工业机器人控制系统组成及典型结构
2)Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。
工业机器人控制系统
三、工业机器人控制系统分类
1、程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。
2、自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构和参数能随时间和条件自动改变。
3、人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。
4、点位式:要求机器人准确控制末端执行器的位姿,而与路径无关。?
5、轨迹式:要求机器人按示教的轨迹和速度运动。
6、控制总线:国际标准总线控制系统。采用国际标准总线作为控制系统的控制总线,如VME、MULTI-bus、STD-bus、PC-bus。
7、自定义总线控制系统:由生产厂家自行定义使用的总线作为控制系统总线。
8、编程方式:物理设置编程系统。由操作者设置固定的限位开关,实现起动,停车的程序操作,只能用于简单的拾起和放置作业。
9、在线编程:通过人的示教来完成操作信息的记忆过程编程方式,包括直接示教模拟示教和示教盒示教。
10、离线编程:不对实际作业的机器人直接示教,而是脱离实际作业环境,示教程序,通过使用高级机器人,编程语言,远程式离线生成机器人作业轨迹。
四、机器人控制系统结构
机器人控制系统按其控制方式可分为三类。
1)集中控制系统(CentralizedControlSystem):用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,在早期的机器人中常采用这种结构,其构成框图,如图2所示。基于PC的集中控制系统里,充分利用了PC资源开放性的特点,可以实现很好的开放性:多种控制卡,传感器设备等都可以通过标准PCI插槽或通过标准串口、并口集成到控制系统中。集中式控制系统的优点是:硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的系统硬件扩展较为方便。其缺点也显而易见:系统控制缺乏灵活性,控制危险容易集中,一旦出现故障,其影响面广,后果严重;由于工业机器人的实时性要求很高,当系统进行大量数据计算,会降低系统实时性,系统对多任务的响应能力也会与系统的实时性相冲突;此外,系统连线复杂,会降低系统的可靠性。
2)主从控制系统:采用主、从两级处理器实现系统的全部控制功能。主CPU实现管理、坐标变换、轨迹生成和系统自诊断等:从CPU实现所有关节的动作控制。其构成框图,如图3所示。主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。
3)分散控制系统(DistributeControlSystem):按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图4所示。其主要思想是“分散控制,集中管理”,即系统对其总体目标和任务可以进行综合协调和分配,并通过子系统的协调工作来完成控制任务,整个系统在功能、逻辑和物理等方面都是分散的,所以DCS系统又称为集散控制系统或分散控制系统。这种结构中,子系统是由控制器和不同被控对象或设备构成的,各个子系统之间通过网络等相互通讯。分布式控制结构提供了一个开放、实时、精确的机器人控制系统。分布式系统中常采用两级控制方式。
两级分布式控制系统?通常由上位机、下为机和网络组成。上位机可以进行不同的轨迹规划和控制算法,下位机进行插补细分、控制优化等的研究和实现。上位机和下位机通过通讯总线相互协调工作,这里的通讯总线可以是RS-232、RS-485、EEE-488以及USB总线等形式。现在,以太网和现场总线技术的发展为机器人提供了更快速、稳定、有效的通讯服务。尤其是现场总线,它应用于生产现场、在微机化测量控制设备之间实现双向多结点数字通信,从而形成了新型的网络集成式全分布控制系统—现场总线控制系统FCS(FiledbusControlSystem)。在工厂生产网络中,将可以通过现场总线连接的设备统称为“现场设备/仪表”。从系统论的角度来说,工业机器人作为工厂的生产设备之一,也可以归纳为现场设备。在机器人系统中引入现场总线技术后,更有利于机器人在工业生产环境中的集成。
