博舍

智能化下半场:轻量化人工智能兴起 人工智能兴起的时间

智能化下半场:轻量化人工智能兴起

人工智能(AI)技术在行业应用中,大多依赖海量的训练数据和大规模服务器的算力支持,存储暴涨、数据堰塞、隐私泄露、能耗高企等问题也随之而来。随着近5年来摩尔定律的逐步放缓,IT硬件的发展愈发难以满足当前人工智能模型动辄万亿级规模的存储和算力需求。因此,当前对人工智能设备和应用的快速响应、隐私保护以及节能减排的需求越发凸显。如何将人工智能模型及其计算载体前端化、轻量化,成为亟待解决的问题。 

轻量化人工智能(TinyAI)的兴起正在改变这一点。 

TinyAI让AI更普惠、更主流 

剖析智能化应用,我们可以看到,人工智能使能架构是由芯片(硬件)、AI操作系统(深度学习框架平台)和算法三个部分组成。而TinyAI恰是以一系列轻量化技术为驱动提高芯片、平台和算法的效率,在更紧密的物理空间上实现低功耗的人工智能训练和应用部署,不需要依赖与云端交互就能实现智能化操作。 

轻量化人工智能所带来的突破是显而易见的。《麻省理工科技评论》在2020年将“TinyAI”列为“全球十大突破性技术”,其在评选理由中写到:“轻量化智能使现有的服务比如语音助手、手机拍照等变得更好更快,不必每次都需要连接云端才能运行深度学习模型;此外,轻量化人工智能也将使新的应用成为可能,比如基于移动端的医学检测分析、对反应时间要求更快的自动驾驶汽车;最后,本地化的人工智能更利于隐私保护,用户的数据不再需要离开设备就能实现服务功能的进化。” 

更重要的是,TinyAI将人工智能推向更主流,它大大降低了AI系统的部署难度和成本,把AI从一场高门槛的科技巨头竞赛变成普惠民生的智能生态。 

在人工智能领域的角逐中,以“轻量化”为赛点的下半场已经来临。 

TinyAI的外“减”内“加” 

TinyAI对外表现是在做减法,降低能耗、降低对硬件平台性能指标的要求、降低与云端的通讯需求等,而实质上,轻量化的内核却是在做加法。产业需求决定了要完成的AI任务越来越复杂,轻量化人工智能必须通过加速运算效率、提高计算密度才能实现极致的效率。 

在精度接近无损的前提下,将AI模型及其计算载体微型化,是一个极具挑战性的任务,需要对神经网络轻量化设计、计算加速以及设计新的计算架构实现模型的硬件化。 

这需要从软件和硬件两方面来着手。软件方面,要进行模型和算法创新,通过轻量化模型设计、矩阵分解、稀疏表示、量化计算来实现模型的微型化和计算加速。而在硬件方面,则须通过流水线设计、存储模式设计等手段进行硬件架构的创新。 

虽然执行神经网络计算的是硬件,但神经网络结构和AI平台决定着计算量的大小和运算方式。所以,极致的轻量化必须是软件和硬件的协同轻量化:基于复杂的AI应用场景,将芯片、平台和算法充分结合以联合加速。 

首先,AI芯片作为人工智能的硬件载体,必须达到更高的性能、更高的效率、更低的功耗和更小的体积,足够平价高效的计算平台才能满足产业需求承载复杂的AI任务,并且使推理和运算从云端迁移到终端成为可能。 

其次,轻量化的AI平台需要以更低的功耗来训练和运行人工智能算法,最大化的发掘硬件的能力。 

最后,应用轻量化技术的神经网络模型以小规模、少运算量并保持良好的精度。 

AI三层使能架构决定了追求单一算法、平台或者芯片轻量化并不能最大化实现极致效率,而需要针对应用场景中复杂的AI计算系统全面去考虑,将三者进行协同轻量化。 

自动化所:TinyAI“先行者” 

