博舍

李一鸣:人工智能在医学疾病诊断和治疗中的挑战与展望 人工智能在医疗方面的挑战和应用有哪些问题

李一鸣:人工智能在医学疾病诊断和治疗中的挑战与展望

在2018政府工作报告中,总理再一次强调:加强新一代人工智能研发应用。在澎湃的人工智能浪潮下,AI+医疗成为资本“兵家必争之地”,BAT等巨头也已布局入场。近期在深圳举办的2018第十届全国体外诊断产业高峰论坛上,深睿医疗联合创始人兼CTO李一鸣先生就“人工智能+医疗”话题发表了自己的观点,是人工智能,还是自动化技术的极致?是扩展人类的能力,还是复制人类的智慧?又是什么限制了在人工智能在医疗领域的真正落地?就大家关心的一系列问题,相关内容摘编如下:

 

- 人工智能面临的挑战 -

 

目前的很难克服的挑战在于:

 

第一,  人工智能系统迁移上的困难,迁移的意思如果对原始任务做了一些哪怕是微小的改动,但是这个改动触及了整个数据分布的变化,机器表现的性能都可能出现大幅度的下降。

第二,  常识推理的困难,这点在医学领域来讲非常关键,因为医学是需要寻证的,不能只告诉答案,但不告知为什么,从寻证角度来说必须要有一定认知和推理,而现在,系统在这方面的能力还达不到一个5岁孩子的程度,并且在这方面,目前还没有清晰的科学量化标准。

第三,  人工智能技术发展方向其实面临一个岔路口,比如现在比较火的概念“自动驾驶”,也包括现在的医疗。“自动驾驶”大家可以听到L3、L4不同级别的概念,它其实代表的是不同技术发展的方向,比如说可以在单一的任务上可以去替代人类,还是说在整体的情况下替代人类,这是完全不同的技术发展路径,想要在整体上替代人类,需要研发出来一套可以自我学习、自我理解、自我认知、自我推理的一套系统。如果说在简单或单一的任务上研发系统去胜过人类,更多的是把自动化做到极致。利用更好的技术,作为工具去辅助人类,目前这个鸿沟非常巨大,也是当下业界和学界主要分离的一个地方。

 

- 人工智能在医疗领域的价值和应用 -

 

为什么现在有这么多的公司和资本在向这方面倾斜?从技术角度来讲,医疗是人工智能落地最大或最好的场景。为什么?医疗在中国有个共识,我们面临着一些主要矛盾:人们的健康需求和高质量医疗服务之间的矛盾,也就说我们永远不能满足现有的医疗资源。本身我国的人均医生数目偏低,同时人均高质量医生的数目更低,整个面临的是需求不足的局面。

人工智能技术能发挥的价值

 

1、如果在单一的任务上能去替代人类,就意味着可以随着摩尔定律不停的去降低成本,而对于人的培养来说,其实很难找到一个显著的持续降低培训成本的方法。

2、技术提升效率,临床上的重复劳动,也包括那没有真正花在临床或诊断治疗上面的劳动,这些环节通过信息化和人工智能技术能够得到一定程度的解决,继而提升整个诊断和治疗的效率,整个过程也就间接的增加了优质医疗资源的供给。

3、从技术角度来说,保证了受众的公平性,因为它没有任何动因去做出任何不公平的决策,保证了城市和农村的患者都能够接受到一样的体验。

人工智能在医疗领域的应用

 

1、对医疗决策的支持。在医疗诊断、决策支持系统方面,人工智能的应用现在已经得到了明显的进展,包括影像阅片AI、临床问诊的环节知识库的优化,CDSS(临床决策支持系统即)等。

2、病人监护。在病人监护上布多种传感器,布了之后谁来分析谁来监控呢?这一块,一旦数据量大了之后,需求就会上升,这些恰恰通过人工智能技术得到很好的解决。

3、辅助手术。AI技术在图像和视频领域取得了很大的进步,这些很好的辅助了手术环节。

4、医疗系统管理。人工智能和大数据的结合能够优化医院信息管理,包括运营管理。

综上,人工智能在医疗领域可应用还是比较广泛的,这些有赖于和在市场打磨很久的公司去合作,相信能够取得非常好的结果。

 

- 人工智能在医疗系统面临的问题 -

 

其一、  医疗系统相对来说比较封闭,封闭的意思是隐私和伦理的问题,这个是很难跨越的关卡,因为人工智能首先要有数据,数据从哪里来?数据属于谁?如何合法合规的获取数据?目前来说没有很好的界定。

其二、  医疗是非常专业的事情,是有高门槛的,人工智能技术不仅依赖于数据,同时要求数据一定是有标注的,而数据的标注是必须通过专家或从业者提供,但这里又有个悖论,大家都知道现在医生都忙的不可开交了,尤其是优秀的医生,那标注数据让谁来标或让谁来生产呢,这个是限制人工智能在医疗领域落地的很重要的原因。

其三、 从政策或落地角度层面来说,怎么保证人工智能在医疗领域的应用是安全的,这个目前有挑战且有代表性的话题,包括国家药监局,审评中心都在不停的探讨,怎么去评价人工智能相关技术在医疗领域的安全性和以及后续如何监管。因为大家都知道人工智能技术迭代非常快,那按照我们现在的医疗器械的审批或周期,怎么能接受一个技术半年甚至以月为单位更新?大家要知道人工智能领域的论文基本上大家只看近一年的,超过一年的基本上可能已经失去了一些时效性,效果也往往不是领先的,这样更新迭代的速度对医疗领域来说都是非常大的挑战。

-人工智能在医疗领域的展望-

 

临床

人工智能临床诊断核心在于输入的两类数据,第一类是文本,第二类是图像。文本包括各种生化指标、心电图、问诊、触诊等这些相关数据;图像包括影像、形态学、病理等。在这两类信息和数据都已经得到的情况下,是可以给患者做诊断的,当然这里有个的闭环在里面的,它有个不停的test循环过程,包括收集、反馈、修正。从技术角度来说,如果将这两种数据做到非常好的处理和融合,将人对医疗保健方面的知识与经验和智能推理过程有效结合在一起,那么人工智能其实是有机会在诊断上发挥非常大的价值的。

