博舍

有关人工智能发展历史及未来前景的论文 人工智能的发展历史论文范文怎么写

有关人工智能发展历史及未来前景的论文

**

人工智能的历史

**人工智能的历史源远流长。在古代的神话传说中,技艺高超的工匠可以制作人造人,并为其赋予智能或意识。现代意义上的AI始于古典哲学家用机械符号处理的观点解释人类思考过程的尝试。20世纪40年代基于抽象数学推理的可编程数字计算机的发明使一批科学家开始严肃地探讨构造一个电子大脑的可能性。

1956年,在达特茅斯学院举行的一次会议上正式确立了人工智能的研究领域。会议的参加者在接下来的数十年间是AI研究的领军人物。他们中有许多人预言,经过一代人的努力,与人类具有同等智能水平的机器将会出现。同时,上千万美元被投入到AI研究中,以期实现这一目标。

最终研究人员发现自己大大低估了这一工程的难度。由于JamesLighthill爵士的批评和国会方面的压力,美国和英国政府于1973年停止向没有明确目标的人工智能研究项目拨款。七年之后受到日本政府研究规划的刺激,美国政府和企业再次在AI领域投入数十亿研究经费,但这些投资者在80年代末重新撤回了投资。AI研究领域诸如此类的高潮和低谷不断交替出现;至今仍有人对AI的前景作出异常乐观的预测。

尽管在政府官僚和风投资本家那里经历了大起大落,AI领域仍在取得进展。某些在20世纪70年代被认为不可能解决的问题今天已经获得了圆满解决并已成功应用在商业产品上。与第一代AI研究人员的乐观估计不同,具有与人类同等智能水平的机器至今仍未出现。图灵在1950年发表的一篇催生现代智能机器研究的著名论文中称,“我们只能看到眼前的一小段距离……但是,我们可以看到仍有许多工作要做”。

目录1先驱1.1神话,幻想和预言中的AI1.2自动人偶1.3形式推理1.4计算机科学2人工智能的诞生:1943–19562.1控制论与早期神经网络2.2游戏AI2.3图灵测试2.4符号推理与“逻辑理论家”程序2.51956年达特茅斯会议:AI的诞生3黄金年代:1956–19743.1研究工作3.1.1搜索式推理3.1.2自然语言3.1.3微世界3.2乐观思潮3.3经费4第一次AI低谷:1974–19804.1问题4.2停止拨款4.3来自大学的批评4.4感知器与联结主义遭到冷落4.5“简约派(theneats)”:逻辑,Prolog语言和专家系统4.6“芜杂派(thescruffies)”:框架和脚本5繁荣:1980–19875.1专家系统获得赏识5.2知识革命5.3重获拨款:第五代工程5.4联结主义的重生6第二次AI低谷:1987–19936.1AI之冬6.2躯体的重要性:NouvelleAI与嵌入式推理7AI:1993–现在7.1里程碑和摩尔定律7.2智能代理7.3“简约派”的胜利7.4幕后的AI7.5HAL9000在哪里?**

先驱

**McCorduck写道:“某种形式上的人工智能是一个遍布于西方知识分子历史的观点,是一个急需被实现的梦想,”先民对人工智能的追求表现在诸多神话,传说,故事,预言以及制作机器人偶(automaton)的实践之中。

神话,幻想和预言中的AI希腊神话中已经出现了机械人和人造人,如赫淮斯托斯的黄金机器人和皮格马利翁的伽拉忒亚。中世纪出现了使用巫术或炼金术将意识赋予无生命物质的传说,如贾比尔的Takwin,帕拉塞尔苏斯的何蒙库鲁兹和JudahLoew的魔像。19世纪的幻想小说中出现了人造人和会思考的机器之类题材,例如玛丽·雪莱的《弗兰肯斯坦》和卡雷尔·恰佩克的《罗素姆的万能机器人》。SamuelButler的《机器中的达尔文(DarwinamongtheMachines)》一文(1863)探讨了机器通过自然选择进化出智能的可能性。至今人工智能仍然是科幻小说的重要元素。自动人偶

加扎利的可编程自动人偶(1206年)许多文明中都有创造自动人偶的杰出工匠,例如偃师(中国西周),希罗(希腊),加扎利和WolfgangvonKempelen等等。已知最古老的“机器人”是古埃及和古希腊的圣像,忠实的信徒认为工匠为这些神像赋予了思想,使它们具有智慧和激情。赫耳墨斯·特里斯墨吉斯忒斯(HermesTrismegistus)写道“当发现神的本性时,人就能够重现他”。

形式推理

人工智能的基本假设是人类的思考过程可以机械化。对于机械化推理(即所谓“形式推理(formalreasoning)”)的研究已有很长历史。中国,印度和希腊哲学家均已在公元前的第一个千年里提出了形式推理的结构化方法。他们的想法为后世的哲学家所继承和发展,其中著名的有亚里士多德(对三段论逻辑进行了形式分析),欧几里得(其著作《几何原本》是形式推理的典范),花剌子密(代数学的先驱,“algorithm”一词由他的名字演变而来)以及一些欧洲经院哲学家,如奥卡姆的威廉和邓斯·司各脱。

马略卡哲学家拉蒙·柳利(1232-1315)开发了一些“逻辑机”,试图通过逻辑方法获取知识。柳利的机器能够将基本的,无可否认的真理通过机械手段用简单的逻辑操作进行组合,以求生成所有可能的知识。Llull的工作对莱布尼兹产生了很大影响,后者进一步发展了他的思想。

莱布尼兹猜测人类的思想可以简化为机械计算在17世纪中,莱布尼兹,托马斯·霍布斯和笛卡儿尝试将理性的思考系统化为代数学或几何学那样的体系。霍布斯在其著作《利维坦》中有一句名言:“推理就是计算(reasonisnothingbutreckoning)。”莱布尼兹设想了一种用于推理的普适语言(他的通用表意文字),能将推理规约为计算,从而使“哲学家之间,就像会计师之间一样,不再需要争辩。他们只需拿出铅笔放在石板上,然后向对方说(如果想要的话,可以请一位朋友作为证人):‘我们开始算吧。’”这些哲学家已经开始明确提出形式符号系统的假设,而这一假设将成为AI研究的指导思想。

