博舍

医学影像人工智能辅助诊断关键技术—智能病灶分割及三维重建 人工智能辅助治疗技术有哪些特点

医学影像人工智能辅助诊断关键技术—智能病灶分割及三维重建

华东师范大学>科技成果>正文医学影像人工智能辅助诊断关键技术—智能病灶分割及三维重建2021-05-1018:41:24云上高博会https://heec.cahe.edu.cn关键词:智能病灶分割及三维重建点击收藏所属领域:生物、医药及医疗机械项目成果/简介:

技术分析(创新性、先进性、独占性)

为了充分利用先进的人工智能的新技术,提高医疗影像辅助诊断的水平,使得智能医疗诊断技术提高临床诊断的质量和效率,使其尽快走入家挺、社区,满足人们的医疗健康的需要。研究临床医学影像的2D病灶精细分割和三维跨模态的影像三维重建技术。首先,通过建立多层感知的神经网路,对医学影像的特征进行充分学习,得到影像的几何映射的关系,从而实现对医学影像的三维重建,克服了现有的三维重建技术中度量关键问题,关键技术对于医学影像的精准度量,具有现实意义:其次,在2D病灶分割中,利用半监督学习技术,实现少标签情况下的分割技术,半监督学习技术可以有效解决医学影像中标签难以获取的问题。技术的研究成果的特点是医学影像跨模态辅助诊断技术,对于超声、CT以及核磁共振等影像都有效,并且攻克的神经网络过于复杂的关键问题,所研究技术适用于临床快速便捷辅助诊断。此外,在医学度量方面的关键技术中,突破了人体腹腔及皮下脂肪的精细分割技术的关键技术,可以用于临床辅助诊断中,在关键技术探索中,实现对腔内脂肪特征的精细学习,该技术仅需要少量的影像标准数据,就可以实现皮下脂肪的准确分割,并******了关键技术的有效性。

应用范围:

医学影像智能辅助诊断关键技术具有广泛的应用场景,例如,可以应用于:

(1)临床医疗辅助诊断,帮助临床阅片、辅助医疗,还可以应用于医疗决策、临床健康情况评估;

(2)健康医疗、辅助病灶筛查;

(3)社区医疗、社区智能健康辅助检查、检测;

目前,本团队在智能辅助诊断关键技术研究中,已经对2D病灶识别及三维重建技术展开的深入研究,关键技术已经突破,快速重建及病灶识别算法,准确率已经达到了一定水平,有望将关键技术与临床辅助诊断相结合,不断将关键技术推广应用于健康医疗,为国民健康******先进的智能技术支撑。

效益分析:

医学影像智能输助诊断关键技术可应用于广泛医疗、智能器械的开发及研制,因此,该技术的研究具有广泛的市场前景及市场经济规模。

对于具有医学影你2D精细分割及3D重建的医学影像分析,可以初步计算一下其市场规模

对于全国医院临床诊疗机构,假设医学影像智能辅助诊断产品单价按照100万计算,每年全国的三甲规模医院的购买数量按照50家单位计算,每家单位的不同科目类别按照3个计算,这样保守计算的每年市场规模结果为100万X50X3=15000万.

对于家庭医学影像智能辅助诊断软件产品,如果按照单价10万计算,每年全国按照有50000个家庭购买,这样保守计算的每年市场规模结果为10万X500000=500万。

对于社区健康智能筛查及辅助诊断产品来说,如果按照单价50万计算,每年全国按照有50000社区健康筛查及辅助诊断站点计算,这样保守计算的每年市场规模结果为50万X50000=2500万。