工业机器人控制系统
分布式控制系统的优点在于:系统灵活性好,控制系统的危险性降低,采用多处理器的分散控制,有利于系统功能的并行执行,提高系统的处理效率,缩短响应时间。
对于具有多自由度的工业机器人而言,集中控制对各个控制轴之间的藕合关系处理得很好,可以很简单的进行补偿。但是,当轴的数量增加到使控制算法变得很复杂时,其控制性能会恶化。而且,当系统中轴的数量或控制算法变得很复杂时,可能会导致系统的重新设计。与之相比,分布式结构的每一个运动轴都由一个控制器处理,这意味着,系统有较少的轴间祸合和较高的系统重构性。返回搜狐,查看更多
机器人主要有哪几部分组成
一个机器人由机械部分、传感部分和控制部分组成,具体如下:机械部分
机器人的机械结构系统由机身、手臂、末端操作器三大件组成。每一大件都有若干自由度,构成一个多自由度的机械系统。机器人按机械结构划分可分为直角坐标型机器人、圆柱坐标型机器人、极坐标型机器人、关节型机器人、SCARA型机器人以及移动型机器人。
机器人是怎样上春晚的
传感部分
它由内部传感器模块和外部传感器模块组成,获取内部和外部环境中有用的信息。智能传感器的使用提高了机器人的机动性、适应性和智能化水平。人类的感受系统对感知外部世界信息是极其巧妙的,然而对于一些特殊的信息,传感器比人类的感受系统更有效。
机器人是怎样上春晚的
控制与驱动部分
控制系统的任务是根据机器人的作业指令以及从传感器反馈回来的信号,支配机器人的执行机构去完成规定的运动和功能。根据控制原理可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运动的形式可分为点位控制和连续轨迹控制。
驱动系统是向机械结构系统提供动力的装置。采用的动力源不同,驱动系统的传动方式也不同。驱动系统的传动方式主要有四种:液压式、气压式、电气式和机械式。电力驱动是目前使用最多的一种驱动方式,其特点是电源取用方便,响应快,驱动力大,信号检测、传递、处理方便,并可以采用多种灵活的控制方式,驱动电机一般采用步进电机或伺服电机。
机器人是怎样上春晚的
其实这种机器人之所以能够实现这么流畅的动作,不仅仅是微型计算机的控制技术,也是与伺服电动机的飞速发展息息相关的。
机器人的伺服电机系统,设备在感知外界信息后会快速传递给控制器,然后控制器会发出控制信号驱动伺服电机系统快速进行姿势调整。伺服电机系统在这里就是利用各种电机产生的力矩和力,直接或间接地驱动机器人本体来获得机器人的各种运动。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:做人工智能和机器人需要研究哪些领域?http://www.duozhishidai.com/article-8491-1.html机器人的研究重点是什么,常用定位技术包括哪几种?http://www.duozhishidai.com/article-1754-1.html机器人技术如何和人工智能更好地结合,未来研究的主要方向有哪些?http://www.duozhishidai.com/article-1019-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站
机器人控制系统是由什么组成
机器人控制系统是由什么组成?机器人控制系统是工业机器人的重要组成部分,它的作用相当于人脑。拥有一个功能完善、灵敏可靠的控制系统是工业机器人与设备协调动作、共同完成作业任务的关键。工业机器人的构成分为:机械本体部分、传感器部分和控制部分,共包含六个子系统:驱动系统、机械结构系统、感知系统、环境交互系统、人机交互系统、控制系统。
工业机器人的控制系统一般由对其自身运动的控制和工业机器人与周边设备的协调控制两部分组成。
工业机器人控制系统的特点机器人从结构上讲属于一个空间开链机构,其中各个关节的运动是独立的,为了实现末端点的运动轨迹,需要多关节的运动协调,其控制系统较普通的控制系统要复杂得多。机器人控制系统的特点如下:
(1)机器人的控制是与机构运动学和动力学密切相关的。在各种坐标下都可以对机器人手足的状态进行描述,应根据具体的需要对参考坐标系进行选择,并要做适当的坐标变换。经常需要正向运动学和反向运动学的解,除此之外还需要考虑惯性力、外力(包括重力)和向心力的影响。
(2)即使是一个较简单的机器人,也至少需要3~5个自由度,比较复杂的机器人则需要十几个甚至几十个自由度。每一个自由度一般都包含一个伺服机构,它们必须协调起来,组成一个多变量控制系统。
(3)由计算机来实现多个独立的伺服系统的协调控制和使机器人按照人的意志行动,甚至赋予机器人一定“智能”的任务。所以,机器人控制系统一定是一个计算机控制系统。同时,计算机软件担负着艰巨的任务。
(4)由于描述机器人状态和运动的是一个非线性数学模型,随着状态的改变和外力的变化,其参数也随之变化,并且各变量之间还存在耦合。所以,只使用位置闭环是不够的,还必须要采用速度甚至加速度闭环。系统中经常使用重力补偿、前馈、解耦或自适应控制等方法。
(5)由于机器人的动作往往可以通过不同的方式和路径来完成,所以存在一个“最优”的问题。对于较高级的机器人可采用人工智能的方法,利用计算机建立庞大的信息库,借助信息库进行控制、决策、管理和操作。根据传感器和模式识别的方法获得对象及环境的工况,按照给定的指标要求,自动地选择最佳的控制规律。综上所述,机器人的控制系统是一个与运动学和动力学原理密切相关的、有耦合的、非线性的多变量控制系统。因为其具有的特殊性,所以经典控制理论和现代控制理论都不能照搬使用。到目前为止,机器人控制理论还不够完整和系统。
工业机器人控制系统的主要功能工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等项目工业机器人在工作空间中的运动位置、姿态和轨迹、操作顺序及动作的时间等项目的控制是工业机器人控制系统的主要任务,其中有些项目的控制是非常复杂的。
工业机器人控制系统的主要功能包括以下两点:
(1)示教再现功能。示教再现功能是指控制系统可以通过示教盒或手把手进行示教,将动作顺序、运动速度、位置等信息用一定的方法预先教给工业机器人,由工业机器人的记忆装置将所教的操作过程自动地记录在存储器中,当需要再现操作时,重放存储器中存储的内容即可。如需更改操作内容时,只需重新示教一遍。
(2)运动控制功能。运动控制功能是指对工业机器人末端操作器的位姿、速度、加速度等项目的控制。
机器人控制系统的组成工业机器人的控制系统由相应的硬件和软件组成。硬件主要包括以下几部分:
1)传感装置。可分为内部传感器和外部传感器。其中前者是用来感知其自身的状态的,其作用是对工业机器人各关节的位置、速度和加速度等进行检测;后者是用来感知工作环境和工作对象状态的,外部传感器包括视觉、力觉、触觉、听觉、滑觉等传感器。
2)控制装置。一般由一台微型或小型计算机及相应的接口组成。其作用是用来对各种感觉信息进行处理,执行控制软件,并产生控制指令。
3)关节伺服驱动部分。这部分的主要作用是以控制装置的指令为依据,按作业任务的要求驱动各关节运动。这里所说的软件,主要是指机器人的控制软件。控制软件由运动轨迹规划算法和关节伺服控制算法及相应的动作程序组成。它可以使用所有的编程语言编制,但工业机器人控制软件的主流是由通用语言模块化而编制形成的专用工业语言。
机器人控制系统(二)——整体设计
一、简述机器人控制系统是一个复杂设计,针对不同功能目标有不同的开发路线,若想开发一个通用的控制系统难度会非常高,因此确定目标需求非常重要,这里所述的目标需求有两种,一种为开发基本的控制系统再根据实际条件进行功能添加开发,另外一种为针对特殊情况开发专门的控制系统。
目标需求设计好后,根据要求可以搭建简单的框架,对于ROS开发来说,一个好的框架是开发的第一步,也是最重要的一步,值得花费大量的时间和精力,因为后续所有功能开发都建立于框架之上,根据框架去设计功能节点和接口,若后期对框架进行大规模调整会对系统整体产生极大影响,这点需要非常注意。
二、目标设计此处目标为设计一个可实现物体筛选和抓取的机器人控制系统,目标可简单转述为一个基本的机械臂控制系统和一个视觉的添加功能,属于第一种目标需求,具体要求如下:
2.1机械臂控制系统说明目标控制机械臂为常见的六轴构型,需要实现机械臂的运动控制,可分别采用示教模式和工作模式对机械臂进行控制,控制系统需带交互接口和功能接口。