在20世纪,数理逻辑研究上的突破使得人工智能好像呼之欲出。这方面的基础著作包括布尔的《思维的定律》与弗雷格的《概念文字》。基于弗雷格的系统,罗素和怀特海在他们于1913年出版的巨著《数学原理》中对数学的基础给出了形式化描述。这一成就激励了希尔伯特,后者向20世纪20年代和30年代的数学家提出了一个基础性的难题:“能否将所有的数学推理形式化?”这个问题的最终回答由哥德尔不完备定理,图灵机和AlonzoChurch的λ演算给出。他们的答案令人震惊:首先,他们证明了数理逻辑的局限性;其次(这一点对AI更重要),他们的工作隐含了任何形式的数学推理都能在这些限制之下机械化的可能性。邱奇-图灵论题暗示,一台仅能处理0和1这样简单二元符号的机械设备能够模拟任意数学推理过程。这里最关键的灵感是图灵机:这一看似简单的理论构造抓住了抽象符号处理的本质。这一创造激发科学家们探讨让机器思考的可能。

计算机科学

用于计算的机器古已有之;历史上许多数学家对其作出了改进。19世纪初,查尔斯·巴贝奇设计了一台可编程计算机(“分析机”),但未能建造出来。爱达·勒芙蕾丝预言,这台机器“将创作出无限复杂,无限宽广的精妙的科学乐章”。(她常被认为是第一个程序员,因为她留下的一些笔记完整地描述了使用这一机器计算伯努利数的方法。)

第一批现代计算机是二战期间建造的大型译码机(包括Z3,ENIAC和Colossus等)。后两个机器的理论基础是图灵和约翰·冯·诺伊曼提出和发展的学说。

在摩尔学校的电气工程的ENIAC计算机.

**

人工智能的诞生:1943–1956

**

在20世纪40年代和50年代,来自不同领域(数学,心理学,工程学,经济学和政治学)的一批科学家开始探讨制造人工大脑的可能性。1956年,人工智能被确立为一门学科。

**

控制论与早期神经网络

**最初的人工智能研究是30年代末到50年代初的一系列科学进展交汇的产物。神经学研究发现大脑是由神经元组成的电子网络,其激励电平只存在“有”和“无”两种状态,不存在中间状态。维纳的控制论描述了电子网络的控制和稳定性。克劳德·香农提出的信息论则描述了数字信号(即高低电平代表的二进制信号)。图灵的计算理论证明数字信号足以描述任何形式的计算。这些密切相关的想法暗示了构建电子大脑的可能性。

IBM702:第一代AI研究者使用的电脑.

这一阶段的工作包括一些机器人的研发,例如W。GreyWalter的“乌龟(turtles)”,还有“约翰霍普金斯兽”(JohnsHopkinsBeast)。这些机器并未使用计算机,数字电路和符号推理;控制它们的是纯粹的模拟电路。

WalterPitts和WarrenMcCulloch分析了理想化的人工神经元网络,并且指出了它们进行简单逻辑运算的机制。他们是最早描述所谓“神经网络”的学者。马文·闵斯基是他们的学生,当时是一名24岁的研究生。1951年他与DeanEdmonds一道建造了第一台神经网络机,称为SNARC。在接下来的五十年中,闵斯基是AI领域最重要的领导者和创新者之一。

游戏AI

1951年,ChristopherStrachey使用曼彻斯特大学的FerrantiMark1机器写出了一个西洋跳棋(checkers)程序;DietrichPrinz则写出了一个国际象棋程序。ArthurSamuel在五十年代中期和六十年代初开发的国际象棋程序的棋力已经可以挑战具有相当水平的业余爱好者。游戏AI一直被认为是评价AI进展的一种标准。

图灵测试

1950年,图灵发表了一篇划时代的论文,文中预言了创造出具有真正智能的机器的可能性。由于注意到“智能”这一概念难以确切定义,他提出了著名的图灵测试:如果一台机器能够与人类展开对话(通过电传设备)而不能被辨别出其机器身份,那么称这台机器具有智能。这一简化使得图灵能够令人信服地说明“思考的机器”是可能的。论文中还回答了对这一假说的各种常见质疑。图灵测试是人工智能哲学方面第一个严肃的提案。

符号推理与“逻辑理论家”程序50年代中期,随着数字计算机的兴起,一些科学家直觉地感到可以进行数字操作的机器也应当可以进行符号操作,而符号操作可能是人类思维的本质。这是创造智能机器的一条新路。

1955年,Newell和(后来荣获诺贝尔奖的)Simon在J.C.Shaw的协助下开发了“逻辑理论家(LogicTheorist)”。这个程序能够证明《数学原理》中前52个定理中的38个,其中某些证明比原著更加新颖和精巧。Simon认为他们已经“解决了神秘的心/身问题,解释了物质构成的系统如何获得心灵的性质。”(这一断言的哲学立场后来被JohnSearle称为“强人工智能”,即机器可以像人一样具有思想。)

**

1956年达特茅斯会议:AI的诞生

**

1956年达特矛斯会议的组织者是MarvinMinsky,约翰·麦卡锡和另两位资深科学家ClaudeShannon以及NathanRochester,后者来自IBM。会议提出的断言之一是“学习或者智能的任何其他特性的每一个方面都应能被精确地加以描述,使得机器可以对其进行模拟。”与会者包括RaySolomonoff,OliverSelfridge,TrenchardMore,ArthurSamuel,Newell和Simon,他们中的每一位都将在AI研究的第一个十年中作出重要贡献。会上纽厄尔和西蒙讨论了“逻辑理论家”,而麦卡锡则说服与会者接受“人工智能”一词作为本领域的名称。1956年达特矛斯会议上AI的名称和任务得以确定,同时出现了最初的成就和最早的一批研究者,因此这一事件被广泛承认为AI诞生的标志。

**

黄金年代:1956–1974

**达特茅斯会议之后的数年是大发现的时代。对许多人而言,这一阶段开发出的程序堪称神奇:计算机可以解决代数应用题,证明几何定理,学习和使用英语。当时大多数人几乎无法相信机器能够如此“智能”。研究者们在私下的交流和公开发表的论文中表达出相当乐观的情绪,认为具有完全智能的机器将在二十年内出现。ARPA(国防高等研究计划署)等政府机构向这一新兴领域投入了大笔资金。

**

研究工作

**

从50年代后期到60年代涌现了大批成功的AI程序和新的研究方向。下面列举其中最具影响的几个。

**

搜索式推理

**许多AI程序使用相同的基本算法。为实现一个目标(例如赢得游戏或证明定理),它们一步步地前进,就像在迷宫中寻找出路一般;如果遇到了死胡同则进行回溯。这就是“搜索式推理”。

这一思想遇到的主要困难是,在很多问题中,“迷宫”里可能的线路总数是一个天文数字(所谓“指数爆炸”)。研究者使用启发式算法去掉那些不太可能导出正确答案的支路,从而缩小搜索范围。

Newell和Simon试图通过其“通用解题器(GeneralProblemSolver)”程序,将这一算法推广到一般情形。另一些基于搜索算法证明几何与代数问题的程序也给人们留下了深刻印象,例如HerbertGelernter的几何定理证明机(1958)和Minsky的学生JamesSlagle开发的SAINT(1961)。还有一些程序通过搜索目标和子目标作出决策,如斯坦福大学为控制机器人Shakey而开发的STRIPS系统。

