过程中,学生保持开放的心态,敢于尝试新鲜事物,从失败和成功中汲取经验教训,养成追求真理、锲而不舍的科学态度,在课题研究中不断优化算法和改进搭建模型,设计实用的机械臂,进一步提升机器人的稳定性和完成任务的数量和质量。团队成员在研究中不断碰撞出智慧的火花,通过小组合作解决一个个课题研究过程中遇到的困难,掌握了科研活动的过程与方法,在探究中催生宝贵的创新意识。

四、以参加机器人赛事为驱动,搭建学生个性成长的平台

雄鹰只有经过千百次的历练,才能够在蔚蓝的天空中展翅翱翔。机器人比赛让学生接轨前沿科技,开阔眼界,培养学生综合素养,让其在同龄人中迅速脱颖而出。通过参加机器人比赛活动,为学生搭建个性成长的平台,创设真实的解决问题的情景,让学生严格按照规则进行实战对抗比赛,不断修改机器人的设计,并对机器人重新进行编程,以期在合乎规则的情况下,取得尽可能好的成绩,品尝成功的快乐。

通过参与各级各类机器人比赛,挖掘了学生的潜能,张扬了学生的个性,丰富了学生的学习生活,培养了学生的核心素养,促进学生人格的健全发展。队员贾壹方谈到参加机器人创意赛时,感触良多:参加了机器人创意赛后,我受益无穷。我学到了许多关于编程、搭建的知识,更重要的是:我认识到了团体合作的重要性,一开始我们总是各执己见,可是,在陈秀老师的带领下,我们认真地听取他人意见,齐心协力地克服了一个又一个困难,感谢福民小学为我们提供了这样一个学习和进步的机会。

未来,我们将继续带领学生行走在人工智能校本课程的探索和实践道路上,完善课程内容,认真参与课题实验,带领学生参与各种展示活动,为学生探索科技搭建更完美的平台,培养人工智能时代的信息技术精英。

参考文献:

[1]中国STEM教育白皮书.中国教育科学研究院,2017,6,20.

[2]戴玉梅,王健潼,彭青青等.基于核心素养的小学机器人创客课程实践研究[J].中国教育信息化,2018,1.

人工智能论文1000字以上5

《基于当前社会的人工智能初探》

本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。

弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。

人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。

第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。

人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。

第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?

以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。

强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。

人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。

有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。

人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。

人工智能论文2000字范文(精选7篇)

人工智能是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。本文提供几篇有关于人工智能论文范文,供大家参考学习。

第一篇关于人工智能论文:

《电脑人工智能日趋成熟》

电脑在二十世纪70年代末期开始广泛普及,当时,有些专家便预计说,电脑可以改变人们的日常生活,并且使社会文化随之改变。

现在,时间的车轮运转到了2000年,专家们的这些预想至少已经有一部分成为现实。今天,人们已经在开始讨论有关电脑会不会具有人类的某些智能。这类课题已经不是什么科学幻想,而是非常严肃的学术讨论了。

舍科尔教授是美国麻省理工学院的社会学教授,他是电脑心理学方面的专家,曾经撰写过关于电脑心理学的两本具有开创性的着作。

一本书的书名是《第二自我—电脑和人类精神》,另一本书是最近出版的,书的题目是《电脑屏幕上的生活—因特网时代的特征》。舍科尔教授现在是麻省理工学院科学技术和社会项目的教授。从70年代开始到80年代初期,舍科尔教授开始研究人和电脑的关系。

舍科尔教授说:“电脑的特征在物体和非物体之间。很明显地,电脑是物体,即使是孩子也知道电脑是一部机器。可是,在另外一方面,电脑又可以反馈,可以有行为,可以有理智,甚至有精神。

人们发现,自己和电脑之间存在着互动的关系,甚至感到电脑似乎在活着。”

舍科尔教授特别对儿童和第一代电脑,以及电子玩具之间的关系感兴趣。他发现,十来岁的少年主要用电脑来探索认知的问题;而青春期以前的儿童也就是八岁到十二岁之间的儿童,他们主要试图熟练地掌握机器和电子玩具。

舍科尔教授发现,电脑玩具对五岁到八岁之间的儿童来说,起到了激发他们的伦理性、推测性息维的能力。

舍科尔教授说:“这些电脑玩具促使我们考虑‘什么是生活’这一类的问题。电脑有生命吗?在电脑玩具的战斗中,搏杀者意味着什么呢?作为一种玩具,到底有什么特殊性呢?

讨论电脑到底和人类有哪些区别,就无疑地是一个重要的问题。

一个十二岁的男孩对我说,将来可能会出现和人类一样聪明的电脑。但是,人类仍然要做饭,要建立家庭,要开餐馆。人类可能是地球上唯一要去教堂的生物。

换句话说,电脑为人类留下的空间是感情、感性、家庭生活。模拟思维可能在某种程度上可以算是一种思维,可是,模拟感情却永远不能被看作是真正的感情。当然了,模拟爱情更不能算是爱情了。”

微软公司的视窗系统是舍科尔教授目前重点研究的课题。视窗操作系统可以允许使用者在同时执行几个相互没有任何关系的工作任务,并随意在这几个任务之间互相切换。

舍科尔教授说:“用鼠标器指一下这些长方形的图形,你可以先做一件事情,然后再做另一件事情。例如,你可以通过电脑先跟你的母亲聊会儿天,在跟你的母亲说再见以后你开始写你的论文。写累了,你可以通过电脑看看你的银行账户。

从某种意义上来说,人们可以在电脑上确定各人的位置。也就是说,使用者是电脑屏幕上所有的窗口,以及电脑所有的活动的总和。

显然,这是一场革新,因为微软视窗允许你同时在你的电脑上提出好几个指令,并且在这些活动之间不断循环往复。这已经具备了人类心理活动的某些特点。”

在80年代,人类可能通过和自己心理的比较试图理解电脑。而今天,舍科尔教授说,人类试图通过电脑的运行模式,来更好地理解人类的心灵。

舍科尔教授认为,现在研究电脑心理学的最热门的领域,是假设电脑到最后会真正地有感情。你的一部电脑会对你产生“爱情”,它们需要你的关怀,需要感情的忠实。这可能是未来研究人和机器之间互动关系领域里最新的潮流了。

目前,在电脑控制的玩具方面已经出现了一些突破。例如,去年圣诞节期间,出现过一种类似猫头鹰的玩具,这种玩具可以说几百句话,而且具有学习功能,甚至会骂厂。

日本索尼公司制造出一种电子宠物狗,名叫“艾卜”,也是这类电子宠物玩具的代表性产品。

除了玩具以外,在智能电脑方面,电脑能够听懂主人说话现在已经不算稀奇了。目前,美国麻省理工学院的媒体研究室已经研制出一种具有人工智能的计算机,计算机可以对使用者发出的非语言性信号做出反应,并且据此进行某种程度的调整。