当前,“人工智能+医疗”已展示其强大的功能和广阔的应用领域,同时也加速了医疗及健康领域场景化应用的落地进度,目前许多企业非常关注智能+医疗的应用领域,因此,医学影像智能辅助诊断关键技术的商业化前景是可观的。据前瞻产业研究院数据显示,全球AI风投已从2012年的5.89亿美元,猛增至2016年的50多亿美元,预计到2025年,人工智能应用市场总值将达到1270亿美元.其中,医疗行业将占市场规模的五分之-.近年来,我国人工智能医疗领域投融资项目数量增长较快,且大部分企业融资轮次较为靠前,整个行业处于成长阶段。中国人工智能+医疗市场规模在持续增长,2017年超130亿元,在2017年仅第一季度就有30多家人工智能企业获得融资,落实到具体行业中,医疗健康领域的人工智能创业公司表现尤为突出,关注度和融资量最高,在2019年市场规模达43.2亿元。

虽然,商业模式呈现发展迅速的趋势,但目前医学影像关键技术的问题尚需要解决小目标分割及三维重建等可视化的关键技术,因此,医学影像智能辅助诊断关键技术商业化的前景非常可观。

医学影像智能辅助诊断的技术所产生的直接经济效益包括两个部分:

(1)医学影像智能诊断关键技术成果转让产生的经济收入。

(2)医院临床诊疗机构及家庭智能医疗辅助诊断服务产生的经济效益。

知识产权类型:发明专利知识产权编号:202011623243.2;202011623228.8;202011621411.4;202011621388.9;202011623215.0;202011623217.X技术先进程度:达到国际先进水平成果获得方式:独立研究获得政府支持情况:无会员登录可查看合作方式、专利情况及联系方式登录注册

扫码关注,查看更多科技成果

人工智能背景下中医诊疗技术的应用与展望

中医学在医学领域具有丰富的实践经验、技术和理论,因此形成了中医特定的“形神合一”“整体审查”“四诊合参”等整体观和辨证论治,使中医学在诊疗的评价研究中更具特色和可行性[1]。辨证论治是中医临床诊疗的核心,其理论体系经过中医数千年的临床实践与检验,充分体现了中医学理论的独特性和实践的有效性,也是中医学有别于现代医学诊疗体系的特色和优势[2]。这种以“诊法―辨证―治疗”为核心的诊疗理论体系和大量的经验数据成为中医研究和发展的重要资源。传统中医主要通过整体、动态、个性化了解身体状态来诊断疾病的理念超前,然而方法却依赖于经验,使其巨大潜力未能充分发挥,导致这一状况的关键在于缺乏实现这种先进理念和方法的技术手段[3]。随着中医现代化和国际化的发展,传统中医的价值已逐步被国际社会认可,利用现代先进的智能信息技术解决中医诊疗过程中的技术标准化和数据化等关键问题,深入挖掘中医诊疗技术的科学内涵,进一步提升中医诊疗模式的科学性和有效性,借助信息科学等多学科技术推动中医学的发展已成为中医及相关学科领域研究的重要课题[4-5]。

人工智能(artificialintelligence)作为计算机科学的一个重要分支,经过60多年的发展已经奠定了重要的理论基础,并取得了诸多进展[6]。特别是在深度学习理论指导下的以AlphaGo为代表的人工智能技术的成功应用,更凸显了人工智能领域中人工神经网络(artificialneuralnetwork,ANN)将学习和训练融合来实现智能化的优势。人工智能技术的发展为医学发展提供了全新的契机,在现代医疗健康领域应用广泛[7-8]。大数据是人工智能技术的基石,是决定人工智能技术能否有效输出的重要输入口。大数据有其特殊性,即数据即时处理的速度、数据格式的多样化与数据量的规模[9]。同时价值性[10]及真实性等的提出说明只有保证数据的科学性和有效性,才能使人工智能真正从狭义定义成为可以媲美人类思维、智能、意识的通用人工智能[4]。

医学诊疗过程是一个典型的智能处理过程,其包括信息获取-分析-处理-反馈-评价-综合的思维全过程,而中医诊疗过程是以中医辨证思维为指导的智能化处理过程,也是一个典型的人工智能技术应用领域。因此,将人工智能技术运用于中医诊疗可以促进中医诊疗技术的跨越发展,解决中医诊疗现代发展的主要问题。基于此,本文梳理了目前中医诊疗技术与人工智能技术结合的现状及趋势,并进行阐述。