2014年,在卷积神经网络大规模迈向应用之初,中国科学院自动化研究所(以下简称自动化所)就在国际AI顶会发表了多篇神经网络模型轻量化领域的重要论文,成为国际上最早开始AI轻量化研究的机构之一,相关成果引起包括英伟达公司创始人兼CEO黄仁勋等在内的诸多专家的广泛关注。 

自动化所很早就开始了软硬协同轻量化的技术研究,走在国际的前列。自动化所设计开发的轻量化AI平台QEngine及轻量化算法已经在数十万终端上部署。2019年,在国际神经信息处理系统大会(NeurIPS)上举行的MicroNetChallenge竞赛中,自动化所与ARM、IBM、高通、Xilinx等国际一流芯片公司同场竞技,设计的轻量化神经网络架构获得了图像类双冠军。 

2020年,自动化所自主研发的世界首款极低比特量化神经处理芯片(QNPU)成功流片,解决了芯片计算领域备受关注的“内存墙”难题,在芯片成本、功耗、计算结构、边缘计算等方面实现革命性变革。该芯片的面世,也标志着自动化所成为了全球为数不多的拥有“AI芯片—平台—算法”全栈轻量化AI技术机构之一。 

面向行业应用的TinyAI 

未来,以AI驱动的小型化设备会越来越多地出现在我们身边。同时,由AI芯片、平台和算法组成的TinyAI智能终端将始终围绕应用场景而生。 

对此,自动化所率先做了一些尝试。 

MCU单片机以低价低功耗的优势,在各种终端上有着大规模的应用。但是单片机的计算性能极低,一直不被看好是可以实现人工智能的硬件。自动化所在几元钱的STM32单片机上成功的部署了四十层网络的人脸检测模型,运行功耗仅800毫瓦,做了开创性的尝试——其背后就是基于TinyAI技术。 

在教育行业,自动化所的“轻量化指尖点读解决方案”颠覆了教育终端的人机互动模式,并成功突破硬件性能瓶颈,赋予低端硬件平台高端AI算力。 

在消费电子行业,自动化所设计的轻量化的算法及轻量化神经网络计算架构可有效实现暗光增强、超分辨率等,为手机终端、安防终端提供了影像增强效果。 

在电力行业,我国的输电线路覆盖广,野外自然环境复杂,检修维护作业危险系数高难度大。自动化所基于TinyAI研制的自主巡检无人机、缺陷识别分析便携终端、通道可视化智能感知摄像头等,具备多种智能识别、检测和分析功能,可有效保障输配电线路的安全和电力系统稳定。 

(作者系中国科学院自动化研究所南京人工智能芯片创新研究院副院长冷聪) 

新一代人工智能的发展与展望

    随着大数据、云计算等技术的飞速发展,人们生产生活的数据基础和信息环境得到了大幅提升,人工智能(AI)正在从专用智能迈向通用智能,进入了全新的发展阶段。国务院印发的《新一代人工智能发展规划》指出新一代人工智能相关学科发展、理论建模、技术创新、软硬件升级等整体推进,正在引发链式突破,推动经济社会各领域从数字化、网络化向智能化加速跃升。在4月10日“吴文俊人工智能科学技术奖”十周年颁奖盛典中,作为我国不确定性人工智能领域的主要开拓者、中国人工智能学会名誉理事长李德毅院士荣获“吴文俊人工智能最高成就奖”,并在大会上作题为《探索什么叫新一代人工智能》的报告,探讨了新一代人工智能的内涵和路径,引领着新一代人工智能的发展与展望。

    人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”,随后在20世纪50年代末和80年代初先后两次步入发展高峰,但因为技术瓶颈、应用成本等局限性而均掉入低谷。在信息技术的引领下,数据信息快速积累,运算能力大幅提升,人工智能发展环境发生了巨大变化,跨媒体智能、群体智能成为新的发展方向,以2006年深度学习模型的提出为标志,人工智能第三次站在了科技发展的浪潮之巅。