**

自然语言

**

AI研究的一个重要目标是使计算机能够通过自然语言(例如英语)进行交流。早期的一个成功范例是DanielBobrow的程序STUDENT,它能够解决高中程度的代数应用题。

一个语义网的例子

如果用节点表示语义概念(例如“房子”,“门”),用节点间的连线表示语义关系(例如“有—一个”),就可以构造出“语义网(semanticnet)”。第一个使用语义网的AI程序由RossQuillian开发;[54]而最为成功(也是最有争议)的一个则是RogerSchank的“概念关联(ConceptualDependency)”。

JosephWeizenbaum的ELIZA是第一个聊天机器人,可能也是最有趣的会说英语的程序。与ELIZA“聊天”的用户有时会误以为自己是在和人类,而不是和一个程序,交谈。但是实际上ELIZA根本不知道自己在说什么。它只是按固定套路作答,或者用符合语法的方式将问题复述一遍。

**

微世界

**

60年代后期,麻省理工大学AI实验室的MarvinMinsky和SeymourPapert建议AI研究者们专注于被称为“微世界”的简单场景。他们指出在成熟的学科中往往使用简化模型帮助基本原则的理解,例如物理学中的光滑平面和完美刚体。许多这类研究的场景是“积木世界”,其中包括一个平面,上面摆放着一些不同形状,尺寸和颜色的积木。

在这一指导思想下,GeraldSussman(研究组长),AdolfoGuzman,DavidWaltz(“约束传播(constraintpropagation)”的提出者),特别是PatrickWinston等人在机器视觉领域作出了创造性贡献。同时,Minsky和Papert制作了一个会搭积木的机器臂,从而将“积木世界”变为现实。微世界程序的最高成就是TerryWinograd的SHRDLU,它能用普通的英语句子与人交流,还能作出决策并执行操作。

**

乐观思潮

**

第一代AI研究者们曾作出了如下预言:1958年,H.A.Simon,AllenNewell:“十年之内,数字计算机将成为国际象棋世界冠军。”“十年之内,数字计算机将发现并证明一个重要的数学定理。”

1965年,H.A.Simon:“二十年内,机器将能完成人能做到的一切工作。”

1967年,MarvinMinsky:“一代之内……创造‘人工智能’的问题将获得实质上的解决。”

1970年,MarvinMinsky:“在三到八年的时间里我们将得到一台具有人类平均智能的机器。”

经费

1963年6月,MIT从新建立的ARPA(即后来的DARPA,国防高等研究计划局)获得了二百二十万美元经费,用于资助MAC工程,其中包括Minsky和McCarthy五年前建立的AI研究组。此后ARPA每年提供三百万美元,直到七十年代为止。ARPA还对Newell和Simon在卡内基梅隆大学的工作组以及斯坦福大学AI项目(由JohnMcCarthy于1963年创建)进行类似的资助。另一个重要的AI实验室于1965年由DonaldMichie在爱丁堡大学建立。[65]在接下来的许多年间,这四个研究机构一直是AI学术界的研究(和经费)中心。

经费几乎是无条件地提供的:时任ARPA主任的J.C.R.Licklider相信他的组织应该“资助人,而不是项目”,并且允许研究者去做任何感兴趣的方向。这导致了MIT无约无束的研究氛围及其hacker文化的形成,但是好景不长。

**

第一次AI低谷:1974–1980

**

到了70年代,AI开始遭遇批评,随之而来的还有资金上的困难。AI研究者们对其课题的难度未能作出正确判断:此前的过于乐观使人们期望过高,当承诺无法兑现时,对AI的资助就缩减或取消了。同时,由于MarvinMinsky对感知器的激烈批评,联结主义(即神经网络)销声匿迹了十年。70年代后期,尽管遭遇了公众的误解,AI在逻辑编程,常识推理等一些领域还是有所进展。

问题

70年代初,AI遭遇了瓶颈。即使是最杰出的AI程序也只能解决它们尝试解决的问题中最简单的一部分,也就是说所有的AI程序都只是“玩具”。AI研究者们遭遇了无法克服的基础性障碍。尽管某些局限后来被成功突破,但许多至今仍无法满意地解决。

计算机的运算能力。当时的计算机有限的内存和处理速度不足以解决任何实际的AI问题。例如,RossQuillian在自然语言方面的研究结果只能用一个含二十个单词的词汇表进行演示,因为内存只能容纳这么多。1976年HansMoravec指出,计算机离智能的要求还差上百万倍。他做了个类比:人工智能需要强大的计算能力,就像飞机需要大功率动力一样,低于一个门限时是无法实现的;但是随着能力的提升,问题逐渐会变得简单。

计算复杂性和指数爆炸。1972年RichardKarp根据StephenCook于1971年提出的Cook-Levin理论证明,许多问题只可能在指数时间内获解(即,计算时间与输入规模的幂成正比)。除了那些最简单的情况,这些问题的解决需要近乎无限长的时间。这就意味着AI中的许多玩具程序恐怕永远也不会发展为实用的系统。

常识与推理。许多重要的AI应用,例如机器视觉和自然语言,都需要大量对世界的认识信息。程序应该知道它在看什么,或者在说些什么。这要求程序对这个世界具有儿童水平的认识。研究者们很快发现这个要求太高了:1970年没人能够做出如此巨大的数据库,也没人知道一个程序怎样才能学到如此丰富的信息。

莫拉维克悖论。证明定理和解决几何问题对计算机而言相对容易,而一些看似简单的任务,如人脸识别或穿过屋子,实现起来却极端困难。这也是70年代中期机器视觉和机器人方面进展缓慢的原因。

框架和资格问题。采取逻辑观点的AI研究者们(例如JohnMcCarthy)发现,如果不对逻辑的结构进行调整,他们就无法对常见的涉及自动规划(planningordefaultreasoning)的推理进行表达。为解决这一问题,他们发展了新逻辑学(如非单调逻辑(non-monotoniclogics)和模态逻辑(modallogics))。

停止拨款

由于缺乏进展,对AI提供资助的机构(如英国政府,DARPA和NRC)对无方向的AI研究逐渐停止了资助。早在1966年ALPAC(AutomaticLanguageProcessingAdvisoryCommittee,自动语言处理顾问委员会)的报告中就有批评机器翻译进展的意味,预示了这一局面的来临。NRC(NationalResearchCouncil,美国国家科学委员会)在拨款二千万美元后停止资助。1973年Lighthill针对英国AI研究状况的报告批评了AI在实现其“宏伟目标”上的完全失败,并导致了英国AI研究的低潮(该报告特别提到了指数爆炸问题,以此作为AI失败的一个原因)。DARPA则对CMU的语音理解研究项目深感失望,从而取消了每年三百万美元的资助。到了1974年已经很难再找到对AI项目的资助。