1基于文献数据的中医诊疗决策智能化研究

中医文献和临床医案是中医学术思想和临证经验的重要载体,对其海量信息进行归纳和整理是近年来中医临床经验传承的重要方法。面向全新的科技时代,利用海量的案例数据建立中医临床病症诊疗决策支持系统是目前值得关注的领域;通过对文献和案例的学习来深化、拓展临床思维与视野,然后采用智能算法进行自我学习,从而为中医诊疗提供智能信息支持[11]。

目前中医文献、医案中研究较多的是利用聚类(clustering)、关联规则(associationrule,AR)、决策树(decisiontree,DT)、无尺度网络(scale-freenetwork,SN)、粗糙集理论(roughsettheory,RST)等数据挖掘技术从复杂症状中提取、归纳中医证型,分析症状与症状、症状与方药、症状与证型、证型与方药、方药与方药等之间潜在的关联规则。从数量庞大的方药中发现药物配伍规律及潜在药物、核心药物、核心处方等不仅可为临床医师提供诊疗策略,模拟中医思维方法和处方生成过程,而且对中医理论的创新发展及其客观化、规范化研究具有重要的推动作用[12-13]。许多学者在中医文献、医案中对“病―证―药”之间的规律挖掘进行了大量研究,如采用中医处方智能分析系统对《伤寒论》中112张方剂的知识点进行研究,分析各方剂的君、臣、佐、使,总结各方剂的气、味、归经规律及辨证处方规律,探讨主症与方证之间的关系[14]。此外,基于临床病案文献数据进行糖尿病证候聚类分析,基于心血管疾病血瘀证案例采用关联规则对药物配伍、药―病、药―证关系进行对应分析,以及开展糖尿病性周围神经病变组方诊治规律、药物使用频次等研究,均显示较好的支持结果[15-16]。

基于文献数据挖掘的诊疗系统研究也有很多建设性成果。北京交通大学研究人员提出了临床数据仓库(clinicaldatawarehouse,CDW)系统,该系统整合了结构化的电子医疗档案,通过支持向量机、DT分析、贝叶斯网络等多种分类算法,使用监督学习的方法从大量无固定结构的中医诊断文本中对症候进行学习,从而实现病症的经验推理[17-18]。清华大学研究团队摒弃了从单一诊断语句和诊断文档中抽取关联关系的方法,他们基于大规模中医诊断语料库,以网络挖掘的视角构造异构实体网络,首次提出了HFGM(heterogeneousfactorgraphmode)模型,并使用半监督学习的方法评估HFGM模型的参数;通过超过10万份中医诊断书的数据集验证,发现HFGM模型的平均准确度比支持向量机算法提升了11.09%[19]。董国华[20]研究了数据挖掘方法在哮喘病案数据分析中的应用,他采用一种粗糙集属性约简算法(MIBARK算法)提取哮喘主症状,建立病案数据库,从而获得中药配伍规律、用药与症状的关联关系,进而寻找症―证间的匹配规律,建立中医病案数据挖掘系统。总之,以证―药的规律挖掘为目的的中医文献数据挖掘方法具有良好的研究基础,为进一步研发中医智能化诊疗决策支持系统提供了重要支持。

2现代中医诊断技术与中医智能诊疗系统研究

现代信息技术的发展为中医诊断手段的发展带来新的契机,随着中医传统诊断方法现代化研究的深入,脉诊仪、舌诊仪、色诊仪、闻诊仪、经络仪等已成为新兴的现代中医诊断技术。现代中医诊断技术是传统中医诊断方法的发展和延续,逐步实现了中医诊断技术的信息化、数字化、标准化,也逐渐突破了中医诊断方法主观性强、缺乏客观数据的瓶颈,为人工智能技术的应用奠定了坚实的数据基础。以现代中医诊断技术及其数据为支撑,以中医辨证思维为核心的智能中医病证诊疗研究已逐渐展开[21]。