    当前,随着移动互联网、物联网、大数据、云计算和人工智能等新一代信息技术的加速迭代演进,人类社会与物理世界的二元结构正在进阶到人类社会、信息空间和物理世界的三元结构,人与人、机器与机器、人与机器的交流互动愈加频繁。在多源数据、多元应用和超算能力、算法模型的共同驱动下,传统以计算机智能为基础的、依赖于算力算法和数据的人工智能,强调通用学习和大规模训练集的机器学习,正逐渐朝着以开放性智能为基础、依赖于交互学习和记忆、基于推理和知识驱动的以混合认知模型为中心的新一代人工智能方向迈进。应该说,新一代人工智能的内核是“会学习”,相较于当下只是代码的重复简单执行,新一代人工智能则需要能够在学习过程中解决新的问题。其中,学习的条件是认知,学习的客体是知识,学习的形态是交互,学习的核心是理解,学习的结果是记忆……因此,学习是新一代人工智能解释解决现实问题的基础,记忆智能是新一代人工智能中多领域、多情景可计算智能的边界和约束。进而当人类进入和智能机器互动的时代,新一代人工智能需要与时俱进地持续学习,不断检视解决新的问题,帮助人机加深、加快从对态势的全息感知递进到对世界的多维认知。

    事实上,基于数据驱动型的传统人工智能,大多建立在“数据中立、算法公正和程序正义”三要素基础之上,而新一代人工智能更关注于交互能力,旨在通过设计“记忆”模块来模仿人脑,解决更灵活多变的实际问题,真正成为“不断学习、与时俱进”的人工智能。特别是人机交互支撑实现人机交叉融合与协同互动,目前已在多个领域取得了卓越成果,形成了多方面、多种类、多层次的应用。例如,在线客服可以实现全天候不间断服务,轻松解决用户咨询等问题,也可将棘手问题转交人工客服处理,降低了企业的管理成本;在智慧医疗领域,人工智能可以通过神经影像实现辅助智能诊断,帮助医生阅片,目前准确率已达95%以上,节省了大量的人力;2020年,在抗击疫情的过程中,新一代人工智能技术加速与交通、医疗、教育、应急等事务协作联动,在科技战“疫”中大显身手,助力疫情防控取得显著成效。

    未来已来,随着人工智能逐渐融入居民生活的方方面面,将继续在智慧医疗、自动驾驶、工业制造智能化等领域崭露头角。一是基于新一代人工智能的智慧医疗,将助力医院更好记录、存储和分析患者的健康信息,提供更加精准化和个性化的健康服务,显著提升医院的临床诊断精确度。二是通过将新一代人工智能运用于自动驾驶系统的感知、预测和决策等方面,重点解决车道协同、多车调度、传感器定位等问题,重新定义城市生活中人们的出行方式。三是由于我国工业向大型化、高速化、精细化、自主化发展,对高端大规模可编程自动化系统提出迫切需求,新一代人工智能将推动基于工业4.0发展纲领,以高度自动化的智能感知为核心,主动排除生产障碍,发展具备有适应性、资源效率、人机协同工程的智能工厂应运而生。总之,如何展望人工智能通过交互学习和记忆理解实现自编程和自成长,提升自主学习和人机交互的效率,将是未来研究着力发展的硬核领域,并加速新一代信息技术与智能制造深度融合,推动数字化转型走深走实,有信心、有能力去迎接下一场深刻产业变革的到来。

人工智能的三个发展阶段

人工智能的三个发展阶段1.人工智能的推理阶段(1950-1970)

这一阶段,大多数人认为,实现人工智能只需要赋予机器逻辑推理能力就可以,因此,机器只是具备了逻辑推理能力,并未达到智能化水平。

2.人工智能的知识工程阶段(1970-1990)

这一阶段,人们普遍认为,只有让机器学习知识之后才可以实现人工智能。在这种情况下,大量的专家系统被开发出来。但人们发现,给机器灌输已经总结好的知识并不是一件容易的事。

3.人工智能的数据挖掘阶段(2000-)

目前,已经提出的机器学习算法都得到了非常好的应用。深度学习技术获得了迅猛的进展。人们希望机器可以通过海量数据分析自动总结学习到知识,从而实现自身的智能化。

AI是这个时代的风口吗?