基本方案设计运动控制
以MoveIt!为核心,辅以Service-Client通讯结构构建运动控制系统核心部分,实现机械臂的运动控制,轨迹规划等,集成机械臂相关的所有控制算法。
控制接口
控制接口分为软件接口和硬件接口,软件接口面向功能模块,硬件接口面向硬件。
软件接口采用ROS的通讯模式实现,硬件接口可采用ros_control,ros_industral或者actionlib,通讯协议根据需要可采用串口或者ethercat。
交互接口
交互接口为人机界面,面向用户,可采用Qt或者rosbridge+WEB实现。
2.2视觉功能说明
视觉识别目标为实现特定物体的识别与定位。
基本方案设计
相机采用RGBD相机,结合图像数据和点云数据实现物体的识别与定位。
视觉算法采用OpenCV+TensorFlow+PCL实现,并通过软件接口与机械臂控制系统结合。
三、构建框架因ROS在设计之初考虑到了诸多方面,冗余较大,因此框架可以采用多种方式实现,不一定要按照某一特定方式进行开发。
3.1框架参考ROS-IndustrialKungfuArmArchitectureHRMRPROS-IInterfaceforCOMAURobots3.2框架设计交互模块交互部分不采用ROS提供的rqt实现,独立于ROS,改为通过以下两种思路实现:采用qt开发,在qt中建立ros节点,实现qt界面与ros通讯(此处采用该方式实现)。开发交互接口,消息通过rosbridge或者其他通讯接口(蓝牙串口等)与GUI界面通讯。ROS之后博文详述。硬件硬件通过TCP/IP与控制系统通讯,数据通过硬件接口转换为通用的ROS数据传输到ROS系统中。四、工作空间架构├──robot_description机械臂相关参数描述├──robot_bringup机械臂启动launch├──robot_control机械臂控制├──robot_gazebogazebo配置├──robot_gui控制界面├──robot_moveit_configmoveit配置├──robot_msgs自定义消息,服务器├──robot_vision视觉├──robot_driver机械臂驱动接口├──robot_ikfast_hand_pluginikfast逆解pkg├──trac_ik_kinematics_plugintrac_ik插件└──trac_ik_libtrac_ik逆解pkg工作空间各包根据其功能可简单细分如下,实际上部分包功能存在重叠,同时部分包的实际上是可以合并,但为了结构更加清晰和后续的维护所以分开。上面列出的包为基础框架部分内容,根据需求还会有功能依赖的相关包,如视觉相关的(cv_bridge)和运动规划相关的(descartes)等。
机械臂本体相关和机械臂本体相关的关节参数,逆解及moveit配置,这部分可以根据控制对象不同而更换,使控制系统可以控制不同的机械臂。
robot_description机械臂相关参数描述robot_moveit_configmoveit配置robot_ikfast_hand_pluginikfast逆解pkgtrac_ik_kinematics_plugintrac_ik插件trac_ik_libtrac_ik逆解pkg机械臂控制robot_control机械臂控制robot_gui控制界面仿真仿真包括两部分,一部分为rviz(rviz实际上不包含物理参数,只作显示)
robot_gazebogazebo配置驱动相关包有ros_control和ROS-Isimple_message。
robot_driver机械臂驱动接口视觉robot_vision视觉辅助robot_bringup机械臂启动launchrobot_msgs自定义消息,服务器参考ROS-Industrial
ROS-IInterfaceforCOMAURobots
功夫手:一款基于ROS的工业机器人
HRMRP机器人的设计
胡春旭,熊枭,任慰,何顶新.基于嵌入式系统的室内移动机器人定位与导航[J/OL].华中科技大学学报(自然科学版),2013,41(S1):254-257+266.(2014-01-10)[2017-08-15].