HansMoravec将批评归咎于他的同行们不切实际的预言:“许多研究者落进了一张日益浮夸的网中”。还有一点,自从1969年Mansfield修正案通过后,DARPA被迫只资助“具有明确任务方向的研究,而不是无方向的基础研究”。60年代那种对自由探索的资助一去不复返;此后资金只提供给目标明确的特定项目,比如自动坦克,或者战役管理系统。

来自大学的批评

一些哲学家强烈反对AI研究者的主张。其中最早的一个是JohnLucas,他认为哥德尔不完备定理已经证明形式系统(例如计算机程序)不可能判断某些陈述的真理性,但是人类可以。HubertDreyfus讽刺六十年代AI界那些未实现的预言,并且批评AI的基础假设,认为人类推理实际上仅涉及少量“符号处理”,而大多是具体的,直觉的,下意识的“窍门(knowhow)”。JohnSearle于1980年提出“中文房间”实验,试图证明程序并不“理解”它所使用的符号,即所谓的“意向性(intentionality)”问题。Searle认为,如果符号对于机器而言没有意义,那么就不能认为机器是在“思考”。

AI研究者们并不太把这些批评当回事,因为它们似乎有些离题,而计算复杂性和“让程序具有常识”等问题则显得更加紧迫和严重。对于实际的计算机程序而言,“常识”和“意向性”的区别并不明显。Minsky提到Dreyfus和Searle时说,“他们误解了,所以应该忽略”。在MIT任教的Dreyfus遭到了AI阵营的冷遇:他后来说,AI研究者们“生怕被人看到在和我一起吃中饭”。ELIZA程序的作者JosephWeizenbaum感到他的同事们对待Dreyfus的态度不太专业,而且有些孩子气。虽然他直言不讳地反对Dreyfus的论点,但他“清楚地表明了他们待人的方式不对”。

Weizenbaum后来开始思考AI相关的伦理问题,起因是KennethColby开发了一个模仿医师的聊天机器人DOCTOR,并用它当作真正的医疗工具。二人发生争执;虽然Colby认为Weizenbaum对他的程序没有贡献,但这于事无补。1976年Weizenbaum出版著作《计算机的力量与人类的推理》,书中表示人工智能的滥用可能损害人类生命的价值。

感知器与联结主义遭到冷落

感知器是神经网络的一种形式,由FrankRosenblatt于1958年提出。与多数AI研究者一样,他对这一发明的潜力非常乐观,预言说“感知器最终将能够学习,作出决策和翻译语言”。整个六十年代里这一方向的研究工作都很活跃。

1969年Minsky和Papert出版了著作《感知器》,书中暗示感知器具有严重局限,而FrankRosenblatt的预言过于夸张。这本书的影响是破坏性的:联结主义的研究因此停滞了十年。后来新一代研究者使这一领域获得重生,并使其成为人工智能中的重要部分;遗憾的是Rosenblatt没能看到这些,他在《感知器》问世后不久即因游船事故去世。

“简约派(theneats)”:逻辑,Prolog语言和专家系统

早在1958年,JohnMcCarthy就提出了名为“纳谏者(AdviceTaker)”的一个程序构想,将逻辑学引入了AI研究界。1963年,J.AlanRobinson发现了在计算机上实现推理的简单方法:归结(resolution)与合一(unification)算法。然而,根据60年代末McCarthy和他的学生们的工作,对这一想法的直接实现具有极高的计算复杂度:即使是证明很简单的定理也需要天文数字的步骤。70年代RobertKowalsky在Edinburgh大学的工作则更具成效:法国学者AlainColmerauer和PhillipeRoussel在他的合作下开发出成功的逻辑编程语言Prolog。

Dreyfus等人针对逻辑方法的批评观点认为,人类在解决问题时并没有使用逻辑运算。心理学家PeterWason,EleanorRosch,阿摩司·特沃斯基,DanielKahneman等人的实验证明了这一点。[McCarthy则回应说,人类怎么思考是无关紧要的:真正想要的是解题机器,而不是模仿人类进行思考的机器。

“芜杂派(thescruffies)”:框架和脚本

对McCarthy的做法持批评意见的还有他在MIT的同行们。MarvinMinsky,SeymourPapert和RogerSchank等试图让机器像人一样思考,使之能够解决“理解故事”和“目标识别”一类问题。为了使用“椅子”,“饭店”之类最基本的概念,他们需要让机器像人一样作出一些非逻辑的假设。不幸的是,这些不精确的概念难以用逻辑进行表达。GeraldSussman注意到,“使用精确的语言描述本质上不精确的概念,并不能使它们变得精确起来”。

Schank用“芜杂(scruffy)”一词描述他们这一“反逻辑”的方法,与McCarthy,Kowalski,Feigenbaum,Newell和Simon等人的“简约(neat)”方案相对。

在1975年的一篇开创性论文中,Minsky注意到与他共事的“芜杂派”研究者在使用同一类型的工具,即用一个框架囊括所有相关的常识性假设。例如,当我们使用“鸟”这一概念时,脑中会立即浮现出一系列相关事实,如会飞,吃虫子,等等。我们知道这些假设并不一定正确,使用这些事实的推理也未必符合逻辑,但是这一系列假设组成的结构正是我们所想和所说的一部分。他把这个结构称为“框架(frames)”。Schank使用了“框架”的一个变种,他称之为“脚本(scripts)”,基于这一想法他使程序能够回答关于一篇英语短文的提问。多年之后的面向对象编程采纳了AI“框架”研究中的“继承(inheritance)”概念。

**

繁荣:1980–1987

**

在80年代,一类名为“专家系统”的AI程序开始为全世界的公司所采纳,而“知识处理”成为了主流AI研究的焦点。日本政府在同一年代积极投资AI以促进其第五代计算机工程。80年代早期另一个令人振奋的事件是JohnHopfield和DavidRumelhart使联结主义重获新生。AI再一次获得了成功。

**

专家系统获得赏识

**

专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。最早的示例由EdwardFeigenbaum和他的学生们开发。1965年起设计的Dendral能够根据分光计读数分辨混合物。1972年设计的MYCIN能够诊断血液传染病。它们展示了这一方法的威力。

专家系统仅限于一个很小的知识领域,从而避免了常识问题;其简单的设计又使它能够较为容易地编程实现或修改。总之,实践证明了这类程序的实用性。直到现在AI才开始变得实用起来。