 

医疗机器人

现在较火的医疗机器人在心脏搭桥、前列腺癌、关节替换等手术上都有应用。包括大家所熟知的达文西(daVinciSurgicalSystem)手术机器人,虽然最近美股跌的很惨,但是该公司的表现的还是不错的。这种机器人本质上来说应该叫机械手更合适些,因为它其实是替代医生的手臂进行的一些延申,它能够比人的定位更精确,更精巧,更灵活。事实上这是没有人工智能或自动化技术在里面的,但如果将手术机器人与自动化技术、人工智能技术相结合,其实能有效的去解决整个手术的标准化、成本、时间、效率方面的一些问题。

 

医疗数据分析

目前现状是数据少,而且不够标准,我们希望通过技术手段把现有的非标数据进行标准化,采集未能采集数据并标准化。这样最大的好处就是能够真正的进行医疗大数据的应用,实现人工智能的落地。应用层面包括医疗图像分析与疾病之间的联系;挖掘基因与病状之间的联系,预测治疗方案对个体的有效性;进行医院的系统管理,更准确的分析出针对个体诊断与治疗方案,甚至长期的科研和追踪。

人工智能在医疗健康方面的7项最新成果

人工智能的浪潮已经席卷世界范围内诸多领域,推动了众多科技成果问世,让我们一起来领略一下人工智能在医药健康领域都有哪些应用吧。

1哈佛大学:柔性外骨骼改善中风患者的行走

近日,来自哈佛大学的研究团队开发了一款基于人体下肢动力学而设计的柔性外骨骼设备,研究发表在最近的《ScienceTranslaTIonalMedicine》上。这款设备可以辅助中风患者在中风后漫长的恢复中进行活动,提供支撑力。外骨骼设备可以穿戴在患者已经部分瘫痪的下肢,减轻肢间的不对称,增加踝关节背屈,并减轻患者在跑步机和地面上行走所需要的能量。外骨骼可以进行调节,根据患者的需求,在步态周期的早期或者晚期提供支撑力。虽然,还需要进行长期的研究,但是通过外骨骼使得行走立刻就有显著的改善,对于中风患者的神经复健来说,是一个非常有希望的方式。

2可对话的机器人Woebot帮助缓解抑郁和焦虑

抑郁症和心理健康对于现代人来说是一个“幽灵”般的存在,当人与人的沟通显得有些难以进行的时候,智能机器人就可以来帮忙了。这款聊天机器人叫做Woebot,在旧金山Woebot实验室中被开发,通过FacebookMessenger运行,作为一个个体化的治疗师,它能帮助用户解决包括抑郁和焦虑在内的心理健康问题。Woebot通过人工智能与用户进行类似人与人之间的沟通对话,鼓励用户敞开心扉,进行情感的交流。通过与人工智能进行沟通,患者的症状得以减轻,相对于传统的治疗方法快了2倍。与医生不同,人工智能的专属治疗师,可以24小时提供帮助,在任何你需要的时候。

3人工智能帮助中风患者直立行走

来自瑞士和荷兰的研究人员开展了一个激动人心的项目,他们通过先进的人工智能软件和机械线束,设计了一款以智能辅助技术帮助中风和脊髓损伤患者重新走路的外部装备。研究同样发表在最近的《ScienceTranslaTIonalMedicine》上。团队设计了一种自适应算法,结合个性化的机器人线束,利用人工智能和机器人对使用者遇到的各种现实情况进行预判,计算和提供相应的向上或向前的支撑力,例如患者是沿直线行走,或是在波浪形的道路上,或者在下不规则的台阶,等等。在试验中,该技术被证明能够工作良好,给予相应的力量支援。这样的设备具有巨大的应用潜力,在未来,可能会成为康复中心临床日常应用的一部分。

4人工智能帮助防止猝死

心脏猝死每年会剥夺无数的生命,对于心脏猝死的预防,提高认识和筛查是至关重要的。AliveCor与MayoClinic联合开发了突破性人工智能技术,以帮助预防突发性心脏死亡。AliveCor是FDA批准的个人心电图(ECG)设备的技术领导者,此次与梅奥医学中心合作,开发了一项诊断工具,可用于医疗或个人非医疗条件下,对长QT症进行早期筛查。AliveCor的专利人工智能技术、先进的算法与数百万的ECGs,与梅奥医学中心的大数据和专业临床经验强强联合,在很大程度上提高了安全性,也降低了风险。AliverCor提供了可以购买的已经经过临床验证的FDA已批准的ECG设备,可以给患者提供心脏健康护理,这些ECG将会汇集大量的个人健康数据,而对这些数据的学习对于提高传统ECG的分析也非常的有意义。我们期待这样的人工智能最终能够造福更多的人,为人类健康提供更多的保障。

5人工智能可以为糖尿病人做些什么?

“Alexa,帮助管理我的糖尿病!”这个大胆的想法来自于今年早期默沙东公司发起的Alexa糖尿病挑战赛,参赛者需要将语音支持系统赋予新的功能,能够做情绪感知辅导、营养助手,还要如同侦探一般发现用户的风险行为。发明了知名糖尿病药物Januvia的默沙东Luminary实验室与亚马逊网络服务联合评选,从96份提交中选择了5位入围。在默沙东的长期计划中,要开发一种工具可以用于多种的慢性病管理,使用过于亚马逊Lex智能平台和语音支持Alexa的家用系统。移动端的APP在制药界非常平常,但是,这是第一个建立在语音支持家用系统上的挑战赛。也许,这些挑战者的设计转变成现实的产品还需要很多的努力,但是,越来越多的人将人工智能与健康联系起来,并热情的参与其中,这是一个非常好的开始。