舍科尔教授认为,未来的电脑发展趋势是生物化电脑,电脑越来越具有知性和感性,从社会学的角度上说,这将是一大飞跃,值得学者专家好好地探讨。

第二篇关于人工智能论文:

《电气工程自动化中人工智能技术的应用》

文章摘要:随着社会的不断发展,人们的生活水平也在不断的提升,工业化也向着智能化的方向进行发展。在电气工程自动化中使用人工智能技术能够有效的提高电气工程的工作效率,对电气工程设备进行自动化的控制,明显的提高电气自动化的工作效率。因此,对电气工程自动化中人工智能技术的运用进行综合性的分析,使得人工智能技术能够更好的服务于电气工程。

关键词:电气工程;自动化;人工智能技术;应用

现阶段,我国的工业企业在进行工作的过程中,运用电气工程自动化技术较为广泛,并且随着人工智能化技术的不断提高,促进了电气工程自动化产业的发展,还可以模拟人体大脑进行工作,对庞大的数据信息进行分析、处理和搜集,从而实现电气工作的自动化生存,这样一来,不但能够提供电气工程的工作效率,而且还能对产业结构进行优化。同时,智能化技术的运用不仅仅提高了电气工程自动化控制系统的工作效率,而且还有效的减少了问题的出现。

1.人工智能化技术的基本概述

人工智能化技术是指借助人力所制造的智能化设备来代替人力进行工作的机器被称为人工智能化机器。目前,人工智能化设备主要借助计算机来作为基础,结合人工的方法和科学技术,将人类的思维和智慧融入设备中,使得制造出来的机器更加的智能化和自动化。人工智能化技术的发展离不开科学技术的发挥。随着社会的不断进步,科学技术也在不断的发展,从传统的自动化机器向人工智能化的方式进行转变,其中运用到的知识不仅仅是单纯的计算机知识,还包含其他学科的知识。比如,心理学、物理学、计算机学等。与此同时,电气工程自动化技术为工业化生产提供了监督管理能力和控制能力。

2.人工智能技术在电气工程自动化中的应用所占的优势

2.1、能够帮助企业实现人力资源的最优化配置

传统的电气工程项目中,设备的操作程序较为繁琐,并且由于电气工程项目中也包含一些电气设备,如变压器、电路电线等。在这种情况下,需要安排专业的人员来对电气设备进行管理。与人工智能技术相比较,包含的电气设备较少,大大减少了企业的资金投入,实现资源的最大化。

2.2、人工智能技术受到外界环境的影响因素较小

传统的电气工程中,控制器在建立模型的过程中会遇到诸多的不确定因素,并且直接影响了控制器的构建,甚至会都控制器的正常运行和工作产生营销。比如,在控制器模型建立的过程中,由于重要参数的变化,使得控制器的正常运行无法达到预期目标。与人工智能化技术进行比较,人工智能化技术在设计控制器的过程中,以建立动态模型为理念,大大降低了人工智能化技术对外部环境的影响,确保了系统的正常运行。

2.3、大大的简化了电气设备参数的调节方式

在电气工程自动化工作中运用人工智能技术,在对参数进行调整的过程中,工作人员需要对人工智能化设备进行具体的参数设置,从而才能实现电气工程自动化的控制,简化了工作流程。除此之外,与传统的控制器进行比较,人工智能化技术的优势还体现在以下几方面:(1)较好的适应能力,能够满足多变的情况下自动化系统的正常运行;(2)简化操作流程。在没有专业技术人员在场的情况下,整体系统也能正常的进行工作,帮助企业降低了对人力、物力方面的资金投入。除此之外,人工智能技术还能根据实际工作的情况,科学合理的设定参数,大大减轻了工作人员的工作压力和工作量;(3)对现有设定的参数进行综合性的分析,并且根据实际的情况来进行数据的修改,从而提高工作效率。

3.对电气工程自动化中人工智能的具体应用进行分析

3.1、人工智能在电气产品设计方面的应用

在电气工程自动化系统中,产品的设计过程较为复杂,并且设计方案较为繁琐。设计人员在进行产品的设计过程中,需要选择科学合理的方法来进行产品的设计,并且对现有的设计技术和设计经验进行借鉴,确保设计出来的产品具有实用性。但是,在科学技术和计算机技术发展的过程中,借助人工智能技术来对产品进行设计,将设计过程从传统的设计方式向着人工智能设计方向进行转变。这样不但能够有效的缩短电器产品的设计时间,而且还需要提高产品的质感。

3.2、大大缩短电气工程自动化机器故障的检测周期

电气设备在进行正常的运作过程中,由于工作时间较长,工作人员缺乏专业的保养技术和维修设备的技术。一旦设备发生故障,需要浪费大量的时间来进行故障的检修,然而,人工智能技术在电气工作自动化工作中的运用,能够有效的缩短设备的维修和保养时间。除此之外,可以借助网络技术在设备发生故障时,可以详细的记录设备出现故障的时间、原因等内容,缩短了故障检修的周期,增加故障检修的安全性和可靠性。

3.3、人工智能技术在设备故障诊断方面的应用

在电气设备进行运作的过程中,由于一些突发情况导致设备发生故障。工作人员在对故障进行诊断的过程中,需要借助新型的诊断技术来对设备发生的问题进行分析。人工智能技术对故障的分析已经应用在很多方面,比如:发电器故障的检修、变压器故障的检修、电动机故障的检修等。但是,借助传统的人工技术来对设备的故障进行分析和诊断,不仅仅浪费的人力、物力,增加了企业的资金投入,并且无法提高故障的诊断效率。将人工智能技术运用在电气设备故障检测过程中,可以在最短时间内诊断出设备发生故障的原因,并且将人工智能技术与其他理论相结合,大大提高了电气设备故障的诊断效率和准确性。

3.4、人工智能技术在电气控制方面的应用

随着社会的不断发展,对企业的要求也逐渐的提高。电力企业也在逐步提高电气自动化水平,不断的扩大人工智能技术的应用范围,这也是电气企业发展的必然趋势。目前,在电气设备控制中最核心的工作是提高电气系统的工作效率,从而促进电力企业的发展。为了更好的实现制定的目标,需要对现有的电气自动化控制技术进行提高,有效的将人工智能技术运用在电气设备的控制中,实现电气控制自动化的发展,从而提高电气设备的运行效率。除此之外,还能帮助企业节约人力和物力。现阶段,人工智能技术在电气设备的运用主要包含以下几个方面:专家系统的控制、神经网络的控制、模糊控制等。在电气设备控制的过程中,使用最为频繁的是模糊控制,主要由于其操作较为简单,并且与实际的工作目标相符合。

4.结语

随着社会的不断发展,科学技术也在不断的发展过程中,并且对企业的要求也逐渐的提高。电力企业也在逐步提高电气自动化水平,不断的扩大人工智能技术的应用范围,这也是电气企业发展的必然趋势。因此,需要对人工智能技术在电气工程自动化的具体应用进行分析,确保其满足电气设备的正常运作需求,提高电气工程自动化的运作效率。总而言之,人工智能技术在电气工程自动化中具有良好的发展前景,能够有效的促进企业的发展,减少企业在人力、物力和财力方面的投资,降低企业的生产成本。

参考文献

[1]张雪,马青强,高健.智能化技术在电气工程自动化控制中的具体应用探析[J].科技畏望,2015,25(5):94-95.