1980年CMU为DEC(DigitalEquipmentCorporation,数字设备公司)设计了一个名为XCON的专家系统,这是一个巨大的成功。在1986年之前,它每年为公司省下四千万美元。全世界的公司都开始研发和应用专家系统,到1985年它们已在AI上投入十亿美元以上,大部分用于公司内设的AI部门。为之提供支持的产业应运而生,其中包括Symbolics,LispMachines等硬件公司和IntelliCorp,Aion等软件公司。

**

**

知识革命

**

**

专家系统的能力来自于它们存储的专业知识。这是70年代以来AI研究的一个新方向。PamelaMcCorduck在书中写道,“不情愿的AI研究者们开始怀疑,因为它违背了科学研究中对最简化的追求。智能可能需要建立在对分门别类的大量知识的多种处理方法之上。”“70年代的教训是智能行为与知识处理关系非常密切。有时还需要在特定任务领域非常细致的知识。”知识库系统和知识工程成为了80年代AI研究的主要方向。

第一个试图解决常识问题的程序Cyc也在80年代出现,其方法是建立一个容纳一个普通人知道的所有常识的巨型数据库。发起和领导这一项目的DouglasLenat认为别无捷径,让机器理解人类概念的唯一方法是一个一个地教会它们。这一工程几十年也没有完成。

**

重获拨款:第五代工程

**

1981年,日本经济产业省拨款八亿五千万美元支持第五代计算机项目。其目标是造出能够与人对话,翻译语言,解释图像,并且像人一样推理的机器。令“芜杂派”不满的是,他们选用Prolog作为该项目的主要编程语言。其他国家纷纷作出响应。英国开始了耗资三亿五千万英镑的Alvey工程。美国一个企业协会组织了MCC(MicroelectronicsandComputerTechnologyCorporation,微电子与计算机技术集团),向AI和信息技术的大规模项目提供资助。DARPA也行动起来,组织了战略计算促进会(StrategicComputingInitiative),其1988年向AI的投资是1984年的三倍。

**

联结主义的重生

**

1982年,物理学家JohnHopfield证明一种新型的神经网络(现被称为“Hopfield网络”)能够用一种全新的方式学习和处理信息。大约在同时(早于PaulWerbos),DavidRumelhart推广了“反传法(en:Backpropagation)”,一种神经网络训练方法。这些发现使1970年以来一直遭人遗弃的联结主义重获新生。

**

一个四节点的Hopfield网络.

**

1986年由Rumelhart和心理学家JamesMcClelland主编的两卷本论文集“分布式并行处理”问世,这一新领域从此得到了统一和促进。90年代神经网络获得了商业上的成功,它们被应用于光字符识别和语音识别软件。

第二次AI低谷:1987–1993

80年代中商业机构对AI的追捧与冷落符合经济泡沫的经典模式,泡沫的破裂也在政府机构和投资者对AI的观察之中。尽管遇到各种批评,这一领域仍在不断前进。来自机器人学这一相关研究领域的RodneyBrooks和HansMoravec提出了一种全新的人工智能方案。

AI之冬

“AI之冬(en:AIwinter)”一词由经历过1974年经费削减的研究者们创造出来。他们注意到了对专家系统的狂热追捧,预计不久后人们将转向失望。事实被他们不幸言中:从80年代末到90年代初,AI遭遇了一系列财政问题。

变天的最早征兆是1987年AI硬件市场需求的突然下跌。Apple和IBM生产的台式机性能不断提升,到1987年时其性能已经超过了Symbolics和其他厂家生产的昂贵的Lisp机。老产品失去了存在的理由:一夜之间这个价值五亿美元的产业土崩瓦解。

XCON等最初大获成功的专家系统维护费用居高不下。它们难以升级,难以使用,脆弱(当输入异常时会出现莫名其妙的错误),成了以前已经暴露的各种各样的问题(例如资格问题(en:qualificationproblem))的牺牲品。专家系统的实用性仅仅局限于某些特定情景。

到了80年代晚期,战略计算促进会大幅削减对AI的资助。DARPA的新任领导认为AI并非“下一个浪潮”,拨款将倾向于那些看起来更容易出成果的项目。

1991年人们发现十年前日本人宏伟的“第五代工程”并没有实现。事实上其中一些目标,比如“与人展开交谈”,直到2010年也没有实现。与其他AI项目一样,期望比真正可能实现的要高得多。

躯体的重要性:NouvelleAI与嵌入式推理

80年代后期,一些研究者根据机器人学的成就提出了一种全新的人工智能方案。他们相信,为了获得真正的智能,机器必须具有躯体–它需要感知,移动,生存,与这个世界交互。他们认为这些感知运动技能对于常识推理等高层次技能是至关重要的,而抽象推理不过是人类最不重要,也最无趣的技能(参见Moravec悖论)。他们号召“自底向上”地创造智能,这一主张复兴了从60年代就沉寂下来的控制论。

另一位先驱是在理论神经科学上造诣深厚的DavidMarr,他于70年代来到MIT指导视觉研究组的工作。他排斥所有符号化方法(不论是McCarthy的逻辑学还是Minsky的框架),认为实现AI需要自底向上地理解视觉的物理机制,而符号处理应在此之后进行。

在发表于1990年的论文“大象不玩象棋(ElephantsDon’tPlayChess)”中,机器人研究者RodneyBrooks提出了“物理符号系统假设”,认为符号是可有可无的,因为“这个世界就是描述它自己最好的模型。它总是最新的。它总是包括了需要研究的所有细节。诀窍在于正确地,足够频繁地感知它。”在80年代和90年代也有许多认知科学家反对基于符号处理的智能模型,认为身体是推理的必要条件,这一理论被称为“具身的心灵/理性/认知(embodiedmind/reason/cognition)”论题。

AI:1993–现在

现已年过半百的AI终于实现了它最初的一些目标。它已被成功地用在技术产业中,不过有时是在幕后。这些成就有的归功于计算机性能的提升,有的则是在高尚的科学责任感驱使下对特定的课题不断追求而获得的。不过,至少在商业领域里AI的声誉已经不如往昔了。“实现人类水平的智能”这一最初的梦想曾在60年代令全世界的想象力为之着迷,其失败的原因至今仍众说纷纭。各种因素的合力将AI拆分为各自为战的几个子领域,有时候它们甚至会用新名词来掩饰“人工智能”这块被玷污的金字招牌。AI比以往的任何时候都更加谨慎,却也更加成功。

**

里程碑和摩尔定律

**1997年5月11日,深蓝成为战胜国际象棋世界冠军卡斯帕罗夫的第一个计算机系统。2005年,Stanford开发的一台机器人在一条沙漠小径上成功地自动行驶了131英里,赢得了DARPA挑战大赛头奖。2009年,蓝脑计划声称已经成功地模拟了部分鼠脑。