6IBM与阿尔伯塔大学:脑成像如何预测精神分裂症

传统的精神分裂症依赖于主观的方法,现在IBM同阿尔伯塔大学的研究人员正在致力于改变这一现状。他们联合开发了机器学习算法,帮助科学家揭示,如何客观地通过脑成像来量化预测精神分裂症。精神分裂没有专一的测试方法,所以诊断需要通过观察症状,排除其他如滥用药物或其他精神障碍等潜在原因。虽然,科学家们观察到健康人的脑部成像与精神分裂症患者还是有着一定的差异,但是目前并不用以作为诊断的客观标准。研究人员使用机器学习算法来分析功能性磁共振成像(fMRI),对健康人、精神分裂症以及那些其他精神情感障碍人群进行了分析。研究团队利用机器学习创建了识别大脑与精神分裂症相关的模型,该算法可以在有无精神分裂的患者间达到74%的区分。人工智能在数据的支持和积累下,将会逐步完善。研究人员期待,未来他们的人工智能和机器学习能够用来分析更多的神经和精神疾病,帮助医生更好的评估和治疗患者。

7IBM沃森助力脑肿瘤全基因组测序的早期研究

人工智能的强大很大程度上在于它能够在短时间内学习和记忆大量的内容。IBM沃森对脑瘤的基因组数据以及叙述论文进行了学习,仅仅花了人类所需时间的一小部分。IBM公司与纽约基因组研究中心联合创建了一个版本的沃森超级计算机进行癌症基因组的研究。研究人员应用全基因组测序对胶质母细胞瘤的肿瘤DNA、肿瘤RNA以及患者的正常血液DNA进行了测序。肿瘤学专家和生物信息学家组成的团队花费了1.6个小时,对信息进行精炼。而沃森人工智能对基因组数据进行的处理,只用了10分钟便得出了与专家组“相似的结论”。

尽管人工智能的表现依然有着种种不足之处,但是,很多实验都向我们一次次的展示了其巨大的应用潜力。未来的健康领域,将有更多的数据需要快速的学习、筛选、整理和分析,人工智能在逐渐的成长中,一定会给人类带来更多的价值。

“人工智能+制造”的机遇与挑战

传统制造企业在全面实施“人工智能+制造”有困难时可以优先发展人工智能质量检测、预测性运营与维护、供应链管理等相对成熟的“人工智能+制造”应用。

人工智能技术可能是继蒸汽机、电力、互联网科技之后推动新一轮产业革命浪潮的革命性技术。在大量的数据、更好的算法和更强的算力的共同推动下,人工智能的应用已经在很多行业落地,逐渐渗透并开始带来实际的价值。

根据壹行研(InnovaReserch)的研究,在全球范围内,人工智能在先进制造、自动驾驶、医疗、金融、安防、电网、家居、零售等数据基础较好的行业的应用场景正在不断建立起来。相关案例包括:人工智能在金融行业的智能风险控制、智能投资顾问、市场预测、信用评级等领域的应用;在医疗领域,人工智能算法被应用到新药研制、辅助诊疗、癌症检测等方面;谷歌、百度、特斯拉、奥迪等新兴科技企业和传统汽车企业巨头纷纷进入人工智能辅助的自动驾驶领域;在制造业,人工智能可以帮助制造企业建立产品的设计模型、优化生产流程和工艺、提升生产效率、降低成本、提升质量。

“人工智能+制造”助力中国制造业升级转型

“人工智能+制造”是将人工智能技术应用到制造业,在自动化、数字化、网络化的基础上,实现智能化。其核心在于机器和系统实现自适应、自感知、自决策、自学习,以及能够自动反馈与调整。人工智能、工业互联网等相关技术的融合应用能逐步实现对制造业各流程环节效率优化。其主要路径是由工业物联网采集各种生产、物流等数据,放到云计算资源中,通过深度学习算法处理后提供流程、工艺等方面的优化建议,甚至实现自主优化,以及在未来实现人类工人与智能机器融合的协同制造。

中国是制造大国,人工智能在制造领域的应用备受重视。2017年12月16日,工业和信息化部发布《促进新一代人工智能产业发展三年行动计划(2018—2020年)》(以下简称《行动计划》),提出鼓励新一代人工智能技术在工业领域各环节的探索应用,提升智能制造关键技术装备创新能力,培育推广智能制造新模式。《行动计划》还进一步提出了加快应用人工智能技术进行制造业改造升级的具体任务,为我国智能制造的深化发展提供有力的支撑。

目前,中国的制造业面临内部和外部多种压力。来自内部的影响包括劳动力成本上升、原材料成本上升、环境压力和市场饱和。外部压力一方面来自西方发达国家的贸易摩擦、关税壁垒、技术封锁、设备和关键零部件禁运等,另一方面来自印度、东南亚低成本新兴国家的竞争。在内部、外部压力越来越大的情况下,提升效率、保证质量、降低成本和节能环保等成为中国制造业升级转型的方向,而人工智能技术在制造业的应用将会助力中国制造业实现这些升级转型的目标。

“人工智能+制造”的机遇与挑战

“人工智能+制造”是中国制造业升级转型的一个重要途径。将人工智能技术用于制造业将有效提高生产效率;实现柔性化生产;提高产品质量,降低人为错误;持续工艺改善,提升成品率,并降低生产成本。未来几年,中国制造业转型升级的巨大需求可以为“人工智能+制造”市场的拓展提供极好的机遇。不过,“人工智能+制造”机遇与挑战并存。

一方面,近年来全球人工智能应用不断拓展,人工智能领域的资金投入迅速增长,人工智能的数据、算力和算法都取得很大的进步,技术可行性越来越高。大数据相关技术在数据输入、储存、清洗、整合等方面作出了贡献,帮助提升了人工智能深度学习等算法的性能。云计算的大规模并行和分布式计算能力带来了低成本、高效率的计算力。

物联网和通信技术的持续发展也为“人工智能+制造”的发展提供了重要的基础设施。在未来5G等无线互联技术的支持下,数据的传输与处理速度将进一步提升。同时,传感器、无线传感网络等技术的发展帮助“人工智能+制造”系统收集大量的制造流程、物流等数据,高质量的海量数据对人工智能数据训练至关重要。总体而言,上述技术的发展使得人工智能赖以学习的标记数据获得的成本在不断下降。

