博舍

ABB、库卡、发那科机器人控制系统介绍 机器人的控制系统介绍图片大全高清

ABB、库卡、发那科机器人控制系统介绍

从机器人产业发展来看,对机器人软件开发环境有两方面的需求。一方面是来自机器人最终用户,他们不仅使用机器人,而且希望能够通过编程的方式赋予机器人更多的功能,这种编程往往是采用可视化编程语言实现的,如乐高MindStormsNXT的图形化编程环境和微软RoboticsStudio提供的可视化编程环境。

随着机器人控制技术的发展,针对结构封闭的机器人控制器的缺陷,开发“具有开放式结构的模块化、标准化机器人控制器”是当前机器人控制器的一个发展方向以下我们看下目前国际几家巨头的控制系统。

ABB机器人控制系统

ABB机器人IRC5控制器(灵活型控制器)由一个控制模块和一个驱动模块组成,可选增一个过程模块以容纳定制设备和接口,如点焊、弧焊和胶合等。配备这三种模块的灵活型控制器完全有能力控制一台6轴机器人外加伺服驱动工件定位器及类似设备。如需增加机器人的数量,只需为每台新增机器人增装一个驱动模块,还可选择安装一个过程模块,最多可控制四台机器人在MultiMove模式下作业。各模块间只需要两根连接电缆,一根为安全信号传输电缆,另一根为以太网连接电缆,供模块间通信使用,模块连接简单易行。

控制模块作为IRC5的心脏,自带主计算机,能够执行高级控制算法,为多达36个伺服轴进行MultiMove路径计算,并且可指挥四个驱动模块。控制模块采用开放式系统架构,配备基于商用Intel主板和处理器的工业PC机以及PCI总线。由于采用标准组件,用户不必担心设备淘汰问题,随着计算机处理技术的进步能随时进行设备升级。

完善的通信功能是ABB机器人控制系统的特点。其IRC5控制器的PCI扩展槽中可以安装几乎任何常见类型的现场总线板卡,包括满足ODVA标准可使用众多第三方装置的单信道DeviceNet,支持最高速率为12Mbps的双信道ProfibusDP以及可使用铜线和光纤接口的双信道Interbus。

控制模块作为IRC5的心脏,自带主计算机,能够执行高级控制算法,为多达36个伺服轴进行MultiMove路径计算,并且可指挥四个驱动模块。控制模块采用开放式系统架构,配备基于商用Intel主板和处理器的工业PC机以及PCI总线。由于采用标准组件,用户不必担心设备淘汰问题。

KUKA机器人控制系统

KRC4的革新理念为自动化的明天打下了坚实的基础。降低了自动化方面的集成、保养和维护成本。并且同时持久地提高系统的效率和灵活性。所以库卡开发了一个全新的、结构清晰且注重使用开放高效数据标准的系统架构。这个系统架构中集成的所有安全控制(SafetyControl)、机器人控制(RobotControl)、运动控制(MotionControl)、逻辑控制(LogicControl)及工艺过程控制(ProcessControl)均拥有相同的数据基础和基础设施并可以对其进行智能化使用和分享。使系统具有最高性能、可升级性和灵活性。引领时代、开创未来—而且并不仅限于库卡机器人。

另外,新型KUKAsmartPAD在超大高清无反射触摸屏上以最佳的效果显示出如何直观地操控机器人。库卡smartPAD重量仅有1公斤,不仅能够提供久经考验的操作控制元件,如6D鼠标,还能够为用户提供一系列全新的、人性化的功能,如配置了USB端口,从而方便用户直接在控制面板上存储和装载数据。总的来说,smartPAD使用8.4寸超大、高清、防反射、操控键少的触摸屏。运动操作键和以前的相比,该操作面板可以方便地控制八轴,而无需来回切换。

KUKA机器人控制软件运行于XP+VxWorks平台,既可以提供良好的人机交互界面,又能提供精确的实时控制。KUKA.WorkVisual软件架构的模块化结构把一个项目的所有步骤融合到同源的软件环境中,它可被同时用作工作单元配置的规划工具和通用编程环境。从规划到编程,再到优化,WorkVisual通过为所有的工具配置统一的外观而简化了所有的自动化任务。与MSOffice相比,WorkVisual拥有标准的用户接口和菜单导航,能够在诸如复制、粘贴、拖放代码段等方面为用户带来更多的方便。此外,基于跨程序的目录和项目数据,还能确保数据的一致性和连贯性。有了这些决定性的优势,当后台运行这些功能时,程序代码已经过了逻辑检测。这也意味着项目的所有错误将被消灭在萌芽状态中。

KEBA机器人控制系统

KEBA工业自动化公司(Automationbyinnovation)成立于1968年,总部位于奥地利林茨(Linz)市,是一家为实现工业自动化服务的一流高科技公司,其商业领域包括塑料行业、机器人、机械和过程自动化、移动和操作等。现在已发展成为一家在全世界范围内取得成功的电子公司。