这些成就的取得并不是因为范式上的革命。它们仍然是工程技术的复杂应用,但是计算机性能已经今非昔比了。事实上,深蓝计算机比ChristopherStrachey在1951年用来下棋的FerrantiMark1快一千万倍。这种剧烈增长可以用摩尔定律描述:计算速度和内存容量每两年翻一番。计算性能上的基础性障碍已被逐渐克服。

**

智能代理

**

90年代,被称为“智能代理(en:intelligentagents)”的新范式被广泛接受。[132]尽管早期研究者提出了模块化的分治策略,但是直到JudeaPearl,AlanNewell等人将一些概念从决策理论和经济学中引入AI之后现代智能代理范式才逐渐形成。当经济学中的“理性代理(rationalagent)”与计算机科学中的“对象”或“模块”相结合,“智能代理”范式就完善了。

智能代理是一个系统,它感知周围环境,然后采取措施使成功的几率最大化。最简单的智能代理是解决特定问题的程序。已知的最复杂的智能代理是理性的,会思考的人类。智能代理范式将AI研究定义为“对智能代理的学习”。这是对早期一些定义的推广:它超越了研究人类智能的范畴,涵盖了对所有种类的智能的研究。

这一范式让研究者们通过学习孤立的问题找到可证的并且有用的解答。它为AI各领域乃至经济学,控制论等使用抽象代理概念的领域提供了描述问题和共享解答的一种通用语言。人们希望能找到一种完整的代理架构(像Newell的en:SOAR那样),允许研究者们应用交互的智能代理建立起通用的智能系统。

**

“简约派”的胜利

**

越来越多的AI研究者们开始开发和使用复杂的数学工具。人们广泛地认识到,许多AI需要解决的问题已经成为数学,经济学和运筹学领域的研究课题。数学语言的共享不仅使AI可以与其他学科展开更高层次的合作,而且使研究结果更易于评估和证明。AI已成为一门更严格的科学分支。Russell和Norvig(2003)将这些变化视为一场“革命”和“简约派的胜利”。

JudeaPearl发表于1988年的名著将概率论和决策理论引入AI。现已投入应用的新工具包括贝叶斯网络,隐马尔可夫模型,信息论,随机模型和经典优化理论。针对神经网络和进化算法等“计算智能”范式的精确数学描述也被发展出来。

**

幕后的AI

**

AI研究者们开发的算法开始变为较大的系统的一部分。AI曾经解决了大量的难题,这些解决方案在产业界起到了重要作用。应用了AI技术的有数据挖掘,工业机器人,物流,语音识别,银行业软件,医疗诊断和Google搜索引擎等。

AI领域并未从这些成就之中获得多少益处。AI的许多伟大创新仅被看作计算机科学工具箱中的一件工具。NickBostrom解释说,“很多AI的前沿成就已被应用在一般的程序中,不过通常没有被称为AI。这是因为,一旦变得足够有用和普遍,它就不再被称为AI了。”

90年代的许多AI研究者故意用其他一些名字称呼他们的工作,例如信息学,知识系统,认知系统或计算智能。部分原因是他们认为他们的领域与AI存在根本的不同,不过新名字也有利于获取经费。至少在商业领域,导致AI之冬的那些未能兑现的承诺仍然困扰着AI研究,正如NewYorkTimes在2005年的一篇报道所说:“计算机科学家和软件工程师们避免使用人工智能一词,因为怕被认为是在说梦话。”

**

HAL9000在哪里?

**

1968年亚瑟·克拉克和史丹利·库柏力克创作的《“2001太空漫游”》中设想2001年将会出现达到或超过人类智能的机器。他们创造的这一名为HAL-9000的角色是以科学事实为依据的:当时许多顶极AI研究者相信到2001年这样的机器会出现。

“那么问题是,为什么在2001年我们并未拥有HAL呢?”MarvinMinsky问道。Minsky认为,问题的答案是绝大多数研究者醉心于钻研神经网络和遗传算法之类商业应用,而忽略了常识推理等核心问题。另一方面,JohnMcCarthy则归咎于资格问题(en:qualificationproblem)。RayKurzweil相信问题在于计算机性能,根据摩尔定律,他预测具有人类智能水平的机器将在2029年出现。JeffHawkins认为神经网络研究忽略了人类大脑皮质的关键特性,而简单的模型只能用于解决简单的问题。还有许多别的解释,每一个都对应着一个正在进行的研究计划。目前以自然语言理解问题为突破口,以本源语义为对象,通过对“理解”与“智能”的界定研究,人类级别的人工智能研究已经取得进展。

**

End.

**

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能发展论文

人工智能发展论文

随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。以下是小编精心准备的人工智能发展论文,大家可以参考以下内容哦!

摘要:人工智能属于一门综合性的边缘学科。诞生时间为20世纪50年代左右,大概历经了四个时代,第一个时代为神经网络时代,第二个时代为弱方法时代,第三个时代为知识工程时代第四个时代为知识工业时代。它在发展过程中包含的基础有计算机科学,信息论,神经心理学,哲学,统计学等多种学科。至今为止,人工神经网络技术和遗传算法都已经应用于工业,军事等领域。

关键词:人工智能发展;识别率;人脸识别;遗传算法

1智能计算机的发展

1.1人工智能简述

人工智能[1](ArtificialIntelligence,简称AI)是计算机学科的一个分支,属于为世界三大尖端技术空间技术、能源技术、人工智能其中之一,最近几十年来,人工智能的发展非常的迅速,在很多的地方都得到了应用,尤其是在科学领域。

人工智能源自于对人的模仿,其最终目的是服务于人类,但是,就像世界上没有相同的两片叶子,也没有完全相同的两个人,也就像没有一家服务企业可以满足一个国家人的所有要求一样,人工智能产业中也会涌现许多实力强大的企业,一些企业也会在某个领域内形成自己的竞争优势,甚至会出现垄断型企业。人工智能产业在国内外都还是处于刚刚发展阶段,人工智能产业的竞争也会伴随不断增长变化的需求而演化,企业也会为了满足并提升社会大众越来的生活品质而不断进步,不断完善自身。

1.2人工智能研究的发展概况

未来,随着计算机和其他科学技术的不断进步,人工智能的发展也将要不断面对越来越多的艰难挑战。在我们的日常生活中,人们对人工智能技术的期望一直都拥有着很高的热情和期盼,但是,在客观事实上,人工智能技术进步不但要考虑软件、硬件技术的限制,也还要考虑人们对自身能力理解程度的制约,因此未来人工智能技术将在不断限制的过程中不断突破不断成长,从而保持着逐步的发展。比如人脸识别技术,当该技术以一次问世时,人们对人工智能充满了信心,但当大多数人亲自使用时,却发现它对人脸的识别率还是不够高;