算力增长也为“人工智能+制造”的应用提供了条件。在过去10年间,芯片处理能力提升、云服务普及以及硬件价格下降使计算能力大幅提升。成本不断下降以及算力的提高为“人工智能+制造”的实施提供了保障。

另一方面,中国发展“人工智能+制造”还面临诸多挑战。这表现在以下几点:

首先,关键技术自主能力弱。在“人工智能+制造”所涉及的关键技术上,我国的自主能力还比较弱。相关技术包括半导体芯片、核心装备部件、相关软件、算法等。这些关键技术,尤其是芯片等基础技术,需要大量的人力、物力投入以及长期的技术积累和经验沉淀,短时间内难以突破。

其次,传统制造业的管理模式陈旧。传统制造企业的根基起源于工业时代的大规模、标准化生产,其管理模式仍然以金字塔、多层次、细分化为主。这种企业管理模式灵活性差,较难适应快速变动的制造任务和客户需求。未来,人工智能的实施需要人机协同、人机分工,组织管理也需要更灵活、更高效。为了适应这种变化,很多传统制造企业的管理模式需要改变。

再则,资本投入不足。虽然人工智能行业吸引很多资本涌入,但在“人工智能+制造”应用领域的资本投入比较少。这主要是由于传统制造业利润普遍不高,而传统制造企业的改造升级涉及大量的设备、软件和硬件更新与改造,需要长期、大量的资本投入,投资周期长,短期效益很难显现。因此,虽然“人工智能+制造”的概念深入人心,但真正拿出真金白银投入的相对较少。

最后,制造业细分领域众多,每个细分的行业标准不一。即使在同一制造业领域,企业情况也是千差万别的。因此,“人工智能+制造”项目实施面临的情况十分复杂,没有什么统一的标准可言。例如,在企业车间往往有大量不同厂牌的数字化机床和其他工业自动化产品,涉及很多不同的工业以太网和现场总线标准,厂家软硬件不兼容的情况非常普遍。由于数据格式不兼容,只是进行设备改造,将底层数据收集上来就要花费很多时间和精力,还需要对这些数据进行清洗和转化。对传统制造企业来说,相关标准缺少和复杂的生产线现状使得实施“人工智能+制造”困难重重。

从相对成熟的“人工智能+制造”场景入手

“人工智能+制造”实施投入大,传统制造企业实施相关项目的复杂程度较高。不过,壹行研(InnovaResearch)研究发现,在众多的“人工智能+制造”应用场景中有一些技术相对成熟,并有了相当数量的项目落地。这些相对成熟的“人工智能+制造”的应用主要包括以下几种。

●质量检测

电子制造、汽车等行业工序复杂,在线检测的环节比较多,需要对产品进行大量的、基于视觉识别的质量检测、缺陷检查等。传统的质量检测以人工为主,人工识别精度有限,检测速度慢、误差大、成本高,工人长时间工作容易疲劳,容易出现次品漏检现象。另外,工人经验很难量化,工人流动性高,经验难以积累,难以指导生产线优化,而培训工人的时间较长、花费较高。

使用工业相机或高清摄像头捕捉产品组件、电路模块等在生产和组装过程中的图像和视频,可以提供给人工智能软件进行分析判断。在开始时用人工检查员进行二次检查和确认,人工智能技术可对当前和历史数据进行智能分析与处理,而人工的判断可以反过来帮助人工智能完善算法,指导人工智能系统持续学习。该系统的检测准确率能随着经验积累而持续改善。

例如,腾讯云帮助福耀玻璃工业集团股份有限公司实现了质量检测工序替代80%的人力,并且不良品检出率为90%以上。该系统使用的视觉洞察(VisualInsights)技术,前端使用高清摄像头,后端使用人工智能算法。云端处理器通过训练不断识别合格和异常产品图像的差异,进行快速学习、训练,并完成人工智能算法的建模。

又如,日本NEC公司推出的机器视觉检测系统可以逐一检测生产线上的产品,从视觉上判别金属、人工树脂、塑胶等多种材质产品的各类缺陷,从而快速检测出不合格品并指导生产线进行分拣,在降低人工成本的同时提升出厂产品的合格率。

人工智能视觉检测可以最终实现无须人力的机器自主质检,且全天候无间断。目前,人工智能视觉检测过程用时已经可以做到比人工检测时间缩短80%,有效节约了检测的人工成本。另外,计算机视觉检测精准度高,可以检测到肉眼无法检测的微小瑕疵,且判断标准一致,保持了检测过程的一致性。

人工智能检测在电子、汽车等制造行业的质量控制环节应用越来越广泛。在有些案例中,使用人工智能结合物联网和大数据技术已经能够实现把产品质量的自动监控扩展到整个生产流程。这不仅能提高质量检测效率,还能指导工艺、流程等改善,提高整体良品率。

●预测性运营与维护

传统上,工厂流水线车间一直采用被动式维护,只是在设备产生故障之后,才采取一定的措施来修理,也有采用工人定期巡检的方式来发现问题。这些维护方式过度依靠人工,且效率低下。

基于人工智能的预测性运维系统可以利用机器学习、处理设备的历史数据和实时数据,搭建预警模式,提前更换即将损坏的部件,从而有效地避免机器故障的发生。企业可以借助人工智能运维系统来减少设备故障和由此带来的损失,提高设备利用效率。

例如,美国初创企业Uptake公司凭借大数据、人工智能等技术提供端到端服务,以工业设备故障预测分析、性能优化为主营业务。国内科技创新型企业智擎信息技术(北京)有限公司的故障预测解决方案也可以提前2~4天预判故障,从而降低运维成本和备品备件库存成本,提升设备可利用率和整体运转性能。此外,还有公司推出基于人工智能的轴承健康状态感知系统,利用深度学习方法对轴与轴承部件的状态参数进行大量的历史数据分析,判断轴承的运行寿命。这项技术使设备年平均大修次数降低67%,系统诊断及维护响应时间少于1小时,从而大大缩短了维护周期,提高了设备利用率。