苹果公司CEO库克:“很多人都在讨论AI,我并不担心机器人会像人一样思考,我担心人像机器一样思考!”法国思想家帕斯卡:“人只不过是一根苇草,但他是一根能思想的苇草。”

雷军曾说过要顺势而为。“站在风口上,猪都能起飞。”

马云却说:“在风口上猪的确能起飞,但“风过去了,摔死的还是猪。”

雷军解释到:“任何人在任何的领域成功都需要一万个小时的苦练。大家千万不要忽略今天在空中飞的那些猪,他们都不只练了一万个小时,可能练了十万个小时以上。”

2021.2.27.byzhang

人工智能史上的二次低谷——第一次低谷

https://www.toutiao.com/a6654718358287548932/

 

2019-02-0611:05:58

人工智能的诞生:1943–1956

在20世纪40年代和50年代,来自不同领域(数学,心理学,工程学,经济学和政治学)的一批科学家开始探讨制造人工大脑的可能性。1956年,人工智能被确立为一门学科。

控制论与早期神经网络

最初的人工智能研究是30年代末到50年代初的一系列科学进展交汇的产物。神经学研究发现大脑是由神经元组成的电子网络,其激励电平只存在“有”和“无”两种状态,不存在中间状态。维纳的控制论描述了电子网络的控制和稳定性。克劳德•香农提出的信息论则描述了数字信号(即高低电平代表的二进制信号)。图灵的计算理论证明数字信号足以描述任何形式的计算。这些密切相关的想法暗示了构建电子大脑的可能性。

IBM702:第一代AI研究者使用的电脑

这一阶段的工作包括一些机器人的研发,例如W。GreyWalter的“乌龟(turtles)”,还有“约翰霍普金斯兽”(JohnsHopkinsBeast)。这些机器并未使用计算机,数字电路和符号推理;控制它们的是纯粹的模拟电路。

WalterPitts和WarrenMcCulloch分析了理想化的人工神经元网络,并且指出了它们进行简单逻辑运算的机制。他们是最早描述所谓“神经网络”的学者。马文•闵斯基是他们的学生,当时是一名24岁的研究生。1951年他与DeanEdmonds一道建造了第一台神经网络机,称为SNARC。在接下来的五十年中,闵斯基是AI领域最重要的领导者和创新者之一。

游戏AI

1951年,ChristopherStrachey使用曼彻斯特大学的FerrantiMark1机器写出了一个西洋跳棋(checkers)程序;DietrichPrinz则写出了一个国际象棋程序。ArthurSamuel在五十年代中期和六十年代初开发的国际象棋程序的棋力已经可以挑战具有相当水平的业余爱好者。游戏AI一直被认为是评价AI进展的一种标准。

图灵测试

1950年,图灵发表了一篇划时代的论文,文中预言了创造出具有真正智能的机器的可能性。由于注意到“智能”这一概念难以确切定义,他提出了著名的图灵测试:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。这一简化使得图灵能够令人信服地说明“思考的机器”是可能的。论文中还回答了对这一假说的各种常见质疑。图灵测试是人工智能哲学方面第一个严肃的提案。

图灵测试

符号推理与“逻辑理论家”程序

50年代中期,随着数字计算机的兴起,一些科学家直觉地感到可以进行数字操作的机器也应当可以进行符号操作,而符号操作可能是人类思维的本质。这是创造智能机器的一条新路。