[2]何美琼.试论电气工程及其自动化的智能化技术应用[J].2015,(11):213-215.

[3]李志琴.电气工程自动化控制中智能化技术的应用研究[J].山东工业技术,2016,(15):90.

第三篇关于人工智能论文:

《电气自动化控制中的人工智能技术》

摘要:电气设备也在人工智能技术的应用下实现了电气自动化,本文将围绕着电气自动化控制中的人工智能技术展开探讨。

关键词:电气自动化人工智能应用

电气自动化是比较重视实践的一门科学,主要对电力系统的开发与运行进行研究。在社会发展的过程中,大部分的人类现代文明都离不开自动化与智能化。在电气工程中,热工智能化的实现.对于电气系统的运行具有非常大的影响,不仅提高了运行效率而且方便管理,节约大量的人工,在一定程度上降低了运行成本。

1、人工智能技术

毫无疑问,人工智能技术的出现是社会与科技发展的必然成果,并且随着人工智能技术的成熟,其在社会各个行业的应用也越来越多。人工智能技术是以计算机技术理论为基础,其他多个专业学科共同作用下共同构建出的。

人工智能技术的出现,让人类的智慧得以延伸,使只有人类可以完成的工作可以找到替代设备。

2、人工智能技术在电气自动化过程中的应用

2.1、在电气设备中的应用

在电气工程中,人工智能技术主要应用在电气设备的设计方面。电气设备的设计程序繁多、复杂,进行设计的时候,不仅要熟练掌握电路、电磁场、电机、电器等等相关理论知识,还应该有足够的判断能力和设计经验,能够处理一些临时的变化。按照传统的设备设计方法,设计程序主要依靠人工编制,这种方式远远不能满足电气自动化的标准设计,但是,如果加以计算机辅助,就会大大缩减设计时间,同时还可以在很大程度上提高产品质量以及其工作效率。

2.2、平常操作中的应用

随着社会的不断进步,人们的生活水平有了很大的提升,无论是平常的生活,还是工作,学习,都已经不能缺少电气设备,所以说,电气设备安全、稳定的运行,在一定意义上,就是社会生产,人们生活的安全与稳定。在利用电气设备的时候,应该按照设计说明书,遵循操作规范进行操作使用。传统的操作方法不仅复杂,而且操作程序比较死板,一个环节出错就可能引发重大失误,带来严重后果。而人工智能化的出现,在很大程度上改变了这些问题,不仅简化了设备的操作程序,提高了操作效率,而且可以智能化的识别错误、提示错误,进而更正错误,降低错误率,甚至在一定程度上将错误发生率降至零。大大提高了电气设备的安全与稳定,对电气设备的运行具有很大的促进作用,提高了设备的实用性。

2.3、应用于事故及故障诊断

电气自动化中事故与故障诊断,就是指对相关机械设备进行信息确定,对其运行状态进行判断.杳看是否正常,一旦发现异常,能够快速对故障进行准确的定位,并分析故障类型,然后有针对性的找出对策。电气设备的运行受到各种干扰因素的影响,特别容易出现故障或者事故,如果没有及时的进行处理,就有可能小故障变大故障,甚至引发安全事故,对工作人员、电气系统以及企业都造成重要的损害,同时带来不良的社会影响。所以,对于电气设备的故障进行准确而又及时的判断,是非常重要的。

2.4、电气控制工作中的应用

在电气系统中,对电气设备的控制同样是非常重要的一部分工作。现如今,实现电气设备的自动化与智能化已经是一个大的趋势,智能化的实现主要就是通过对设备的控制。不仅能够在很大程度上提高工作效率,适当降低成本,还可以减少人员用工。例如,在人工智能技术中,比较先进的技术有模糊控制、神经网络控制、专家系统等,他们都可以实现对电气设备的智能化控制,而且非常精确,控制效果非常不错。就拿模糊控制来说,最常用的方法就是Sugeno与Mamdani,Mamdani技术主要是对设备的速度进行调节,其主要是一种高效率的交流传动控制技术,在很大程度上提高了电气设备的工作质量和工作效率。

2.5、在产品设计中应用人工智能技术

在传统的电气设备设计中,主要是依靠设计人员的经验,缺乏一定的技术性,同时设计工序比较简单,设计质量不高。然而,当经济水平与科技力量都有所提高,国家也开始注重这方面的开发,加大了资金的投人。随着研究力度的加大,我国在这方面的成就也逐渐显现出来,人工智能技术也逐渐被应用于产品设计。人工智能化的应用,提高了产品的自动化程度,提高了生产效率,加大了产品的智能化,对产品质量来说是一个巨大的保障。

3、结束语

综上所述,随着科学技术的不断发展,人工智能技术已经逐渐成熟,其精度与控制力都有了很大的提高,将其应用在电气工程中,不仅提高了系统的运行效率,还极大的方便了管理,提高了电气设备的安全与稳定,在很大程度上提高了企业的经济效益,带来了很大的社会效益,所以说,在电气工程中使用人工智能化技术是值得推广的。

参考文献

[1]纪文革.人工智能技术在电气自动化控制中的应用思路分析田.电子浏试,2014(03):137-138.

[2]任博.人工智能技术在电气自动化控制中的应用思路分析田.科技视界,2015(09):108-109.