●供应链管理

电子等制造行业的零部件供应商来自全球各地,供应链比较长,涉及的元器件种类和分销渠道的流通环节非常多,容易受到国际政治、天灾人祸等因素的影响。传统供应链管理的效率低、流通成本高、需求预测不准、供应响应不足、应对供应链波动的能力不足、厂商的库存管理成本比较高。

供应链管理落后可能带来巨大损失。例如,2018年上半年存储芯片、硅片、贴片电容(MLCC)全线短缺,价格疯涨,很多电子制造业OEM厂商付出几倍甚至几十倍的价格购买芯片,甚至因为元器件缺货造成一些厂商生产线停产。

使用机器学习深入研究供应管理环节,分析需求、计划和库存,建立实时、精准匹配的供需关系,通过掌握和预测需求动态变化能够有效地促进供应链调整优化。借助人工智能,可以帮助制造业企业实施多级库存、计划生产等库存动态调整,最终实现采购和补货的半自动甚至全自动化。

人工智能可以基于大数据进行需求预测,这些大数据不仅来自供应链内部的各个环节,还来自行业外的数据,如贸易促销、媒体活动、新产品发布、季节性变化,甚至气候数据预测等。一些公司还利用机器学习算法识别需求模式,其手段是将仓库、企业资源计划(ERP)系统与客户洞察的数据合并利用,使用人工智能算法进行有效分析和判断。

在供应链运营方面,美国多式联运运输公司罗宾逊全球物流(C.H.Robinson)针对卡车货运的运营需求开发了用于预测价格的机器学习模型。模型既整合了不同路线货运定价的历史数据,又将天气、交通以及社会经济突发因素等实时参数加入其中,为每一次货运交易估算出公平的交易价格,在确保运输任务规划合理的前提下实现企业利润的最大化。

用人工智能进行供应链管理和预测可以有效地减少预测误差、提高库存周转率,并能有效地优化库存分布。人工智能掌握和预测需求的动态变化,尤其适合于电子制造、汽车及相关零配件、食品饮料等市场需求变动较大、供应链体系复杂的行业。

综上所述,“人工智能+制造”是中国制造业转型升级的重要途径,其发展的机遇与挑战并存。传统制造企业在全面实施“人工智能+制造”有困难时可以优先发展人工智能质量检测、预测性运营与维护、供应链管理等相对成熟的“人工智能+制造”应用,实现“人工智能+制造”的单点突破。这些系统可以独立运作,带来实实在在的收益,也可以在未来并入“人工智能+制造”大系统。

厉俊,壹行研(InnovaResearch)创始人、总经理。壹行研是领先的、专注于新技术的行业研究公司,研究领域涵盖新材料、新能源、工业互联网和机器人、电动汽车和储能等。

作者:厉俊

本文来自《张江科技评论》

人工智能在教育领域中的应用面临哪些问题和挑战

再比如说,可以了解你的学习能力的情况,可以对你的学习负担提供各种监测,当然这个是要遵循伦理,研究伦理的前提下,可以通过对你的数据和你的表情的分析知道你处在疲劳状态,处在轻生状态,这个在研究里面已经在做了,当然这个前提要尊重个人隐私、伦理的前提下,监测学生的上课状态。如果你过分疲劳,对学习效率很低的。

再比如说可以通过人工智能和虚拟现实结合,提供增强性的虚拟探究环境,供学习者进行探究,进行发现,比如再通过一个虚拟环境,可以回到两千年前去发掘那个时代的历史以及历史演化的过程,智能加虚拟现实结合。等等,人工智能可以在学习环境、学习过程上提供非常多的很好的支持。

第三,人工智能可以对学习过程的评价起到非常重要的作用。他可以分析出你在学习过程中对哪些知识掌握的情况,每个知识点上学科能力的情况,你的核心素养的情况,以及你的体质健康发展情况、心理健康发展情况,可以使得我们的教育评价从单一的学科知识的评价到全面的综合性的评价,可以使得我们的评价从以前只是期末一次考试变成过程性的评价,可以嵌入到你的学习过程中,对学习者进行一些评价,而且评价不仅仅是评价你的知识,还可以评价你的问题解决能力方面。

另外,这种评价可以使得老师的工作大幅度减轻。以前我们只是由人工来做各种各样的评分、观察,需要很大的工作量,现在人工智能可以由计算机进行自动测评,比如英语口语测试,现在已经产业化了,都已经实用化了,很多中考、高考的英语考试都是用实际的系统。

另外,英语作文的批改,现在基本上实用化了,在实验室里面,我们的问答题、论述题、作文题,这些主观题的批改,也已经取得了实质性的进步。今后这方面会取得实质性的突破。取得实质性突破以后,我们老师改作业,统计分数,这些工作就会大幅度降低。人工智能会在教育评价上发挥非常重要的作用。

另外,人工智能对教师的工作可以起到非常重要的作用,起到教师助理的作用。比如,智能出题、智能批改、智能阅卷、智能化的辅导,各种评价报告的自动生成,以及针对学生因人而异的给学生提供各种反馈,像现在我们老师面对一个班,可能面对40个-50个学生,他很难,以前很难做到每个学生都给个性化的反馈,因为他的时间精力不允许,他也不可能了解每个孩子的具体情况,但是现在基于人工智能的技术,我们完全可以了解到孩子在学习过程中存在的各种问题,在人工智能的帮助下,可以根据不同的问题,每个学生提供个性化的反馈,实现对学生个性化的支持,做到既具有规模化,又做到个性化,这是我们中国教育现代化2035所追求的目标。