1955年,Newell和(后来荣获诺贝尔奖的)Simon在J.C.Shaw的协助下开发了“逻辑理论家(LogicTheorist)”。这个程序能够证明《数学原理》中前52个定理中的38个,其中某些证明比原著更加新颖和精巧。Simon认为他们已经“解决了神秘的心/身问题,解释了物质构成的系统如何获得心灵的性质。”(这一断言的哲学立场后来被JohnSearle称为“强人工智能”,即机器可以像人一样具有思想。)

1956年达特茅斯会议:AI的诞生

1956年达特矛斯会议的组织者是MarvinMinsky,约翰•麦卡锡和另两位资深科学家ClaudeShannon以及NathanRochester,后者来自IBM。会议提出的断言之一是“学习或者智能的任何其他特性的每一个方面都应能被精确地加以描述,使得机器可以对其进行模拟。”与会者包括RaySolomonoff,OliverSelfridge,TrenchardMore,ArthurSamuel,Newell和Simon,他们中的每一位都将在AI研究的第一个十年中作出重要贡献。会上纽厄尔和西蒙讨论了“逻辑理论家”,而麦卡锡则说服与会者接受“人工智能”一词作为本领域的名称。1956年达特矛斯会议上AI的名称和任务得以确定,同时出现了最初的成就和最早的一批研究者,因此这一事件被广泛承认为AI诞生的标志。

黄金年代:1956–1974

达特茅斯会议之后的数年是大发现的时代。对许多人而言,这一阶段开发出的程序堪称神奇:计算机可以解决代数应用题,证明几何定理,学习和使用英语。当时大多数人几乎无法相信机器能够如此“智能”。研究者们在私下的交流和公开发表的论文中表达出相当乐观的情绪,认为具有完全智能的机器将在二十年内出现。ARPA(国防高等研究计划署)等政府机构向这一新兴领域投入了大笔资金。从50年代后期到60年代涌现了大批成功的AI程序和新的研究方向。下面列举其中最具影响的几个。

搜索式推理

许多AI程序使用相同的基本算法。为实现一个目标(例如赢得游戏或证明定理),它们一步步地前进,就像在迷宫中寻找出路一般;如果遇到了死胡同则进行回溯。这就是“搜索式推理”。

这一思想遇到的主要困难是,在很多问题中,“迷宫”里可能的线路总数是一个天文数字(所谓“指数爆炸”)。研究者使用启发式算法去掉那些不太可能导出正确答案的支路,从而缩小搜索范围。Newell和Simon试图通过其“通用解题器(GeneralProblemSolver)”程序,将这一算法推广到一般情形。另一些基于搜索算法证明几何与代数问题的程序也给人们留下了深刻印象,例如HerbertGelernter的几何定理证明机(1958)和Minsky的学生JamesSlagle开发的SAINT(1961)。还有一些程序通过搜索目标和子目标作出决策,如斯坦福大学为控制机器人Shakey而开发的STRIPS系统。

自然语言

AI研究的一个重要目标是使计算机能够通过自然语言(例如英语)进行交流。早期的一个成功范例是DanielBobrow的程序STUDENT,它能够解决高中程度的代数应用题。如果用节点表示语义概念(例如“房子”,“门”),用节点间的连线表示语义关系(例如“有—一个”),就可以构造出“语义网(semanticnet)”。第一个使用语义网的AI程序由RossQuillian开发;[54]而最为成功(也是最有争议)的一个则是RogerSchank的“概念关联(ConceptualDependency)”。JosephWeizenbaum的ELIZA是第一个聊天机器人,可能也是最有趣的会说英语的程序。与ELIZA“聊天”的用户有时会误以为自己是在和人类,而不是和一个程序,交谈。但是实际上ELIZA根本不知道自己在说什么。它只是按固定套路作答,或者用符合语法的方式将问题复述一遍。