2.1国内外四诊的技术化、仪器化研究

20世纪70年代国内就开始了中医脉诊、舌诊等诊法客观化、仪器化的研究,为诊断技术信息化应用奠定了重要基础。传统的中医四诊多依赖主观感觉,缺乏客观依据,现代中医诊断技术正在逐渐改变传统中医诊疗的主观依赖性,提升中医诊法客观化。将传统中医诊断方法,尤其是脉诊、舌诊等具有中医特色的诊断方法标准化必将促进中医诊疗模式向更科学的方向发展。目前,国内高校和科研单位已在中医诊法技术化、仪器化研究领域进行了大量富有成效的基础性研究,内容包括:(1)四诊信息的客观化、标准化表达。将传统中医用语言描述的表达方式归类为定量化、标准化的客观表达方式,如脉象的“位、数、形、势”量化表达方式,舌诊、面色中颜色量化的正确表达方式,问诊系统症状的量化表达方式等[22]。(2)四诊特征信息的提取及分析方法的研究。利用现代计算机技术(神经网络、贝叶斯网络等)、数学建模,以及图像分析、声音频谱分析等技术研究脉象信号、舌象信息、问诊、闻诊等特征信息的获取、识别和判读方法等;在面色、脉象、舌象等信息采集上也逐渐形成规范[16,23-24]。(3)仪器设备的研发与应用。利用现代科技研发适合脉象、舌象、面色诊、闻诊(包括声音、气味)等四诊信息检测的传感器和检测仪器,并开展四诊信息融合的研究,开展仪器设备的临床观察与应用[22,25]。目前已有中医诊断仪器设备进入临床应用,如2010年上海中医药大学与公司合作研发的四诊信息分析仪被列入俄罗斯火星-500(MARS500)研究计划,用于监测和分析模拟条件下宇航员的身体健康状态[26-27]。此外,在国家“863”计划、“十二五”科技支撑计划、“十三五”重点研发计划的支持下,上海中医药大学研究团队对舌面诊和脉诊采集设备与技术的研究取得进一步提升和发展,并深入开展四诊技术在健康辨识和诊断领域中的应用研究[28-31]。综上所述,基于人工智能技术的飞速发展,目前在中医诊断领域,以舌诊、脉诊、色诊为代表的四诊客观化技术逐渐成熟,形成了舌诊仪、脉诊仪、色诊仪等多种中医诊断仪器,中医现代诊疗技术在健康、疾病、中医证候等领域也取得良好进展。

2.2四诊信息技术在病证诊断和疗效评价中的应用

现代中医诊断技术为辨证论治的疗效评价提供了技术手段,其在面色、舌质、舌苔、语音、脉搏等症状信息方面实现客观数据化,在问诊主观症状方面实现规范化和定量化[21]。以四诊信息客观量化、信息化为前提,应用中医特色客观量化指标,针对临床病证诊断、疗效分析评价等建立具有中医特色的现代诊疗和疗效评价方法已经可行,许多尝试性研究也逐渐显示出特色和优势。