中国教育现代化2035提出,我们要推进兼容个性化和规模化并重的教育。这个时候人工智能可以大幅度提高老师对学生个性化支持的一种能力,降低教师工作过程中的负担。

第五,人工智能还可以在我们的教育决策、教育管理,以及教育公共服务方面,起到非常重要的作用。比如,人工智能可以使得我们的教育公共服务,从面向群体到面向个体,比如政府,要提供教育公共服务,以前只能面对群体来提供,现在有了人工智能以后可以了解学生个性化的需求,通过网络提供个性化的教育公共服务,相比北京市,北京市有一个中学教师开放性辅导计划,这个计划就是我们在支持,在运行。

它的核心工作就是动员了10788个骨干教师常态性的在网上给学生提供一对一的答疑服务,以及直播课的服务,以及问题解答的服务,以及微课共享的服务。在这个过程中,每个学生在学校里面都有个性化的需要,这种个性化的需要以前是政府不解决的,而现在有了大数据,有了人工智能,有了互联网以后,可以使得政府可以购买教师的在线服务,给学生提供个性化内容的服务,使得我们教育公共服务更个性化。

第二,我们有了学习过程中的各种数据,以及我们办学过程之中的数据,可以使得我们的决策不再只是基于我们个体经验,而是有个体的经验加上科学的数据结合,人机结合的决策,可以使得我们的管理,我们现代教育的治理更加科学、更加精准,也更加符合我们现在民众利益主体,参与度越来越高的诉求,可以大幅度提升政府的现代教育治理的功能。

第三,还可以促进教育对各种环境的集成管控,可以实现把一些隐患的问题,在事情还没有发生之前就可以事先进行预测、进行管控。比如,刚才举的例子,校园外的一些不法分子,完全可以通过数据甄别出来,可以在一些事情上没有被发生之前就可以预测。再比如说校园的各种公共设施,如果出现了小的漏洞,小的漏洞完全可以及时通过人工智能技术集成联通以后,集成远程控制,及时发现。不是等小事情酿成大事情再进行补救,从事后补救变成事前监管,事前预警。实际上人工智能在这五个方面都可以发挥很多很多的作用。

主持人刚刚余教授听您在人工智能教育领域方面的应用非常广泛。但是可能很多人跟我有一样担心,人工智能现在在教学领域能发挥这么大的作用,未来会不会真的把老师取代了?和教师之间会存在一种什么样的关系?是合作还是相辅相承?

余胜泉

教师永远不会被取代。因为我们教师是促进人的成长,有两个职能,一个是教书的职能,一个是育人的职能。今后如果只是知识性的讲授,知识性的传授的工作,会越来越多的被人工智能所提高效率,但是完全取代是不可能的。因为人需要人和人之间的沟通,面对面的沟通,这种情感的沟通,和我们面对屏幕的沟通还是有差异的。

人永远不会取代。但是我们很多的讲课的效率,会大幅度提升。另外,教师除了教书以外还有育人,还有解决学生成长过程中的各种问题,这种问题的解决,需要人工智能来增强。教师在教育教学中非常重要的。我觉得教师和人工智能的关系,是一个相互赋能、相互增强的关系。

相互赋能是什么意思?教师的智慧会越来越多的转化为规则性的东西,使得人工智能具有教师的能力,把老师的个体智慧或者集体智慧转化为人工智能的能力,把人工变成了智能。

另外,人工智能也会赋能教师,教师利用人工智能可以提高,可以使得我们教师提高工作效率,而且能够做到以前做不到的事情,是一个相互赋能、相互增强的关系。人工智能首先是教学效率提高,比如说以前讲测考练,原来需要10个小时完成的事情,可能一两个小时就完成了,针对学生个性化辅导,作业批改。

现在老师一个人带三个班,每天都要改一百多份作业,这一百多份要认真改的话,要两三个小时,工作量非常大。如果今后人工智能发展了,完全可以让人工智能实现批改,实现批改以后可以给出你各种分析报告,每个孩子出现问题是什么地方,给他什么样的改进措施,都给你自动生成。你拿这个报告,可能比老师自己改效率还高,比你自己改还更好地了解孩子。通过这种方式给提高老师的工作效率,把原来需要花很多时间和精力的事情取代掉了。老师有更多的时间,更多的精力关注孩子的成长。心理、身心健康。

另外一方面,人工智能可以增强教师,就是可以使得我们老师做到以前做不到的事情。比如,举一个非常简单的例子,我们有个团队在做一个研究项目叫“AI好老师”,我们孩子在成长过程中,经常遇到各种各样的问题,比如说小的问题,打架、不守纪律、网络成瘾、过分崇拜明星、早恋等等这些问题,这些问题背后都是有教育学、社会学、心理学、生理学的一系列的原因,但是这些原因是很深的,一般的老师很难说把各种知识都很了解,我们很多老师、很多家长面对孩子出现这些问题的时候,总是简单地打骂或者简单的斥责,这样对孩子于事无补。

这个时候,像我们就做了一个项目叫AI好老师,我们建立了0-18岁儿童成长过程中常见的典型的问题知识库,以及每个问题背后的教育学、心理学、社会学、生理学这方面的原因,以及一些如何干预,对这些问题如何进行干预的优秀教师的案例,我们收集了优秀教师处理这些问题的案例,这样就会形成智能的系统。

只要和那个系统说,我的孩子早恋了,他会问你几个表现,如果你确认之后,他说这可能是早恋,他分析早恋的原因是什么,社会学、心理学的原因是什么,再给出某一个很好的老师处理过这个事情他是怎么和孩子沟通的,他可以把符合教育教学规律的案例,让老师学习。这样可以提高我们老师的育人的能力,提高家长和孩子相处的和谐程度,促进学生身心健康的发展。

再比如体质健康,现在儿童成长过程中的身体体质这些方面的发展越来越重要。除了知识以外,身心健康其实更重要,我们完全可以通过一些智能手环、智能肺活量的工具、智能跳绳工具,以及运动器材,会通过5G加上传感器以后,可以自动采集学生运动过程中的各种数据,把这些数据通过5G传送到云平台以后,就可以限定学生的心率、血氧、运动脉搏各种各样运动参数的常模数据库,有了这个数据库以后,可以对学生的运动知识、运动技能、营养情况、身体发育等这些方面的情况进行进一步的分析,分析可以发现学生在体质健康上存在哪些问题,或者哪一种体质类型,可以给出有针对性的运动处方的方案,也可以发现学生在运动中有哪些优势,从而增强他的优势。