近年来,人脸识别技术得益于机器学习与大数据,又有了非常令人欣喜的进步,拥有足够的多的人力模型数据,计算机对具体提供的数量足够多的人脸模型数据进行针对性训练,就可以达到一个极高的识别正确率。但是对一个具体的个例可以做到百分百识别,并不能就此完全肯定对人群大众使用就都能达到同样级别的水平,对于大量的人脸数据依然需要不断地整理系统的统计,所以,距离完美的识别率人类还有很长的路要走。不仅是人脸识别,OCR、语音识别、机器翻译等人工智能技术在现实的应用中都会面临准确率的标准。也希望无论是企业还是社会群体大众,用一份积极包容的心态,为人工智能产业的发展营造一个优良的可持续发展环境。

人工智能应用研究有许许多多的可行性。专家系统内部含有大量的某个领域的专家水平的知识与经验,经过运用人类的知识和解决问题的途径进行推理、汇总、判断、解决,来处理某个领域的疑难棘手问题。人工智能系统在很多领域的应用也都在促进着人工智能的理论和技术的不断发展。专家系统也是人工智能应用研究最活跃和最广泛的应用领域之一,涉及社会各个方面,各种专家系统已遍布各个专业领域,取得很大的成功。人工智能在计算机领域内,得到了原来越多的重视。并在机器人等中得到了很多的实际应用。

人工智能是研究人类智能活动的可循规律,创建具有一定人类智能的电子系统,它主要是通过让计算机去完成原本是需要人类智慧才能去解决的问题,换而言之,就是研究如何应用计算机的软硬件来模拟人类智慧行为的基本理论、方法和技术。例如:繁重的科学工程和数学计算本来是要人脑来承担的,但是,现今,计算机不但能高效准确的完成这种计算,而且还能够比人脑做得更加的完美,因此,当今社会也不再把这种程度的计算看成是“需要人类智慧高强度才能完成的复杂任务”,由此可见,高强度复杂工作的定义随着人类社会时代的发展和科学技术的不断进步而不断变化,人工智能这门科学的具体目标也自然随着社会科学的.变化而发展。它一方面不断地通过科学技术获得新的进展,另一方面又勇敢的转向更有意义、更加困难的目标。

2人工智能的前沿

2.1智能信息检索技术

现今社会,智能信息检索技术的发展日新月异。而人工智能在信息检索技术中的应用,主要集中表现在网络信息的检索。网络信息检索,也即网络信息搜索,是指互联网用户在网络终端,通过特定的网络搜索工具或是通过浏览的方式,查找并获取信息的行为。运用人工智能技术,可以快速准确的在大数据的基础之上获得所需信息。

2.2遗传算法

遗传算法(GeneticAlgorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程进行搜索找出最优解的方法。遗传算法是通过一类问题可能潜在的解集的其中一个集群开始的,而一个集群群则由经过基因编码的一定数目的个体组成。每个个体实际上是染色体带有本身特征的实体。比如,它决定了个体所要表现出的外部形状,如单眼皮,双眼皮的特征是由染色体中控制这一特征的某种基因组合决定的。由此可见,从一开始通过表象得到实际的基因的编码程序为一种算法。我们通常将基因的编码工作简单化,如二进制编码,在第一代种群产生之后,遵循适者生存,按照自然法则优胜劣汰,选择最优的结果,并借助交叉和变异,得到一种新的集合。这种办法会得到一种比以前更加优秀,更加适者生存的种群。

3结束语

人工智能对人类科学来说是一门极富挑战性的科研究,想要从事这项研究工作必须懂得计算机知识,心理学、统计学、哲学等等。人工智能是一种涵盖了非常广泛的知识的科学,它包含了很多不同的领域,如机器学习,计算机视觉、软件工程、操作系统等等,总而言之,人类科学对人工智能研究的一个主要目的是使机器通过一系列的操作能够胜任一些通常需要人类智能才能完成的复杂工作。在不同的时代、不同的社会环境、不同的人对这种“复杂”程度的理解是不一样的,每个时代的科学发展也是不同的,希望在科学不断发展的今天,人工智能的发展也会带来许许多多的惊喜。

参考文献:

[1]元慧.议当代人工智能的应用领域和发展状况[J].福建电脑,2008(9).

[2]刘玉然.谈谈人工智能在企业管理中的应用[J].价值工程,2013(9).

[3]焦加麟,徐良贤,戴克昌.人工智能在智能教学系统中的应用[J].计算机仿真,2013(7).

[4]周明正.人工智能在医学专家系统中的应用[J].科技信息,2014(7).

[5]张海燕,刘镇清.人工智能及其在超声无损检测中的应用[J].无损检测,2011(5).

[6]马秀荣,王化宇.简述人工智能技术在网络安全管理中的应用[J].呼伦贝尔学院学报,2015(7).

[7]曾雪峰.论人工智能的研究与发展[J].现代商贸工业,2009(8).

[8]王梓坤.论混沌与随机.北京师范大学学报,1994,30(2):199-202.

[9]陈明.基于进化遗传算法的优化计算[J].软件学报,2008,9(11):876-879.

[10]陈火旺.遗传程序设计(之一)[J].计算机科学,2005.22(6):12-15.

【人工智能发展论文】相关文章:

人工智能学术论文范文10-03

人工智能专家系统论文09-30

可持续性发展合作医疗论文08-09

人工智能时代作文(6篇)09-26

人工智能时代作文6篇09-25

【实用】人工智能作文五篇08-29

人工智能作文(集锦15篇)08-22

人工智能作文(合集15篇)08-22

人工智能作文(通用15篇)08-21

【推荐】人工智能作文10篇08-11

人工智能发展史论文

TensorFlow:异构分布式系统上的大规模机器学习(TensorFlow:Large-ScaleMachineLearningonHeterogeneousDistributedSystems)

ByGoogleTeam

由Google团队提供

摘要—(Abstract—)

TensorFlowisaninterfaceforexpressingmachinelearningalgorithms,andanimplementationforexecutingsuchalgorithms.AcomputationexpressedusingTensorFlowcanbeexecutedwithlittleornochangeonawidevarietyofheterogeneoussystems,rangingfrommobiledevicessuchasphonesandtabletsuptolarge-scaledistributedsystemsofhundredsofmachinesandthousandsofcomputationaldevicessuchasGPUcards.Thesystemisflexibleandcanbeusedtoexpressawidevarietyofalgorithms,includingtrainin