2005年中国中医科学院推动了“中医优势病种临床研究专项”研究,以中医治疗有优势的疾病或疾病某一阶段的临床研究为重点开展中医治疗心血管疾病、肿瘤、糖尿病等临床研究。四诊信息化研究尤其是舌诊、脉诊在常见慢性优势病种的疾病诊断、疗效评价方面已取得一定的成果。在疾病诊断分类方面,Zhang等[32]通过标准舌象图像提取特征参数并建立基于支持向量机算法的糖尿病诊断模型,结果显示通过机器学习的方法能得到较好的分类准确率,为糖尿病诊断提供了思路。Li等[33]对205例冠心病患者的脉搏波信号进行了研究,脉冲信号分别使用Hilbert-Huang变换和时域进行分析和提取,发现所得脉冲信号的时域参数h1、h3、h4、h3/h1等与对照组比较差异均有统计学意义。此外,有学者发现肿瘤患者的舌脉象具有特异性表现,且患者的舌脉参数与肿瘤指标有关[34-35]。在证型诊断分类方面,师晶丽等[36]观察了原发性肾小球疾病患者在气虚、阳虚、阴虚、气阴两虚4种证型下的舌苔和舌质,通过聚类得到舌象颜色的色彩空间分布,并采用最近邻聚类算法获得每个舌象的颜色分布。许文杰等[37]采集了528例冠心病患者的中医脉图信息,基于支持向量机算法分别应用脉象信号时域特征参数和递归定量分析特征参数并结合问诊、望诊参数建立了冠心病证候诊断模型。在疗效评价方面,崔龙涛等[38]和崔骥等[39]观察了亚健康状态大学生不同证型在中药干预前后舌象、脉象客观量化指标的变化,为中医客观诊断和亚健康的疗效评价提供了依据。燕海霞等[40]观察了经中西医结合治疗前后50例肺癌患者的舌脉象参数变化,结果显示治疗后患者的舌苔润燥指数升高、腐腻指数升高、厚薄指数降低、裂纹指数升高,提示舌象客观检测参数可作为中西医结合治疗肺癌临床疗效评价的参考指标之一。Chen等[41]通过舌诊仪、脉诊仪等四诊辅助设备,判断肝癌患者与健康人群之间的舌脉差异,结果显示四诊辅助设备可以作为判断人体健康状态与疾病的仪器装置,且四诊仪器可以提升疾病诊断和中医标准化的准确性和速度。Li等[42]采用计算机辅助分类方法提取口唇图像中的3种特征,应用支持向量机算法进行分类,为中医口唇部诊断的定量检测提供了方法与思路。

3人工智能技术在中医诊疗领域中的应用

人工智能技术是现代信息技术领域快速发展起来的技术方法,目前其在数据分类、医学诊断、智能计算等领域已取得显著成就[43]。中医诊疗决策支持系统是利用上述数据挖掘方法,从大量的中医四诊数据库中抽取隐含、未知、有意义的与诊断分类、证候分类有关的知识模型或分类规则。中医信息化系统在临床辅助诊断、远程医疗、个人健康管理等方面具有广阔的前景,中医智能化决策系统的需求也越来越明显。中医诊疗决策支持系统是一门集中医诊断学、计算机科学、管理科学等为一体的新兴研究方向,它的发展与相关学科发展密不可分[44]。因此,中医临床诊断与专家系统相结合成为中医现代化发展中更具挑战性的方向。一批人工智能领域的专家已经致力于中医智能诊疗决策支持系统的研究,并与中医药领域研究人员紧密合作开展了大量辨证智能分析研究,取得了很多研究经验[45]。以周昌乐教授为代表的学者们在人工智能领域提出了一系列中医诊疗智能化研究和实施方案[46],尤其是利用软计算理论辅以四诊数据化技术探索解决中医辨证逻辑形式化这一关键问题,为今后中医智能化诊疗技术发展奠定了重要基础。

4问题与展望

尽管人工智能技术在中医诊疗领域的应用已经有很多卓有成效的探索工作,但不难发现既往研究主要以理论层面为主,计算机系统主要作为存储数据、融合信息和可视化工具,而非真正实现智能化决策支持。具体原因在于:(1)四诊辨证自身技术的规范化和数据化问题,四诊数据的支持性不够,主观性太强的四诊症状信息在数据稳定性、可重复性、纯净性上均存在很大问题,没有实现真正意义上的数据化。(2)缺乏与临床实践兼顾的理论模型指导“决策支持”;(3)缺乏设计完善、病证结合的临床大样本数据的支撑。以四诊信息技术数据化为前提,结合现代医学临床数据,在病证共性的前提下以数据融合为基础、人工智能技术为核心,有效扩大中医辨证论治的数据依据,则有望建立集诊断、治疗、疗效评价为一体的智能化辨证论治方法体系。