我举这些例子就是想说明,我们很多教育中理想中希望老师能做到的事情,但是由于传统的时间精力以及能力的问题,我们做不到,现在人工智能可以增强我们教师,使得我们教师能够做到这些事情。人工智能和教师是相互赋能、相互增强的关系。

但是,虽然人工智能不会取代老师,但是会使用人工智能的教师会取代不使用人工智能的教师,我们教师还要主动适应互联网、大数据、人工智能时代新的技术的变化、新的技术的变革,不断进一步的学习,善于使用,关注最新的进展,希望老师能够努力把这些东西融入到他的日常教学中,从而提高自己的教学效率。

主持人

刚刚您说了很多人工智能和教师之间的互相赋能、互相增强的关系,随着人工智能的普及或者应用,对教师的压力是不是挺大的?教师之前可能只要备好课、教好学生,关心学生成长,现在要学习更多的人工智能方面的知识。人工智能在人才培养方面,我们是不是现在也是一个非常重要的环节?

余胜泉

人工智能的知识学习有一个渐进的过程,人工智能核心就是智力的自动化,像机械是我们体力的延长一样,人工智能是我们脑力的延长,可以使得我们人能够处理以前无法处理的复杂事情,实际上是提高我们老师的效率,适当的学习这些知识。像我们生活中,比如天天拿着手机录语音,那个复杂吗?不复杂。但是,背后的技术是很复杂的。

但是对于应用来说并不复杂。我们老师对人工智能的学习不要太担心。但是,你刚才提了一个很重要的问题,人工智能人才的培养。确实,人工智能人才的培养是我们国家和整个社会迈向智能时代的一个非常关键的地方。

我觉得,一是面向大众来说,我们要培养了解人工智能,未来会对我们的社会产生哪些影响,了解人工智能在现实生活中有哪些应用,这样理解这个社会的变化,主动拥抱这些变化,这是对非专业的人士。对一些专业人才,我觉得可能我们国家,一个是要加强人工智能的职业教育,在职业教育大力普及人工智能的一些技术,人工智能工程方面的工作。

比如要向使得人工智能的发展,今后数据处理是很重要的能力,数据收集、数据标记、数据关联、数据工程。第二,今后机器学习、机器训练,了解典型的各种机器学习的原理,以及它的训练的技巧、训练的方法。

另外,了解人工智能和各行各业,对各行各业特定的领域知识库的应用,以及应用系统的配置管理,我们要在职业教育里面大力加强人工智能专业的发展,让他能够很好地支持、管理以及推进人工智能在各行各业的应用,使他有序化。

另外,人工智能还要加强研究性人才的培养,大学里面研究性人才的培养。因为人工智能不是一天练成的,是一个信息科技在一个时间段内持续性发展的一个过程,智能爆发。智能爆发的背后是有成千上万研究者的智慧转化为我们生活中可以实际应用的系统,这个时候我觉得,在人工智能领域里面,高校的职责,一个是把我们信息科技,计算机相关专业办好,这是人工智能的基础。

另外,希望有一些有实力的高校多办人工智能的专业,尤其是研究性高校,这是推进技术往前进步的核心动力,需要有精英参与。另外,这个过程中,我们特别要避免计算机教学,或者人工智能教学、人工智能研究,以唯论文为核心,论文很重要,光有论文解决不了问题,一定要以解决实际问题,形成开源的系统。

像国外,计算机科学,很多大学做的那些开源的系统,对这个行业的发展,对这个研究的发展起着非常大的推动作用,但是在我们国家,这种有影响的,寥寥无几,而且不受认可,做一个几百万人用的开源系统可能还不如人家写一篇SCI论文,这是不健康的,因为这些东西最后使得我们纯理论化,对于整个行业、整个产业发展是不利的。

所以我们特别希望在计算机科学的教育,以人工智能的教育,要强调多结合实践,当然不是不发表文章,文章还是要,需要解决重大实际过程中去发文章,而不是为发文章而发文章,要解决重大实践问题,做出能够得到广泛使用,能够推动这个行业往前迈一步的应用系统,这样的话,才使得我们的研究和产业发展能够一步一步往前走。

我现在看到我们在北京市的一些中小学,他们已经开设人工智能课程了。现在在中小学开设人工智能课程,会不会太早了?

我也看到了,现在有很多学校开一些人工智能的课。还有一些企业专门编了中小学的人工智能课程。当然我觉得,在中小学,适当普及人工智能的常识是对的,但是有一些过于急功近利不值得倡导。我看过一套人工智能的教材,从三年级就开始开人工智能,很多词汇术语可能都不清楚,现在给他讲很复杂的知识,这是不合适的。因为这些知识,这个时候去学,同样一个东西理解,可能两三个星期才能明白这个词说什么意思,但是等到成年以后,可能只花两三个小时就能明白这个事情。

所以我不鼓励太多复杂的知识进入到中小学,但是适当的让小孩子理解人工智能对现实社会的变化的影响,了解人脸识别,可以做什么,了解各行各业里面应用的现象,就像我们了解汽车、飞机可以飞的道理。比如同样一个力,我们小学生也要学力的概念,但是只要知道力是相互作用的就可以了,但是到了大学就要了解力和力之间复杂的关系,甚至还要了解宏观的力和微观的力是完全不同的性质。

同样是讲人工智能,你对低年级的时候应该以浅显、形象了解为主,到了那些知识复杂算法还是应该到大学,到研究生阶段再去教比较合适。适当地让学生有一些体验性的活动,以结合信息技术课,寓教于乐,结合信息技术课,尤其是在小学,我不赞成系统开人工智能的课,但是可以让学生有感性的认识、感性的体验性的可以的。