第四篇关于人工智能论文:

《基于当前社会的人工智能初探》

本文的开头,我想先强调一个概念,究竟什么是人工智能。一般人看到AI第一瞬间便会想到机器人,但机器人只是一个容器,它的内核与控制系统才能被称作人工智能。再者,人工智能不能被单纯地被认为是与人类处在同等智能水平上的事物,总的来说,可以将它分成三个层次:1.弱人工智能;2.强人工智能;3.超人工智能。

弱人工智能,是在单一领域具有超越常人的能力,比如说AlphaGo,它可以在围棋方面战胜李世石,但是若让它进行简单的计算,类似1+1=2这样的式子,它可能却是不行的。现阶段,弱人工智能存在于我们生活的方方面面。导航,Siri,天气预报,搜索引擎,音乐推荐等等,这都是人工智能,只不过大多数人并不知道罢了。所以那些“人工智能根本不可能造福人类”的说法是绝对错误的,正相反,人工智能给人们带来了诸多便利。因此,我希望大家能抛弃对人工智能的偏见,真正接纳人工智能的存在。组成人类的细胞都比弱人工智能层次要高,所以对待这一层次的人工智能,我们是不必担心的,若非要把有关人类的事物划分到这一层次中,类似核糖体的细胞器便是属于这一层次。

人类是属于强人工智能层次的生物,而且是这一层次中顶端的存在。强人工智能,已经可以同人类一样进行各种脑力活动。但很遗憾,至今它还未曾问世。从弱人工智能到强人工智能的过渡是漫长的,从地球弱人工智能层次的氨基酸等有机物进化至生命,耗费的时间以亿计数。但是随着社会的进步,发展的能力、速度都会极大地提升,所以强人工智能的出现不会耗费太多时间,短则十年长则百年。由弱到强,需要有两方面的改变。

第一,提高弱人工智能的运算速度,降低单位运算速度所需金钱。

人类的大脑运算速度经Kurzweil对不同大脑区域进行估算,大约为一亿亿次计算每秒。强人工智能不是终点,所以运算速度也必须超过一亿亿这个数值。但若是我们研究出超人工智能却只能供应极少数人,那必将会造成灾难——上位者操纵人工智能统御下位者,这绝对不是我们想看见的。因此,我们要降低单位运算速度的成本,让成果平民化,让人工智能能真正造福所有人类。

第二,提高弱人工智能的智能层次,然后通过人工智能的递变演化,让它到达更高的层次。这一点是最难处理的,也是可能导致人工智能转头空的最大因素,人类对智能层次的认识只能停留在浅薄的理论上,我们不知道如何将猩猩的大脑演化为人类的大脑,同样,我们也不知道如何将人工智能的层次提高到新的高度。不过万幸我们有我们自己这样一个完美的强人工智能系统,我们可以通过对自身的生物研究来推动人工智能的发展。这样做有两个方向:1.逆推,根据人本身大脑的思考模式逆推出运算的模式,再将这种模式代入到人工智能上;2.正推,从细胞开始,不断推动生命层次的研究,一步一步地将大脑的运算模式推断出来。两种方向皆有利弊,从我自己来说,这两种方向应同时进行,一个最大的原因便是人类若想得到长足发展,必先研究透自身,一举两得,何乐而不为?

以上所述,还可寻到根据,接下来的便只能是进行合乎逻辑的推理和大胆的设想了。

强人工智能即指超过人类的层次,它可能超过一点,也可能超过几千万倍,跨度极大。也正是因为它的不可控性,人们才会认为这是一个潘多拉魔盒,会毁灭人类,但是这也同样可能使人类真正永生。那么有什么办法能使超人工智能受到人类的控制呢?答案是没有,起码在我们当前的认知中是不切实际的。自然界创造了人类,可人类却近乎脱离了自然界的控制。那么,人工智能是不是该停止呢?我认为不该。前面提到了递变演化,超人工智能的层次提高是人类插不上手的,只能靠它自身的递变演化。但是递变演化却不是只出现在人工智能身上,人类也有自己的递变演化,而且根据加速回报理论,递变的单位所需时间是会逐渐缩短的,如果我们能从人工智能那里取得这样的经验,发展的就不会只是人工智能。再者,从强人工智能到超人工智能的层次质变,同样可以被借鉴用于人类的发展,这就意味着人类自身是会永远领先人工智能一步。难道人类担心过被猴子毁灭吗?没有。同样人工智能就好比比我们智能层次低的猴子,也不会导致我们的毁灭。并且我们可利用人工智能为我们自身服务。当然,这只局限于理论推导、假设猜想,很可能未来的走向会与之大相径庭。

人工智能的发展不应是单方面的,视野必须拓宽出去。对于人工智能的研究其实等同于对人自身的研究,它不仅仅只是一门计算机科学,更是一门生命科学。如果能将它的研究与生命科学的研究结合起来,人们对它的了解就可能更透彻。比如说,对于大脑的研究,一定会牵扯到思维的研究,而对思维研究的深入,可以让我们更好地设计智能的思维,甚至于我们可以将人类的心理在不影响性能的情况下导入其中。人类的心理会使它们站在人类的角度思考,甚至可以说智能便成了人类的另一种存在形式。在这里,就又引出一个问题:安全和性能,我们应更注重哪一个。答案非常明确,安全。如果连安全都保证不了,那它就没有存在的价值。原子能,人类可以控制,所以才有了核电的存在。人工智能同样如此,虽然我希望人工智能能造福人类,但若能证实它对人类的弊大于利,那就应该终止有关的研究,让它成为历史。

有人说人工智能是人类最后的一项发明,因为一旦超人工智能出现,人类便会灭绝,未免太过悲观了。生物与生物之间最纯粹的关系是利益关系,人工智能与人类之间也可以通过利益关系关联起来,并且让人类处于主导的地位。那么人类可以为人工智能提供什么利益呢?目标。人类是已知唯一有独立意识的存在,我们可以提供给人工智能目标,这就需要我们再设计时不能让它产生独立意识,如果这能实现,就意味着我们拥有了超越人类层次却对人类无比忠诚的存在,人类社会的发展必因此得到更大的进步。

人工智能是一个很好的发展机遇,我们不应畏手畏脚。人工智能的未来是不可控的,但是人类的发展也同样是不可控的。走得太稳不见得能真地走得太远,试一次或许会有不一样的结果。

第五篇关于人工智能论文:

《当人工智能应用于黑色产业》

请各位同学想象一下这个场景:你老妈打电话跟你说她把银行密码忘记了,让你告诉她银行卡密码。想必你也知道了,跟你通话的其实不是她本人,而是电脑合成的声音,只是听起来很像而已,这就是人工智能技术的杰作。

人工智能技术正在不断发展

虽然利用人工智能在电话中伪装某人的这种技术仍然只会出现在科幻电影中,但这种高科技犯罪手法在未来很可能会成为现实。目前,这种伪装技术所需要的软件组件正在飞速发展之中。例如,最近Alphabet公司旗下的子公司DeepMind(该公司开发了一款能打败顶尖棋手的人工智能围棋程序Al-phaGo)宣布,他们已经设计出了一款能够模仿人类声音的新程序,而且声音听起来比目前最好的文本语音转换系统更自然,并且成功将机器语音与人类声音的差异缩小了50%以上。