机器人的控制系统组成结构是什么样的
机器人发展到今天,主体框架结构已经落实下来,它的发展也不是一朝一夕的事情,而是有了多半个世纪了,下边说说机器人的组成和发展情况。机器人包括三大部分六个子系统,其中三大部分指机械部分、传感部分和控制部分,六个子系统是指驱动系统、机械结构系统、感受系统、机器人-环境交互系统。
驱动系统就是为了使机器人运行起来给各个关节即每一个运动自由度安置的传动装置。驱动系统既可以是液压传动、气动传动、电动传动或是把它们结合起来应用的综合系统,也可以是直接驱动或者是通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接驱动。
工业机器人的机械结构系统包括基座、手臂、末端操作器三大部分。每部分都有若干个自由度,构成一个多自由度的机械系统,若基座具备行走机构,则构成行走机器人;若基座不具备行走及腰转机构,则构成单机器人臂。手臂一般包括上臂、下臂和手腕三部分。末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手爪,也可以是喷漆枪、焊具等作业工具。
感受系统包括内部传感器模块和外部传感器模块,其作用是用以获取内部和外部环境状态中有价值的信息。由于智能传感器的使用,使机器人的机动性、适应性和智能化水平得以提高。虽然人类的感受系统对感知外部世界信息是极其灵敏的,但对于一些特殊的信息,传感器比人类的感受系统更准。
机器人一环境交互系统的作用是实现工业机器人与外部环境中的设备相互联系和协调。可以将工业机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。
人机交互系统的作用是实现操作人员参与机器人控制并与机器人进行联系。例如,计算机的标准终端、指令控制台、信息显示板、危险信号报警器等。该系统可以分为两大类,即指令给定装置和信息显示装置。
控制系统的作用是根据机器人的作业指令程序以及从传感器反馈回来的信号,控制机器人的执行机构去完成规定的运动和功能。如果工业机器人没有信息反馈功能,则为开环控制系统;如果具备信息反馈功能,则为闭环控制系统。按控制原理分,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。按控制运动的形式分,控制系统可分为点位控制和轨迹控制。
顺路说说全世界机器人的发展状况,美国戴沃尔于1954年最早提出了工业机器人的概念,并申请了专利。该专利的关键是利用伺服技术控制机器人的关节,借助人手对机器人进行动作示教,并且机器人具备动作的记录和再现功能。这就是所谓的示教再现机器人,现有的机器人大部分都采用这种控制方式。被誉为“工业机器人之父”的JosephF.EngelBerger于1958年创建了世界上第一个机器人公司—Unimation公司,并参与设计了第一台Unimate 机器人。该机器人是一台用于压铸作业的五轴液压驱动机器人,手臂的控制由一台专用计算机完成。
它采用分立式数控元件,并装有磁鼓,用以存储信息,能够记忆完成180个工作步骤。这个时期,另一家美国公司—AMF公司也开始研制Versatran工业机器人。它主要应用于机器之间的物料运输,采用液压驱动。该机器人的手臂可以绕底座回转,沿垂直方向升降,还可以沿半径方向伸缩。普通情况下可认为Unimate和Versatran是世界上最早的工业机器人。这两种工业机器人的控制方式与数控机床大致相似,但外形特征迥异,主要由类似于人的手和臂组成。工业机器人的发展历史,见下表1-1所示。
总而言之,机器人是现代科技进步的重要标志。是一个国家综合国力的具体体现。
工业机器人典型控制系统及结构
控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。
今天小编先和大家聊聊控制系统!
1.工业机器人控制系统所要达到的功能
机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下:
记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。
示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。
与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。
坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。人机接口:示教盒、操作面板、显示屏。
传感器接口:位置检测、视觉、触觉、力觉等。
位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。
故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。
图1机器人控制系统组成框图
(我搜遍全网,真的找不到清楚的图片了
)
2.工业机器人控制系统的组成
控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。
控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。
示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。
示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。
操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。
操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。
硬盘和软盘存储存:储机器人工作程序的外围存储器。
数字和模拟量输入输出:各种状态和控制命令的输入或输出。
硬盘和软盘存储存:储机器人工作程序的外围存储器。
数字和模拟量输入输出:各种状态和控制命令的输入或输出。
打印机接口:记录需要输出的各种信息。
打印机接口:记录需要输出的各种信息。
传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。
传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。
轴控制器:完成机器人各关节位置、速度和加速度控制。
轴控制器:完成机器人各关节位置、速度和加速度控制。
辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。
辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。
通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。