但是概念体系和编程能力,并不见得要那么系统化。但是适当到了初中和高中的时候,结合信息技术课,因为本身信息技术课是有的,结合信息技术课适当渗透人工智能的知识,这是可以的,这是合适的。否则容易超前教学。现在什么东西都要往中小学渗透,中小学的负担太重了。

实际人的心智是有个发展的过程,当心智发展不全的时候,学一个东西花很长时间,抽象思维水平到了一定程度以后,花几个小时就学会了。要提高他到了成年以后的学习能力,小的时候要适当地给他留白,留空。让他不受过重的学习负担的压力。因为过分的学习负担的压力会造成学生学习的厌倦、倦怠,以及泯灭他的好奇心、求知欲,一旦一个孩子成长过程中,没有了好奇心、没有了求知欲,养成了功利性读书的习惯,对于他一辈子的成长都会起着巨大的障碍作用。

真正的杰出的人才都是具有很强的自学能力,很强的自律意识,很强的好奇心、求知欲在这里驱动,是内在驱动的,而不是外在驱动的。外在驱动,环境变化,有外在的驱动力弱了以后,基本就停滞不前,现在过分的学习负担过重,会对小孩子的好奇心、求知欲会起到压制作用,长期来说不好。

主持人

感谢余教授提出的中肯的意见。我们知道余教授所在的北师大未来教育高精尖创新中心是2015年成立的,到现在四年时间了,你们肯定也在致力于人工智能在教育方面的落地和研究,您觉得,通过这四年的努力和研究,有没有发现我们国家人工智能现在在我们教育领域当中会不会存在着一些问题或者挑战?

余胜泉

目前人工智能在实际应用过程中,还存在一些问题,我觉得代表性的可能体现在,一个是目前产业界对人工智能应用的场景过多的关注讲测考练,知识性的教学太多,都在用人工智能提高知识教学的效率,比如都在适应性学习,做题库,经典推荐,当然有一定作用,但是这个是对原来我们教学优势的一种强化,有时候强化的极致以后反而成了一些问题。

用人工智能进行应试教育方面做得比较多。我们其实特别希望人工智能不光是要做应试教育这方面内容,更多的需要人工智能在学生身心健康发展方面,学生体质健康发展方面,降低学生负担方面,帮助我们教育做科学决策方面,发挥更大的作用。应用场景一定要多元化、多样化。

比如我看到过一个美国的公司做的产品,给盲人做了一个智能手环,拿手在书上划,就能把书上的文字变成语音,让盲人也能听到,这种应用非常有价值,我们国家都是在搞知识性教育,原来学生做五道题,再给你做五道题,纯讲测考练的,这样就有点违背我们的教育教学的规律。这是第一个问题。

第二个问题,我觉得,目前人工智能还存在数据的问题。就是人工智能真正要发挥作用,需要有各种各样的学习数据,而且这个数据要贯通形成,有更多的数据才有更多的智能。形象地说,人工智能像汽车,数据就像汽油,没有数据,汽车就跑不起来。这种数据目前还存在着,一个是数据的孤岛,数据隔离的现象,每个系统都有各自的数据,数据没有融会贯通。

第二,数据使用的规范也存在问题。学习过程中的数据,涉及到孩子的隐私,目前隐私伦理在教育数据利用方面还缺乏清晰的规范,我觉得应该有这种清晰的教育数据利用的伦理和规范,尊重儿童身心健康以及个人隐私的前提下,合理利用数据。当然也不是说完全不用,完全不用会扼杀这个产业。一是数据贯通,一个是要遵循数据的伦理和规范。

第三个问题,人工智能还存在着技术上本身还有很大的发展。目前真正大规模使用的,像英语口语考试、英语的学习,以及英语作文的批改,这些方面做得相对成熟一些,智能教学,仪器教学装备有了一些。但是很多我们理想上问题的解决,还有待人工智能技术的进一步的成熟。这种成熟关键在于,一是要把人工智能产业界的技术人员和我们教育体系里面的人员结合在一起,形成交叉融合。

如果纯技术驱动,不懂教育规律,有时候就用技术强化我们教育中的很多违背规律的做法。实际上要在正确的教育思想、教育理念、教育规律下发挥技术所应该发挥的作用,一定要在遵循教育规律下不断地推进我们的技术成熟。这对于人工智能的发展也会起到非常重要的作用。

另外,人工智能还要避免两个极端思想。一种极端思想就是认为人工智能能做一切,什么问题都能解决。唯人工智能论。今后人工智能会取代老师,人工智能会取代学校,这都是比较简单的过分乐观的,像我们接触过原来一些企业界的,未来互联网会消灭学校,走了20多年,学校还很好,不可能的。

人工智能不会取代学校,也不会取代老师,不要过于乐观。另外,也要防止那些过于悲观。有些认为人工智能一点用没有,花架子之类的,也要防止这种过于的悲观。这两个之间要有些平衡,要防止这两个极端的事情。

另外,人工智能在用于一些关键性业务的时候,高利害业务的时候,可能还需要各种保障机制,像前段时间,印度就出了一个事情,印度的高考,由于它的高考阅卷系统出现故障,造成很多孩子都不及格,印度那段时间自杀了十几个,自杀了好多孩子,因为印度的高考是高利害的,和我们二三十年前一考定终身差不多,这也给我们启示。高利害的这些应用一定要慎重。比如说我让人工智能来阅卷,这个阅卷是高利害的,决定一个人的很大利益的。

这个时候我建议应该采用多种原理的技术,因为人工智能同样实现这个东西,可能有不同原理,不同原理的技术,比如我找三个产品来同样做这件事情。如果这三个产品都能够有一致性,这就比较稳定。如果有差异,这个产品好,那个产品差,有分歧的时候,这时候人工介入。这是比较科学的。在高利害的应用领域里面,还需要人机结合的思维方式。这种方式非常重要。

主持人

谢谢。今天非常感谢余教授和大家一起分享人工智能在我们教育领域目前的应用。包括我们未来还需要解决哪些问题,受益匪浅。非常感谢您。感谢大家收看我们今天的节目,下期见。

|来源:人民网

|美编:甄宏莉返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