需要注意的是,年收入高达750亿美元的计算机安全行业已开始讨论机器学习这个话题了。因为信息安全研究人员打算通过机器学习和模式识别技术来改善目前计算机安全方面的糟糕状况。

人工智能的阿喀琉斯之踵

虽然一切听起来十分美好,但人工智能技术也有其自身的缺陷。MarcGoodman是某执法机构的一名顾问,同时他也是《FutureCrimes》的作者,他表示:“可能很多人现在还没有意识到,网络犯罪正趋向于自动化,而且扩张速度惊人。现在已经不是MatthewBroderick躲在地下室去攻击别人计算机的年代了(电影《战争游戏》1983年版中的情节)。”

今年年初,美国国家情报局的负责人JamesR.Clapper发出了关于恶意使用人工智能技术的警告。Clapper在他的年度安全报告中强调,虽然人工智能系统可以让我们的生活变得更加简单,但与此同时网络世界中的“薄弱之处”也会因为人工智能的出现而不断被放大。

如今计算机犯罪活动日益复杂化,从不断升级更新的攻击工具身上就可以看出了。比如目前得到了广泛使用的恶意软件Blackshades,这款恶意软件的开发者叫Goodman,他是个瑞典人。不过悲剧的是,他已于2015年在美国被定罪了。

这款恶意软件在地下黑市的销量非常高,据Goodman所说,由于Blackshades可以为犯罪分子提供很多强大的功能,因此这款恶意软件也被大家称为“网络犯罪分子的潘多拉魔盒”。在Blackshades的帮助下,使用者压根不需要懂得任何的黑客技术,用户只需要点击几下鼠标便可以实现攻击。这款恶意软件不仅可以轻易地让目标计算机感染勒索软件,而且还能对目标进行视频和音频监控。

人工智能领域的研究人员目前正在研究如何提升机器学习的能力,因为他们希望改善计算机视觉、语音理解、语音合成和自然语言理解的处理质量。但这也会带来一些不好的影响,因为犯罪分子也可以在下一代恶意软件中增加这种机器学习的能力。有一些安全研究专家则认为,其实早在五年前就已经有犯罪分子在利用人工智能技术进行网络犯罪活动了。

安全保护技术与人工智能的博弈

现在,几乎所有的互联网+服务都会要求用户在使用前输入验证码,而犯罪分子们一直都在试图破解验证码技术。验证码的全称是“全自动区分计算机和人类的图灵测试”,这项技术是美国卡内基梅隆大学的研究员于2003年发明的,网站运营者可以利用这项技术来防止自动化程序盗取用户的网络账户数据。

来自加利福尼亚大学的计算机安全研究专家StefanSavage表示:“近五年来,人工智能专家和网络犯罪分子都在尝试使用计算机视觉软件来破解验证码技术。如果你两年来都没有更改过你的验证码,那么你的验证码肯定会被计算机视觉算法搞定。”

社会工程学

毫无疑问,随着科技的不断发展,网络犯罪分子肯定会尝试利用新兴的技术来进行犯罪活动。像苹果的Siri和微软的Cortana这样的语音识别技术目前已经得到了广泛使用。亚马逊的声控智能音箱Echo和Facebook的人工智能聊天机器人也成为了电商与顾客之间的沟通工具。与以前一样,每当类似语音识别技术这样的新型技术成为了市场上的主流之后,犯罪分子一定会利用这项技术去大做文章。

调查记者BrianKrebs在krebsonsecurity.com上发表文章称:“在我看来,那些为客户提供了智能聊天服务的公司绝对忽略了一个问题:在信息安全领域中,想要获得便捷性,往往就会以牺牲安全性作为代价。通过聊天机器人来服务客户,这一切看似非常方便,但这也使得攻击者有可能通过社会工程学技术来攻击这些网络服务。”

社会工程学技术针对的是人性的弱点,而这也是计算机安全链中最薄弱的一个环节,网络犯罪分子通常会把那些容易轻信别人或乐于助人的人们作为攻击目标。假如犯罪分子有能力去研发人工智能恶意软件,并利用这种恶意软件在网上进行犯罪活动的话,那么计算机安全形势将会变得更加严峻。

话虽如此,但是智能聊天机器人目前仍然得到了广泛的应用。例如政府在进行某些宣传时,或者在政治选举之类的活动中,我们都可以看到智能聊天机器人的身影。值得一提的是,政治聊天机器人在英国脱欧公投中可是扮演了一个非常重要的角色啊!

总之,网络犯罪分子迟早会利用人工智能技术来进行攻击,一切只是时间问题。但值得庆幸的是,目前还没有人利用机器学习技术来进行网络犯罪活动。

第六篇关于人工智能论文:

《人工智能不是未来派概念》

Pelican公司的创始人兼首席执行官帕尔特·德赛(ParthDesai)认为,人工智能已是事实,而非幻想,银行业现如今的重中之重是在交易与支付上实现人工智能的实际应用。

根据Gartner预计,到2020年,人工智能将普遍存在于新产品中。帕尔特说:“现在大家都在讨论人工智能在金融服务上的潜力,以及它将如何帮助精简程序并提高附加价值,但我们必须从现实的角度了解哪些是具有可能性和操作性的。”

循序渐进的迭代过程

无疑,人工智能正通过计算能力和机器学习来模仿人类的智能行为,尤其是在军用和民用领域。尽管各行各业对它的炒作热度有增无减,人工智能也不应被视为解决任何问题的灵丹妙药,甚至它还有较长的一段路要走。

在帕尔特看来,人工智能是游戏规则的改变者。金融服务业的早期采用者则认为这是一个循序渐进的迭代过程,随着时间的推移,人工智能将戏剧性地改变银行业的用户体验。在某些交易银行和支付合规领域,已经可以在劳动密集型的环节中看到人工智能应用的身影,例如最低成本的路由维修等。银行业下一步将集中在产品创新领域,并减少市场投放时间。人工智能的应用案例几乎都证明了,人工智能确实有助于减少甚至取代一直以来由人类劳力担任的知识密集型、单调性和重复性的工作。

但问题的关键在于,目前人工智能仅仅提高了高水平人工环节的附加价值。人工智能技术能在先前的经验、事件和行为数据的基础上,提供理解交互能力并智能化地挖掘这种能力,使计算机在类似事件重复发生时能自动执行过去的行为指令。