通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。
网络接口:①Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。
②Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。
网络接口:①Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。
②Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。
3.工业机器人控制系统分类
程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。
程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。
自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构和参数能随时间和条件自动改变。
自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构和参数能随时间和条件自动改变。
人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。
人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。
运动方式:
点位式:要求机器人准确控制末端执行器的位姿,而与路径无关;
轨迹式:要求机器人按示教的轨迹和速度运动。
控制总线:国际标准总线控制系统。采用国际标准总线作为控制系统的控制总线,如VME、MULTI-bus、STD-bus、PC-bus。
自定义总线控制系统:由生产厂家自行定义使用的总线作为控制系统总线。
编程方式:物理设置编程系统。由操作者设置固定的限位开关,实现起动,停车的程序操作,只能用于简单的拾起和放置作业。
在线编程:通过人的示教来完成操作信息的记忆过程编程方式,包括直接示教(即手把手示教)模拟示教和示教盒示教。
离线编程:不对实际作业的机器人直接示教,而是脱离实际作业环境,生成示教程序,通过使用高级机器人,编程语言,远程式离线生成机器人作业轨迹。
4.机器人控制系统结构
机器人控制系统按其控制方式可分为三类。
1.集中控制系统(CentralizedControlSystem):用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,在早期的机器人中常采用这种结构。
1.集中控制系统(CentralizedControlSystem):用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,在早期的机器人中常采用这种结构。
基于PC的集中控制系统里,充分利用了PC资源开放性的特点,可以实现很好的开放性:多种控制卡,传感器设备等都可以通过标准PCI插槽或通过标准串口、并口集成到控制系统中。
集中式控制系统的优点是:硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的系统硬件扩展较为方便。
其缺点也显而易见:系统控制缺乏灵活性,控制危险容易集中,一旦出现故障,其影响面广,后果严重;由于工业机器人的实时性要求很高,当系统进行大量数据计算,会降低系统实时性,系统对多任务的响应能力也会与系统的实时性相冲突;此外,系统连线复杂,会降低系统的可靠性。
图2集中控制系统框图
2.主从控制系统:采用主、从两级处理器实现系统的全部控制功能。主CPU实现管理、坐标变换、轨迹生成和系统自诊断等;从CPU实现所有关节的动作控制。其构成框图,如图3所示。主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。
2.主从控制系统:采用主、从两级处理器实现系统的全部控制功能。主CPU实现管理、坐标变换、轨迹生成和系统自诊断等;从CPU实现所有关节的动作控制。其构成框图,如图3所示。主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。
图3主从动控制系框图
3.分散控制系统(DistributeControlSystem):按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图4所示。
3.分散控制系统(DistributeControlSystem):按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图4所示。
图4分布式控制系统框图
其主要思想是“分散控制,集中管理”,即系统对其总体目标和任务可以进行综合协调和分配,并通过子系统的协调工作来完成控制任务,整个系统在功能、逻辑和物理等方面都是分散的,所以DCS系统又称为集散控制系统或分散控制系统。
这种结构中,子系统是由控制器和不同被控对象或设备构成的,各个子系统之间通过网络等相互通讯。分布式控制结构提供了一个开放、实时、精确的机器人控制系统。分布式系统中常采用两级控制方式。
两级分布式控制系统,通常由上位机、下为机和网络组成。上位机可以进行不同的轨迹规划和控制算法,下位机进行插补细分、控制优化等的研究和实现。上位机和下位机通过通讯总线相互协调工作,这里的通讯总线可以是RS-232、RS-485、EEE-488以及USB总线等形式。
现在,以太网和现场总线技术的发展为机器人提供了更快速、稳定、有效的通讯服务。尤其是现场总线,它应用于生产现场、在微机化测量控制设备之间实现双向多结点数字通信,从而形成了新型的网络集成式全分布控制系统—现场总线控制系统FCS(FiledbusControlSystem)。
在工厂生产网络中,将可以通过现场总线连接的设备统称为“现场设备/仪表”。从系统论的角度来说,工业机器人作为工厂的生产设备之一,也可以归纳为现场设备。
在机器人系统中引入现场总线技术后,更有利于机器人在工业生产环境中的集成。
分布式控制系统的优点在于:系统灵活性好,控制系统的危险性降低,采用多处理器的分散控制,有利于系统功能的并行执行,提高系统的处理效率,缩短响应时间。
对于具有多自由度的工业机器人而言,集中控制对各个控制轴之间的藕合关系处理得很好,可以很简单的进行补偿。但是,当轴的数量增加到使控制算法变得很复杂时,其控制性能会恶化。而且,当系统中轴的数量或控制算法变得很复杂时,可能会导致系统的重新设计。与之相比,分布式结构的每一个运动轴都由一个控制器处理,这意味着,系统有较少的轴间祸合和较高的系统重构性。
▶文章来源:工业机器人根据网络资料编辑整理
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>返回搜狐,查看更多