Keba与ABB和库卡不同,她不是机器人生产商,他的产品是工业级伺服控制系统,能够实现多自由度机器人的控制,该控制系统中通过VxWorks平台或者+RTX实时扩展平台保证软件运行环境的实时性,通过运动规划和运动控制单元可以实现对总线式伺服驱动器的控制,从而达到对机器人的精确控制。通过上述分析,可以得到如下表所示的各国机器人标杆厂商其机器人控制系统在实时性,运动控制功能以及可扩展性等方面的比较。

KeMotionr5000系列控制器是一套完整的面向多轴运动控制系统软硬件模块化控制器。硬件包括KeMotion控制器,以及各种外围模块组成,它们通过以太网或总线的形式与控制器连接,实现面向各种应用的搭配。控制系统软件的核心部分是运行在控制器硬件平台(x86嵌入式微处理器)上一整套软件。自底向上的看,首先底层的OS是VxWorks实时操作系统,这为系统的实时性和可靠性提供了一个基础,同时也为应用软件提供运行环境。

VxWorks中运行了两套软件,分别是RobotControl和SoftPLC,它们组合在一起构成了控制系统软件的核心。其中RobotControl是负责机器人的运动控制,包括机器人的轨迹规划和插补操作,而SoftPLC则负责外围信号采样、逻辑控制等功能。

在工业自动化业务领域,KEBA优化了机械自动化,机器人以及移动终端。KEBA工业自动化针对客户的不同需求为机械及机器人控制系统提供快速有效的模块化的解决方案。

发那科机器人控制系统

FANUC首台机器人问世以来,FANUC致力于机器人技术上的领先与创新,是世界上唯一一家由机器人来做机器人的公司,是世界上唯一提供集成视觉系统的机器人企业,是世界上唯一一家既提供智能机器人又提供智能机器的公司。FANUC机器人产品系列多达240种,负重从0.5公斤到1.35吨,广泛应用在装配、搬运、焊接、铸造、喷涂、码垛等不同生产环节,满足客户的不同需求。

发那科机器人控制系统FANUCRobotR-30iA集中了发那科各种最先进的新一代机器人控制器,具有性能高,响应快,安全性能强等特点。作为唯一集成了视学功能的机器人控制器,将大量节约为实现柔性生产所需的周边设备成本。基于FANUC自身软件平台研发的各种功能强大的点焊、涂胶、搬运等专用软件,在使机器人的操作变得更加简单的同时,也使系统具有彻底免疫计算机病毒的功能。

R-30iA减轻了自重,并通过巧妙的设计改变了示教盒的重心,改善了整体的平衡性,使示教、操作变得更轻松。通过金属接头及塑料护套加强了电缆接头处的防护,再也不用担心由于拉拽刮擦造成的电缆损坏。增加了附加轴切换的快捷键及电源指示灯,简化了操作步骤。返回搜狐,查看更多

工业机器人典型控制系统及结构

控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。

今天小编先和大家聊聊控制系统!

1.工业机器人控制系统所要达到的功能

机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下:

记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。

示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。

与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。

坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。人机接口:示教盒、操作面板、显示屏。

传感器接口:位置检测、视觉、触觉、力觉等。

位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。

故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。

图1机器人控制系统组成框图

(我搜遍全网,真的找不到清楚的图片了

2.工业机器人控制系统的组成

控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。

控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32位、64位等,如奔腾系列CPU以及其他类型CPU。

示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。

示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的CPU以及存储单元,与主计算机之间以串行通信方式实现信息交互。

操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。

操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。

硬盘和软盘存储存:储机器人工作程序的外围存储器。

数字和模拟量输入输出:各种状态和控制命令的输入或输出。

硬盘和软盘存储存:储机器人工作程序的外围存储器。

数字和模拟量输入输出:各种状态和控制命令的输入或输出。

打印机接口:记录需要输出的各种信息。

打印机接口:记录需要输出的各种信息。

传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。

传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。

轴控制器:完成机器人各关节位置、速度和加速度控制。

轴控制器:完成机器人各关节位置、速度和加速度控制。

辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。

辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。

通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。

通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。

网络接口:①Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。

②Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。

网络接口:①Ethernet接口:可通过以太网实现数台或单台机器人的直接PC通信,数据传输速率高达10Mbit/s,可直接在PC上用windows库函数进行应用程序编程之后,支持TCP/IP通信协议,通过Ethernet接口将数据及程序装入各个机器人控制器中。

②Fieldbus接口:支持多种流行的现场总线规格,如Devicenet、ABRemoteI/O、Interbus-s、profibus-DP、M-NET等。

3.工业机器人控制系统分类

程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。

程序控制系统:给每一个自由度施加一定规律的控制作用,机器人就可实现要求的空间轨迹。

自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构和参数能随时间和条件自动改变。

自适应控制系统:当外界条件变化时,为保证所要求的品质或为了随着经验的积累而自行改善控制品质,其过程是基于操作机的状态和伺服误差的观察,再调整非线性模型的参数,一直到误差消失为止。这种系统的结构和参数能随时间和条件自动改变。

人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。

人工智能系统:事先无法编制运动程序,而是要求在运动过程中根据所获得的周围状态信息,实时确定控制作用。

运动方式:

点位式:要求机器人准确控制末端执行器的位姿,而与路径无关;