在金融领域,深度学习必须受到一定的控制和监督,人工智能的见解及其行为背后的原因分析应继续安排专人审查,以确保应用程序自动化的准确性和一致性。这样做的好处是,一旦更好地、准确地理解了上下文和操作,机器学习也将获得改善知识发现的新方法。

在这种方式下,人工智能的情报能力通过经验和行为的变化与调整,获得了持续发展。

智能支付管理

金融行业迫切需要改变,这也是智能支付管理概念出现的原因。根据对人工智能20多年来的沉浸式研究,帕尔特认为智能支付管理有潜力改变每一个金融机构的运营方式,并且最终所有金融机构都能开展这项业务。人工智能以深度学习、自然语言处理和基础知识系统这3个关键领域为支撑,而智能支付管理可确保计算机精确处理每个支付环节,并充分理解每笔模仿人类推理而达成的交易背后的目的。

据帕尔特了解,几乎每一家银行在交易银行和支付领域采用的都是效率低下并且高度依赖人为干预的处理方式,这也成为银行智能化的主要阻滞剂。许多银行正疲于应对这种复杂低效且扼杀创新的大环境,这反过来严重限制了银行快速高效的业务处理能力,难以满足日益苛刻的客户群的需求。

目前仍存在这种状况,不少人认为,人与机器之间的交互通过人工智能得以丰富起来,但同时也认为人工智能基本上仍是一个未来派的概念。尽管人工智能还远远不够智能,一个小孩子轻易能够完成的动作对机器人来说,都几乎是难于逾越的挑战,但在帕尔特看来,人工智能不是一个未来派的概念。

他认为,根据现有的应用经验,智能支付管理与传统高度依赖人工的支付系统有所不同,它能从根本上降低成本,加快产品创新,大大减少投放市场的时间。因此,基于人工智能技术之上的智能支付管理将解放银行生产力,使他们能够快速高效地开发下一代产品,提供更高水平的客户服务,提高盈利能力,从而在日趋激烈且拥挤的市场竞争上占据明显优势。

第七篇关于人工智能论文:

《计算机人工智能识别技术的应用瓶颈探赜》

【摘要】21世纪以来,随着计算机技术、信息技术和网络技术的快速发展,人工智能识别技术应运而生,成为一种新兴计算机技术,在各行各业、各个领域的应用范围不断扩大,为经济增长、社会发展提供重要基础保障。然而,就当前应用情况来看,计算机人工智能识别技术的应用面临一系列瓶颈问题。基于此,文章通过研究和探析计算机人工智能识别技术应用瓶颈问题,为计算机人工智能识别技术的应用和发展奠定坚实基础。

【关键词】计算机人工智能识别技术应用瓶颈

作为一种自动化、智能化、科学化计算机技术,计算机人工智能识别技术通过将人类思维模式从抽象化到具体化,进行准确识别、科学判断和准确模拟,最终通过计算机程序完整体现出来。计算机人工智能识别技术被广泛运用于各个领域,与其他计算机技术相比,人工智能识别技术的应用前景更为广阔,能够为人类提供更为高效、便捷和优质服务。近年来,计算机人工智能识别技术在我国相关领域中取得一系列显着应用成效,然而由于发展时间较短,尚未形成一套完整的运行体系,整个应用过程依然面临诸多瓶颈问题。因此,本文研究具备一定的实践意义。

1、计算机人工智能识别技术的含义及类型

1.1、人工智能识别技术的含义

人工智能识别技术,实质上指的是基于计算机技术和人工智能平台所衍生出来的一种科学技术,人工智能识别技术能够对人类各种思维模式、行为方式进行准确识别和完整模拟,经过智能化、自动化,所形成的一种自动智能化机器。在实际应用过程中,计算机人工智能识别技术装置可以对相关物品信息进行扫描、识别。比如:超市中所利用的扫描装置,就是一种人工智能识别装置,通过扫描产品上的条形码,产品的质量、单价、名称等相关信息便会完整呈现出来,售货员进行数量的录入,便可以进行总价的计算,作为计算机人工智能识别技术的一种典型应用案例[1]。此外,计算机人工智能识别技术还能够被应用于企业办公自动化、生产智能化等方面,从而有利于人们办事效率、工作水平的大幅提高。

1.2、人工智能识别技术的类型

按照人工智能化特征进行划分,我们可以将人工智能化识别技术划分为机械化识别技术和人工化识别技术两种类型。

1.2.1、机械化识别技术

机械化识别技术,顾名思义,就是通过识别无生命特征的物体信息,主要涉及到的技术有以下三种:

第一,智能卡技术。作为一种集成电路卡,与计算机系统紧密关联起来,共同完成信息数据的采集、管理、传输、加密和处理。通常情况下,智能卡识别技术被广泛运用于物品验证、车辆识别、信息跟踪等方面。

第二,条形码识别技术。一般而言,条形码识别技术可以划分为两种:一是一维条码技术;二是二维条码技术。二维条码技术是一维条码技术的衍生物,在一维条码技术的改进和优化之上所形成,所以二维条码技术更为先进,能够进行数据信息的采集、识别,并能够准确、即时显示出来,被广泛运用于条码扫描和信息识别等方面。

第三,射频识别技术。射频识别技术与智能卡、条形码识别技术应用原理不同,它不需要与物体进行零距离接触,只需要借助无线电磁波进行信息的采集和识别。射频识别技术主要对物品信息进行有效标识,从一定程度上可以取代传统条形码识别技术,将有可能成为物品标识管理最为有效和先进的一项技术。

1.2.2、人工化识别技术

人工化识别技术,是针对人体所设计的一项智能识别技术,主要涉及到的核心技术有以下三种:

第一,人脸识别技术。对人脸进行扫描,进而进行身份信息的识别和判断,通常所扫描的部位是人的眼睛或脸部结构。人脸识别技术通过局部放大,自动进行人脸部关键特征信息的收集、识别,通过调节亮度,提高识别结果的精准性。

第二,声音识别技术。通过对人的声音进行有效识别,以此来判断声音主体身份。声音识别技术运作原理为,从音色、音调、音质等层面,进行声音的辨别,并在系统中进行特征的记录和匹配,进而实现识别目的[2]。

第三,指纹识别技术。通过扫描人的指纹,进而进行身份的识别和判定。由于每个人与其他人的指纹并不相同,所以指纹识别技术十分先进,能够准确识别和判断个人身份信息。

2、计算机人工智能识别技术应用领域

20世纪60年代之后,随着计算机技术、信息技术和网络技术的快速革新,人工智能识别技术因此得到快速发展,其应用范围和领域不断扩大,逐步发展成为各行各业、各个领域的核心技术。