自然语言

微世界

60年代后期,麻省理工大学AI实验室的MarvinMinsky和SeymourPapert建议AI研究者们专注于被称为“微世界”的简单场景。他们指出在成熟的学科中往往使用简化模型帮助基本原则的理解,例如物理学中的光滑平面和完美刚体。许多这类研究的场景是“积木世界”,其中包括一个平面,上面摆放着一些不同形状,尺寸和颜色的积木。在这一指导思想下,GeraldSussman(研究组长),AdolfoGuzman,DavidWaltz(“约束传播(constraintpropagation)”的提出者),特别是PatrickWinston等人在机器视觉领域作出了创造性贡献。同时,Minsky和Papert制作了一个会搭积木的机器臂,从而将“积木世界”变为现实。微世界程序的最高成就是TerryWinograd的SHRDLU,它能用普通的英语句子与人交流,还能作出决策并执行操作。

乐观思潮

第一代AI研究者们曾作出了如下预言:

1958年,H.A.Simon,AllenNewell:“十年之内,数字计算机将成为国际象棋世界冠军。”“十年之内,数字计算机将发现并证明一个重要的数学定理。”

1965年,H.A.Simon:“二十年内,机器将能完成人能做到的一切工作。”

1967年,MarvinMinsky:“一代之内……创造‘人工智能’的问题将获得实质上的解决。”

1970年,MarvinMinsky:“在三到八年的时间里我们将得到一台具有人类平均智能的机器。”

经费

1963年6月,MIT从新建立的ARPA(即后来的DARPA,国防高等研究计划局)获得了二百二十万美元经费,用于资助MAC工程,其中包括Minsky和McCarthy五年前建立的AI研究组。此后ARPA每年提供三百万美元,直到七十年代为止。ARPA还对Newell和Simon在卡内基梅隆大学的工作组以及斯坦福大学AI项目(由JohnMcCarthy于1963年创建)进行类似的资助。另一个重要的AI实验室于1965年由DonaldMichie在爱丁堡大学建立。[65]在接下来的许多年间,这四个研究机构一直是AI学术界的研究(和经费)中心。经费几乎是无条件地提供的:时任ARPA主任的J.C.R.Licklider相信他的组织应该“资助人,而不是项目”,并且允许研究者去做任何感兴趣的方向。这导致了MIT无约无束的研究氛围及其hacker文化的形成,但是好景不长。

第一次AI低谷:1974–1980

到了70年代,AI开始遭遇批评,随之而来的还有资金上的困难。AI研究者们对其课题的难度未能作出正确判断:此前的过于乐观使人们期望过高,当承诺无法兑现时,对AI的资助就缩减或取消了。同时,由于MarvinMinsky对感知器的激烈批评,联结主义(即神经网络)销声匿迹了十年。70年代后期,尽管遭遇了公众的误解,AI在逻辑编程,常识推理等一些领域还是有所进展。

问题

70年代初,AI遭遇了瓶颈。即使是最杰出的AI程序也只能解决它们尝试解决的问题中最简单的一部分,也就是说所有的AI程序都只是“玩具”。AI研究者们遭遇了无法克服的基础性障碍。尽管某些局限后来被成功突破,但许多至今仍无法满意地解决。

计算机的运算能力

当时的计算机有限的内存和处理速度不足以解决任何实际的AI问题。例如,RossQuillian在自然语言方面的研究结果只能用一个含二十个单词的词汇表进行演示,因为内存只能容纳这么多。1976年HansMoravec指出,计算机离智能的要求还差上百万倍。他做了个类比:人工智能需要强大的计算能力,就像飞机需要大功率动力一样,低于一个门限时是无法实现的;但是随着能力的提升,问题逐渐会变得简单。

计算复杂性和指数爆炸

1972年RichardKarp根据StephenCook于1971年提出的Cook-Levin理论证明,许多问题只可能在指数时间内获解(即,计算时间与输入规模的幂成正比)。除了那些最简单的情况,这些问题的解决需要近乎无限长的时间。这就意味着AI中的许多玩具程序恐怕永远也不会发展为实用的系统。