随着人工智能、大数据等信息技术的发展,这一新的诊疗模式探索已经可行。应用人工智能技术将中医药大量理法方药数据进行智能化处理,为中医临床诊断提供决策支持,可以最大限度发挥人机结合优势。因此,以中医辨证论治理论为核心、现代中医诊断技术为支持,借助系统科学和人工智能技术,病证诊疗结合、中西数据汇通,通过病证临床诊断、治疗、疗效评价决策方法的研究,最终建立具有辨证论治内涵的智能中医诊疗决策系统,可为中医临床诊断提供智能决策辅助支持,进一步促进中医诊疗规律的提升和总结,推动中医现代化发展。

人工智能时代的工作变化、能力需求与培养

摘要:在人工智能时代,程序化工作和一部分非程序化工作将被人工智能取代,工作将向高度智慧化转移,劳动者的工作定位将发生升级方式、介入方式、前进方式、转移方式和集中方式等不同的变化。为了适应人工智能时代,要在学校教育和企业教育中注重提高受教育者的人工智能素养、培养创造性思维能力、社会交流能力以及环境应变能力。应对人工智能时代培养所需人才的关键措施包括:突出个性化培养理念;构建人工智能素养教育体系;实施问题导向及跨学科合作探讨的学习方式;利用人工智能技术提高学习效率。

关键词:人工智能;工作定位;能力需求;能力培养

基金项目:本文系中国社会科学院登峰战略企业管理优势学科建设项目、中国社会科学院京津冀协同发展智库研究课题的阶段性成果。

 

当前,我们正处在全面进入人工智能时代的过渡期,几乎所有领域都出现了装载有人工智能技术的机械设备。18世纪中期以来,人类历史上先后出现了蒸汽机、内燃机与马达、计算机与互联网技术。这些技术极大地改变了人类的生产生活方式,推动了人类社会的发展。可以说,人工智能是继三大技术之后的又一重大技术。况且,与以往技术不同,人工智能可以替代人的脑力劳动,这将大幅度地改变人们现有的工作内容,并要求人们拥有不同于以往的特殊能力。然而,关于如何界定人在人工智能时代的工作定位及所需能力、如何培养人工智能时代所需要的人才,是尚未解决的课题。目前,有研究围绕人工智能可能产生的就业影响,尤其是结构性失业风险以及社会经济对策等方面进行了分析(万昆,2019;陈明生,2019;王君等,2017;潘文轩,2018),也有研究对人工智能背景下职业教育体制改革与发展问题进行了探讨(南旭光,汪洋,2018;毛旭,张涛,2019;丁晨,2019),但深入到工作能力层面,从劳动者角度探究人工智能时代的人才培养问题的相关研究还较为少见。鉴于此,本文基于技术—工作—能力—培养的视角,结合前沿研究进行理论分析,阐明人工智能对工作业务的影响机制,明确人工智能时代的工作定位与能力需求,探讨能力培养的战略思路和关键方法。

一、人工智能时代的工作变化

人工智能(ArtificialIntelligence,简称AI)是指可以感应环境、做出行动,并获取最佳结果的合理主体(RationalAgent)(S.J.Russell,P.Norvig,2018)。感应环境、做出行动和获取最佳结果,属于人的智慧行为,而这些行为通过计算机程序(合理主体)被再现出来,就成为了人工智能。换言之,人工智能就是具有人类智慧的计算机系统。而在现实的工作环境中,人工智能的计算机系统又是与大量的感应器、超高速通信网、大数据收集分析装置、终端设备、机器手等组成更为复杂的系统来进行实际作业的,如机场出入境管理的人脸识别系统、汽车自动驾驶系统等。因此,可以说人工智能就是装载有可以模拟人类智慧行为的计算机程序的自动化设备。

现阶段的人工智能可以在一定程度上替代人完成识别、决策和操控方面的任务。在识别方面,人工智能可以进行信息判别、分类与检索,如从影像中发现癌变征兆;从音调语速中检测情绪;从图像中监控设备异常、天气异常、用户账号异常等。在决策方面,人工智能可以进行数值形式下的物象评估与匹配,如预测销售额、GDP指标、民意度、信用风险、病变风险;推断消费者爱好、产品推销时机;根据消费者爱好、习惯不同而推荐不同内容的商品广告等。在操控方面,人工智能可以进行表现生成、设计行动最佳化及作业自动化,如自动撰写新闻稿件、概括文章大意;设计项目路线图、商品标识、网页布局、药品成分、建筑物结构;优化游戏策略、送货路线、店铺布局;实施自动驾驶、客户咨询等。只要人规定好了计算机程序的信息处理目的和分析方式,人工智能就能准确无误地替代人工进行作业(安宅和人,2015)。