轨迹式:要求机器人按示教的轨迹和速度运动。

控制总线:国际标准总线控制系统。采用国际标准总线作为控制系统的控制总线,如VME、MULTI-bus、STD-bus、PC-bus。

自定义总线控制系统:由生产厂家自行定义使用的总线作为控制系统总线。

编程方式:物理设置编程系统。由操作者设置固定的限位开关,实现起动,停车的程序操作,只能用于简单的拾起和放置作业。

在线编程:通过人的示教来完成操作信息的记忆过程编程方式,包括直接示教(即手把手示教)模拟示教和示教盒示教。

离线编程:不对实际作业的机器人直接示教,而是脱离实际作业环境,生成示教程序,通过使用高级机器人,编程语言,远程式离线生成机器人作业轨迹。

4.机器人控制系统结构

机器人控制系统按其控制方式可分为三类。

1.集中控制系统(CentralizedControlSystem):用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,在早期的机器人中常采用这种结构。

1.集中控制系统(CentralizedControlSystem):用一台计算机实现全部控制功能,结构简单,成本低,但实时性差,难以扩展,在早期的机器人中常采用这种结构。

基于PC的集中控制系统里,充分利用了PC资源开放性的特点,可以实现很好的开放性:多种控制卡,传感器设备等都可以通过标准PCI插槽或通过标准串口、并口集成到控制系统中。

集中式控制系统的优点是:硬件成本较低,便于信息的采集和分析,易于实现系统的最优控制,整体性与协调性较好,基于PC的系统硬件扩展较为方便。

其缺点也显而易见:系统控制缺乏灵活性,控制危险容易集中,一旦出现故障,其影响面广,后果严重;由于工业机器人的实时性要求很高,当系统进行大量数据计算,会降低系统实时性,系统对多任务的响应能力也会与系统的实时性相冲突;此外,系统连线复杂,会降低系统的可靠性。

图2集中控制系统框图

2.主从控制系统:采用主、从两级处理器实现系统的全部控制功能。主CPU实现管理、坐标变换、轨迹生成和系统自诊断等;从CPU实现所有关节的动作控制。其构成框图,如图3所示。主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。

2.主从控制系统:采用主、从两级处理器实现系统的全部控制功能。主CPU实现管理、坐标变换、轨迹生成和系统自诊断等;从CPU实现所有关节的动作控制。其构成框图,如图3所示。主从控制方式系统实时性较好,适于高精度、高速度控制,但其系统扩展性较差,维修困难。

图3主从动控制系框图

3.分散控制系统(DistributeControlSystem):按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图4所示。

3.分散控制系统(DistributeControlSystem):按系统的性质和方式将系统控制分成几个模块,每一个模块各有不同的控制任务和控制策略,各模式之间可以是主从关系,也可以是平等关系。这种方式实时性好,易于实现高速、高精度控制,易于扩展,可实现智能控制,是目前流行的方式,其控制框图如图4所示。

图4分布式控制系统框图

其主要思想是“分散控制,集中管理”,即系统对其总体目标和任务可以进行综合协调和分配,并通过子系统的协调工作来完成控制任务,整个系统在功能、逻辑和物理等方面都是分散的,所以DCS系统又称为集散控制系统或分散控制系统。

这种结构中,子系统是由控制器和不同被控对象或设备构成的,各个子系统之间通过网络等相互通讯。分布式控制结构提供了一个开放、实时、精确的机器人控制系统。分布式系统中常采用两级控制方式。

两级分布式控制系统,通常由上位机、下为机和网络组成。上位机可以进行不同的轨迹规划和控制算法,下位机进行插补细分、控制优化等的研究和实现。上位机和下位机通过通讯总线相互协调工作,这里的通讯总线可以是RS-232、RS-485、EEE-488以及USB总线等形式。

现在,以太网和现场总线技术的发展为机器人提供了更快速、稳定、有效的通讯服务。尤其是现场总线,它应用于生产现场、在微机化测量控制设备之间实现双向多结点数字通信,从而形成了新型的网络集成式全分布控制系统—现场总线控制系统FCS(FiledbusControlSystem)。

在工厂生产网络中,将可以通过现场总线连接的设备统称为“现场设备/仪表”。从系统论的角度来说,工业机器人作为工厂的生产设备之一,也可以归纳为现场设备。

在机器人系统中引入现场总线技术后,更有利于机器人在工业生产环境中的集成。

分布式控制系统的优点在于:系统灵活性好,控制系统的危险性降低,采用多处理器的分散控制,有利于系统功能的并行执行,提高系统的处理效率,缩短响应时间。

对于具有多自由度的工业机器人而言,集中控制对各个控制轴之间的藕合关系处理得很好,可以很简单的进行补偿。但是,当轴的数量增加到使控制算法变得很复杂时,其控制性能会恶化。而且,当系统中轴的数量或控制算法变得很复杂时,可能会导致系统的重新设计。与之相比,分布式结构的每一个运动轴都由一个控制器处理,这意味着,系统有较少的轴间祸合和较高的系统重构性。

▶文章来源:工业机器人根据网络资料编辑整理

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