常识与推理。许多重要的AI应用,例如机器视觉和自然语言,都需要大量对世界的认识信息。程序应该知道它在看什么,或者在说些什么。这要求程序对这个世界具有儿童水平的认识。研究者们很快发现这个要求太高了:1970年没人能够做出如此巨大的数据库,也没人知道一个程序怎样才能学到如此丰富的信息。

莫拉维克悖论

证明定理和解决几何问题对计算机而言相对容易,而一些看似简单的任务,如人脸识别或穿过屋子,实现起来却极端困难。这也是70年代中期机器视觉和机器人方面进展缓慢的原因。

框架和资格问题

采取逻辑观点的AI研究者们(例如JohnMcCarthy)发现,如果不对逻辑的结构进行调整,他们就无法对常见的涉及自动规划(planningordefaultreasoning)的推理进行表达。为解决这一问题,他们发展了新逻辑学(如非单调逻辑(non-monotoniclogics)和模态逻辑(modallogics))。

停止拨款

由于缺乏进展,对AI提供资助的机构(如英国政府,DARPA和NRC)对无方向的AI研究逐渐停止了资助。早在1966年ALPAC(AutomaticLanguageProcessingAdvisoryCommittee,自动语言处理顾问委员会)的报告中就有批评机器翻译进展的意味,预示了这一局面的来临。NRC(NationalResearchCouncil,美国国家科学委员会)在拨款二千万美元后停止资助。1973年Lighthill针对英国AI研究状况的报告批评了AI在实现其“宏伟目标”上的完全失败,并导致了英国AI研究的低潮(该报告特别提到了指数爆炸问题,以此作为AI失败的一个原因)。DARPA则对CMU的语音理解研究项目深感失望,从而取消了每年三百万美元的资助。到了1974年已经很难再找到对AI项目的资助。

HansMoravec将批评归咎于他的同行们不切实际的预言:“许多研究者落进了一张日益浮夸的网中”。还有一点,自从1969年Mansfield修正案通过后,DARPA被迫只资助“具有明确任务方向的研究,而不是无方向的基础研究”。60年代那种对自由探索的资助一去不复返;此后资金只提供给目标明确的特定项目,比如自动坦克,或者战役管理系统。

来自大学的批评

一些哲学家强烈反对AI研究者的主张。其中最早的一个是JohnLucas,他认为哥德尔不完备定理已经证明形式系统(例如计算机程序)不可能判断某些陈述的真理性,但是人类可以。HubertDreyfus讽刺六十年代AI界那些未实现的预言,并且批评AI的基础假设,认为人类推理实际上仅涉及少量“符号处理”,而大多是具体的,直觉的,下意识的“窍门(knowhow)”。JohnSearle于1980年提出“中文房间”实验,试图证明程序并不“理解”它所使用的符号,即所谓的“意向性(intentionality)”问题。Searle认为,如果符号对于机器而言没有意义,那么就不能认为机器是在“思考”。

AI研究者们并不太把这些批评当回事,因为它们似乎有些离题,而计算复杂性和“让程序具有常识”等问题则显得更加紧迫和严重。对于实际的计算机程序而言,“常识”和“意向性”的区别并不明显。Minsky提到Dreyfus和Searle时说,“他们误解了,所以应该忽略”。在MIT任教的Dreyfus遭到了AI阵营的冷遇:他后来说,AI研究者们“生怕被人看到在和我一起吃中饭”。ELIZA程序的作者JosephWeizenbaum感到他的同事们对待Dreyfus的态度不太专业,而且有些孩子气。虽然他直言不讳地反对Dreyfus的论点,但他“清楚地表明了他们待人的方式不对”。

Weizenbaum后来开始思考AI相关的伦理问题,起因是KennethColby开发了一个模仿医师的聊天机器人DOCTOR,并用它当作真正的医疗工具。二人发生争执;虽然Colby认为Weizenbaum对他的程序没有贡献,但这于事无补。1976年Weizenbaum出版著作《计算机的力量与人类的推理》,书中表示人工智能的滥用可能损害人类生命的价值。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