2.1、应用于机器人技术领域

研究表明,机器人技术源自于20世纪70年代,成为一种专业学科。同时,机器人技术被各个领域所使用,取得一系列显着应用成效。比如:机器人技术运用于外科手术中,机器人助手能够帮助外科手术医生进行手术,其应用范畴不断扩大。究其原因,机器人人工智能识别技术不仅能够减少组织成本性资金投入,而且有利于组织内外部风险的预防和规避。当然,尽管人工智能识别技术在机器人产业中的应用力度较大、范围较广,但是依然需要改进和完善。

2.2、应用于语音识别技术领域

语音识别,顾名思义就是通过某种特别手段和人工智能识别技术,让机器对人类的语言有一定的理解,并且能够产生识别、交互行为。长期以来,语音识别技术深受国内外学术界的高度重视。

语音识别类产品涉及面较广、服务领先,具有巨大交互优势。近年来,随着人工智能识别技术的快速发展,语音识别技术同样实现了较快发展,建立在语音识别技术之上的芯片越来越多,已然成为新时期人工智能识别与交互的核心内容。

2.3、应用于人工神经网络领域

人工神经网络简称为神经网络,是批量处理单元相互交织形成的一种特殊网络形态。神经网络基于人脑,是对人脑抽象活动的具体化、简单化和模拟化,与人脑基本功能极为相似。人工神经网络是通过对人脑活动、指令的模拟、效仿,并从中得到启发,进行批量单元信息的处理。人工神经网络中,神经元之间的相互作用便会产生信息处理过程。尽管人工神经网络并不能等同于人脑,也不能完全发挥出人脑所有作用,但是却能够通过人工智能识别技术帮助人类进行自动化、智能化事件的处理。

3、计算机人工智能识别技术的应用瓶颈

20世纪末,以密码、密钥等安全识别技术为主的信息、数据安全保障手段被广泛运用于各行各业、各个领域之中。然而,其具备一定的易复制性、丢失性、不稳定性,所以在一定程度上严重制约和影响到信息安全技术的发展。计算机人工智能识别技术基于计算机技术之上,通过对信息数据进行采集、识别和录入,能够为人们提供便捷的操作方法[3]。然而,我国计算机人工智能识别技术发展应用时间较短,尽管取得了一系列显着成效,应用范围不断扩大,但是其依然面临巨大的应用瓶颈问题。

3.1、语音人工智能识别技术应用瓶颈

语音人工智能识别技术旨在让机器能够读懂和识别出人类语言,并按照人类的指令进行一系列操作。语音人工智能识别技术作为计算机人工智能识别技术的一项核心技术,长期以来,深受国内外学术界的高度重视。与此同时,语音人工智能识别技术被广泛应用于各行各业、各个领域,其技术和产品优势十分鲜明,在语音电话、语音通信、语音交互等方面取得显着应用成效。21世纪以来,计算机人工智能识别类产品类型的不断增多,语音人工智能识别技术得到快速发展,以语音识别技术为载体的芯片数量日渐增多。然而,语音人工智能识别技术的发展时间较短,依然存在应用瓶颈问题,具体表现在以下三个方面:

(1)语音识别技术有待提升。语音识别技术实际应用过程中,必须尽可能排除外界环境的干扰,比如:外部其他噪声。唯有此,才能准确识别音色、音调、音质。尽管语音识别技术基本上实现了智能化,但是以目前的技术来讲,并无法在外部噪音的干扰下准确识别语音。如此一来,从一定程度上影响到语音识别技术的发展。因此,要想确保语音识别技术能够在外部噪音影响的情况下实现准确识别,必须采取特殊抗噪音麦克风,这对于普通用户来讲,基本上达不到该项要求。与此同时,用户在日常谈吐过程中,较为随意,具有明显的地方特色,加之语速、频率等控制影响较大,普通话不标准等问题,直接影响到语音识别设备对音色、音调、音质等的准确识别。除此之外,人们的语言受到年龄、情绪、身体素质等的影响,其音色、音调、音质随着自身及外部环境的变化而改变,直接给语音识别形成影响。因此,当前语音识别技术可靠性有待提升。

(2)语音识别系统不健全,词汇量较少。目前,我国计算机人工语音识别系统词汇量较少,在实际运行过程中,并不能识别到所有的音色、音调和音质。倘若语音模型有一定的限制,词汇中出现一些难以识别的方言、外语,那么语音识别系统将无法在较短的时间内准确识别出语音,甚至会出现识别错误、不准等情况。基于此,随着语音识别技术的不断发展,其应用范围的进一步扩大,需要进行其词汇量的增加,尽可能准确、快速识别出更多的语音,而建模方法、搜索算法的逐步变革,使得语音识别系统不能实现智能化识别,仅仅能够识别出基础的音色、音调和音质,对于其系统、深入、全面应用来讲,依然存在较多的瓶颈问题[4]。

(3)应用成本较高、体积较大。目前,我国计算机人工智能识别技术的应用范围不断扩大、应用领域不断增多,特别是语音识别技术的应用成效十分显着。然而,语音识别技术的应用成本依然很高,使得普通用户基本无法接受。就目前的发展情况来看,语音识别技术应用成本的降低似乎难度很大。对性能、功能要求较高的语音识别基本上无法实现,当前的条件并不成熟,无法实现规模化、系统化和全面化,仅仅能够准确识别要求标准较低的语音,而受到成本因素的制约,使得语音识别设备的研发和生产过程受到严重影响。与此同时,语音识别技术体积较大,占用较多的空间资源,巨型化向微型化发展作为语音识别技术未来发展的主要趋势。

而微型化语音识别设备的研发和生产,需要集成微电子芯片,当前的微电子芯片与语音识别技术关联并不密切,在实际操作过程中,微型化语音识别技术并无法在降低成本的同时得以实现,从一定程度上直接阻碍到语音识别技术的广泛推广和应用普及。

3.2、视觉人工智能识别技术应用瓶颈

视觉人工智能识别技术与语音人工智能识别技术相同,均作为计算机人工智能识别技术的重要组成部分。然而,视觉人工智能识别技术面临的应用瓶颈问题更为严重。通过进行相关信息数据的采集、传输、识别和处理,进而达到人工智能化的目的。常见的视觉人工智能识别技术有人脸识别技术、指纹识别技术等,下面重点阐述人脸识别技术和指纹识别技术应用瓶颈。