人工智能导论——人工智能的发展历史、现状及发展趋势

初学者学习人工智能有时候需要了解一些背景知识,我从网上简单搜集总结了下分享给大家。

一、人工智能的发展历史

人工智能的发展并非一帆风顺,总体呈“三起两落”趋势,如今算是迈进人工智能发展的新时代。

(1)梦的开始(1900--1956)。1900年,希尔伯特在数学家大会上庄严的向全世界数学家宣布了23个未解的难题。这23道难题中的第二个问题和第十个问题则和人工智能密切相关,并最终促进了计算机的发明。图灵根据第十个问题构想出了图灵机,它是计算机的理论模型,圆满的刻画了机械化运算过程的含义,并最终为计算机的发明铺平了道路。1954年,冯诺依曼完成了早期的计算机EDVAC的设计,并提出了“冯诺依曼体系结构”。总的来说,图灵、哥德尔、冯诺依曼、维纳、克劳德香农等伟大的先驱者奠定了人工智能和计算机技术的基础。

(2)黄金时代(1956--1974)。1965年,麦卡锡、明斯基等科学家举办的“达茅斯会议”,首次提出了“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。其后,人工智能研究进入了20年的黄金时代,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。在这个黄金时代里,约翰麦卡锡开发了LISP语音,成为以后几十年来人工智能领域最主要的编程语言;马文闵斯基对神经网络有了更深入的研究,也发现了简单神经网络的不足;多层神经网络、反向传播算法开始出现;专家系统也开始起步。

(3)第一次AI寒冬——反思发展(1974--1980)。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,过度高估了科学技术的发展速度。然而,接二连三的失败和预期目标的落空,使人工智能的发展走入低谷。1973年,莱特希尔关于人工智能的报告,拉开了人工智能寒冬序幕。此后,科学界对人工智能进行了一轮深入的拷问,使AI的遭受到严厉的批评和对其实际价值的质疑。随后,各国政府和机构也停止或减少了资金投入,人工智能在70年代陷入了第一次寒冬。计算能力有限、缺乏大量常识数据使发展陷入瓶颈,特别是过分依赖于计算力和经验数据量神经网络技术,长时期没有取得实质性的进展,特别是《感知器》一书发表过后,对神经网络技术产生了毁灭性的打击,后续十年内几乎没人投入更进一步的研究。专家系统在这个时代的末尾出现,并开启了下一个时代。

(4)应用发展(1980--1987)。专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。1980年卡耐基梅隆大学(CMU)研发的XCON正式投入使用,这成为一个新时期的里程碑,专家系统开始在特定领域发挥威力,也带动整个人工智能技术进入了一个繁荣阶段。沉寂10年之后,神经网络又有了新的研究进展,具有学习能力的神经网络算法的发现,这使得神经网络一路发展,在后面的90年代开始商业化,被用于文字图像识别和语音识别。

(5)第二次AI寒冬——低迷发展(1987--1993)。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。人工智能领域当时主要使用约翰麦卡锡的LISP编程语言,逐步发展的LISP机器被蓬勃发展的个人电脑击败,专用LISP机器硬件销售市场严重崩溃,人工智能领域再一次进入寒冬。硬件市场的溃败和理论研究的迷茫,加上各国政府和机构纷纷停止向人工智能研究领域投入资金,导致了数年的低谷,但另一方面也取得了一些重要成就。1988年,美国科学家朱迪亚·皮尔将概率统计方法引入人工智能的推理过程中这对后来人工智能的发展起到了重大影响。IBM的沃森研究中心把概率统计方法引入到人工智能的语言处理中;1992年,李开复使用统计学的方法,设计开发了世界上第一个扬声无关的连续语音识别程序;1989年,AT&T贝尔实验室的雅恩·乐昆和团队使用卷积神经网络技术,实现了人工智能识别手写的邮政编码数字图像。

(6)稳健发展(1993--2011)。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1995年,理查德华莱士开发了新的聊天机器人程序Alice,它能够利用互联网不断增加自身的数据集,优化内容。1997年,IMB的计算机深蓝Deepblue战胜了人类世界象棋冠军卡斯帕罗夫。1997年,德国科学霍克赖特和施米德赫伯提出了长期短期记忆(LSTM)这是一种今天仍用于手写识别和语音识别的递归神经网络,对后来人工智能的研究有着深远影响。2004年,美国神经科学家杰夫·霍金斯出版的《人工智能的未来》一书中提出了全新的大脑记忆预测理论,指出了依照此理论如何去建造真正的智能机器,这本书对后来神经科学的深入研究产生了深刻的影响。2006年,杰弗里辛顿出版了《LearningMultipleLayersofRepresentation》奠定了后来神经网络的全新的架构,至今仍然是人工智能深度学习的核心技术。

(7)新时代(2012--至今)。随着移动互联网技术、云计算技术的爆发,积累了历史上超乎想象的数据量,这为人工智能的后续发展提供了足够的素材和动力,以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,迎来爆发式增长的新高潮。。人工智能,大数据,云计算,物联网技术,共同构成了21世纪第二个十年的技术主旋律。2012年,由多伦多大学在ImageNet举办的视觉识别挑战赛上设计的深度卷积神经网络算法,被业内认为是深度学习革命的开始。2014年,伊恩·古德费罗提出GANs生成对抗网络算法,这是一种用于无监督学习的人工智能算法,这种算法由生成网络和评估网络构成,这种方法很快被人工智能很多技术领域采用。2016年和2017年,谷歌发起了两场轰动世界的围棋人机之战,其人工智能程序AlphaGo连续战胜曾经的围棋世界冠军韩国李世石,以及现任的围棋世界冠军中国的柯洁,引起巨大轰动。语音识别、图像识别、无人驾驶等技术不断深入。

二、人工智能的发展现状 主要表现在以下几个方面:(1)专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平等。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,在局部智能水平的单项测试中可以超越人类智能,形成了人工智能领域的单点突破。(2)通用人工智能尚处于起步阶段。目前,虽然专用人工智能领域已取得突破性进展,人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,与人类智慧还相差甚远。(3)人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。各国及大型互联网公司在人工智能领域的投资日益攀升,全球和中国人工智能行业投融资规模都呈上涨趋势。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。2018年,中国人工智能领域融资额高达1311亿元。人工智能领域处于创新创业的前沿。(4)创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。(5)人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。三、人工智能的发展趋势:(1)从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。(2)从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。(3)从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。(4)人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。(5)人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。(6)人工智能产业将蓬勃发展,人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。美国、中国、印度以及西欧等国纷纷布局人工智能产业。中国在论文总量和高被引论文数量上都排在世界第一,中科院系统AI论文产出全球第一,中国在人才拥有量全球第二,但杰出人才占比偏低。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。(7)人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。    以上内容主要来自

《人工智能的历史、现状和未来》 谭铁牛《求是》2019/04

 

 

 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