(1)人脸识别技术应用瓶颈。人脸识别技术主要通过对人脸结构、瞳孔等关键部位进行准确识别和有效判断。尽管人脸识别技术非常方便,便于人们进行身份的认证,但是在实际应用过程中,依然面临以下几个方面的瓶颈问题:一是由于人们脸部表情各不相同,即使同一人,其面部表情也随情绪、外部环境的变化而改变,数据库中的人脸表情数据十分有限,从而之间影响到人脸识别效果;二是人脸结构、轮廓均会跟随外部环境、个人情绪、年龄等发生改变,从而造成识别效果并不明显;三是受到外部环境,诸如光线之类的因素影响,人脸识别同样面临不确定性因素;四是人脸具有一定的雷同性,这就难免造成人脸识别设备的误判、误识。现阶段,人脸人工智能识别技术在我国相关领域已经取得一系列显着成效,但是在实际应用过程中,依然面临较大的瓶颈问题,比如:脸部表情、脸部轮廓、脸部结构、发型、化妆、外部光线等的不同,都将给人脸识别带来巨大的挑战和识别压力。国内外学术界专业学者经过几十年的研究和探索,从各个学科层面出发,对人脸智能识别技术展开了大量研究,但是依然有一些难以彻底解决的难题。就人类自身而言,在日常的生活交际过程中,对人们的面孔识别也难免会出现差错,而人脸智能识别技术跟人脑相比,依然有一定差距,其人脸识别过程更为困难,特别是精准度方面难以有效掌控,这将是制约和影响其发展的一大瓶颈问题。

(2)指纹识别技术应用瓶颈。人类的指纹是独一无二的,也就是说,世界上任何一个人的指纹与其他人均不相同。基于此,指纹识别技术应运而生,成为一种有效识别身份信息的高科技技术。

指纹识别技术通过对人们指纹断点、纹路、交叉点等进行准确识别,从而识别出人们独一无二的身份,有利于个人身份及其他私人信息的保护。然而,看似非常严密的指纹识别,却面临指纹被非法采集的问题,倘若一个人将指纹信息泄露出去,或者被他人所利用,那么其自身信息将容易被暴露、被利用[5]。如此一来,面临巨大的风险隐患。与此同时,尽管指纹识别系统采取非常先进的计算机人工智能识别技术,但是在实际应用过程中,某些人的指纹信息较为模糊,基本上无法看清纹路等,这将无法进行指纹的准确识别。例如:目前国内外大型公司所配置的签到打卡机,便是一种典型的指纹识别装置,便于公司掌握员工出勤情况,但是如果员工指纹损伤,那么将基本上不能被识别。由此可见,指纹识别技术在实际应用过程中,面临一系列瓶颈问题。

当前,人们在应用人脸识别技术和指纹识别技术过程中,基本上均使用计算机进行了密码的设置,但是从应用成效来看,并不显着,存在较大的弊端。这将需要继续对人脸识别和指纹识别技术进行改进、升级,进而来解决计算机人工智能识别技术应用瓶颈,有力推动其健康、持续发展。

参考文献:

[1]杨恒.计算机人工智能技术研究进展和应用分析[J].信息通信,2014(01):130.

[2]周娟.计算机人工智能识别技术应用瓶颈分析[J].软件导刊,2014(09):28~29.

[3]刘乔辉.计算机人工智能识别技术的应用探讨[J].科技风,2016(04):121~122.

[4]黄鑫.分析计算机人工智能识别技术的应用瓶颈[J].数字技术与应用,2016(07):244.

[5]罗勇,向奕雪.计算机人工智能技术研究进展和应用分析[J].电子制作,2014(18):47.

“人工”智能作文1000字

1000作文1000字作文100作文1000智能100人工100%

信息时代已经来临,信息的更替以及数码产品的研发也有如“长江后浪推前浪”般迅速,人们的生活也逐渐离不开科技发展,离不开人工智能,这不禁会引起我们的反思。苹果总裁库克曾经在一个新品发布会上表明他担心人心最后会由于人工智能的普遍而变得像机器一样冰冷,担心人工智能的人性化正在加速促进着人类的机械化,最终人们会失去价值观和同情心……

我觉得库克的担心不无道理,我们首先要清楚,人工智能是什么?我认为人工智能是一种给机器定义公式,并由其实行以达到模拟或扩展人类智能高新的技术。人们马不停蹄地加速着科技的发展,以便它能作用于人工智能。同时也能看出,人工智能在科技界属于尖端的技术。在这门技术中,人类是定义者,而机器是实行者,所以人类总是超前于人工智能一小步。而这小小的一步,我认为会成为人类意识到对于人工智能的过于依赖时,及时回头的重要一步。

前段时间,多名全国围棋大师向阿尔法狗开战,可是都以失败告终。阿尔法狗是人工智能的产物,它的胜利也表示着人工智能在某些层面上的胜利。还比如说,著名科幻小说《三体》的作者刘慈欣曾在书中提到过一支被“思想钢印”的军队。他们的脑子里被印刻着“人类必胜”的观念。最终却因一个负号全盘皆崩,功亏一篑。

阿尔法狗的事例体现了人类在思维的缜密性和计算力上比不过人工智能。而在那支军队里,人类自己同时扮演着定义者和实行者的角色,这已超越了人工智能的范畴,却是在用着人工智能的技术,最后的结局体现了人工智能的不容错误性。

这些都是人工智能的特征,它们不应该出现在人类的思想中。一个人的思维如果极其缜密,那么他势必要浪费掉许许多多的时间和精力,因为现实发生的情况只会是其中的一种,剩下的想法都显得多余且无用,有时甚至还会对选择造成反面的影响。另外,如果不允许一个人犯错也就是阻碍了一个人的进步。我们在一次次失败中成长,没有了失败,何谈成长?

因此,我认为我们应该充分利用人工智能这个平台、这种技术来达成我们想要的效果,而不是过度的依赖于它。这种优秀的工具应该被用来促进人类对自己的探索,而不是止步不前,停滞于此。

从结果的角度来看,我认为人们逐渐失去价值观和同情心的原因在于快节奏的生活环境下,人们过于依赖人工智能的高效与便利。同时也是社会经济高速发展需求的必然产物。即使没有了人工智能这样高效的工具,也势必会有另一种可以代替人工智能的工具出现。所以,我们既要感谢人工智能带来的便利,也要意识到人工智能可能带来的危机;我们应该不断地学习和创新,秉持探索的精神,以批判的眼光来看待事物,让人工智能更好的为人所用。

【“人工”智能作文1000字合集】相关文章:

1.高考必考的100个文学常识【精选3篇】

2.我的爸爸二年级作文100个字【精选5篇】

3.我的旅游日记100个字

4.五一劳动节100个字日记

5.日记写对妈妈说的话100字10篇

6.春节日记100个字

7.看电视日记100个字

8.北京日记100个字

《“人工”智能作文1000字.doc》将本文的Word文档下载到电脑,方便收藏和打印推荐度:点击下载文档

文档为doc格式

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