(一)工作变化的特征

人工智能时代工作变化的特征体现在以下三方面。

1.程序化工作被人工智能取代

所谓程序化工作,按照美国经济学家奥托(D.H.Autor)等的定义,是指变化少、可以按照事先规定的程序进行的工作(Autoretal,2003)。程序化工作又分为主要使用认知能力的程序—认知型工作和主要使用肢体能力的程序—肢体型工作。认知能力是指直觉、判断、想象、推理、决策、记忆、语言理解等能力;肢体能力是指体力。程序—认知型工作具有重复性、单一性、目的明确并且主要使用脑力等特点,如行政事务、会计工作。程序—肢体型工作虽然也有重复性、单一性、目的明确等特点,但主要使用体力,如流水线组装、仓库运输业务。由于程序化工作相对简单,易于编制成计算机程序,所以人工智能对人类劳动的替代,首先会从这些工作开始。例如,产品组装是按照作业标准反复实施同样内容的工作,而作业标准完全可以编制为计算机程序,所使用的设备以及动作也完全可以建立成模型,因此,产品组装就可以由人工智能来代替实施。再如,需要一定认知能力的会计业务,人工智能也可以通过扫描或接受电子信号等方式获取相关数据,而后根据规定程序进行分类、汇总等作业。因此,在人工智能时代程序化工作会呈现明显的减少趋势,以往的自动化设备,基本是替代体力劳动的蓝领劳动者,而人工智能将替代白领劳动者。英国剑桥大学学者弗雷(C.B.Frey)与奥斯本(M.Osborne)在2013年发表的报告中指出,美国在未来20年里将有47%的工作存在被替代的可能性,电话推销员、标题审查与摘要人员、手工缝纫工、技工、保险受理员、手表修理工、货物运输人员、税务代理员、照片处理工、会计助理、图书馆技术员、数据输入员等工作被取代的概率可高达99%(C.B.Frey,M.Osborne,2013)。日本经济新闻和英国金融时报2017年合作进行的调查显示,制造、餐饮、运输等23个产业的2000项工作中有超过3成的业务可能被替代,制造业被替代的比例是80.2%,包括焊接、组装、裁缝、制鞋等业务;餐饮业被替代的比例是68.5%,如客服、点餐、食材准备、餐桌与餐具摆放等业务;运输业被替代的比例是48.4%,包括车辆维修、飞机驾驶、运输信息提供等业务(ShotaroTani,2017)。这些研究表明,被取代概率高的工作基本上都是重复性、单一性、目的明确的程序化工作,其中不乏白领岗位的部分业务。

2.一部分非程序化工作被人工智能取代

相对于程序化工作,非程序化工作通常变化较大,难以按照事先规定的计划进行。这一工作又分为两类,一类是非程序—认知型工作,如科学研究、文学创作、作曲作画、经营管理、医疗诊断、诉讼辩护等;一类是非程序—肢体型工作,如烹饪、理疗、看护以及汽车驾驶等。非程序—认知型工作需要高层次的文化水平、分析能力和想象力,现阶段的人工智能还达不到完全替代的水平。烹饪、理疗、看护以及汽车驾驶等非程序—肢体型工作需要高度的人际间互动、灵敏的环境反应能力以及灵活的肢体动作,而这些要求现阶段的人工智能尚不能完全做到,所以这些工作基本上还需要人来承担。但随着人工智能技术的发展,人工智能在未来不仅会代替人做更多的程序化工作,而且有望将一部分非程序化工作纳入替代范围,如自动驾驶、行走助力、编制诉讼方案、作曲作画等(Autor,2015)。届时非程序化工作完全由人来完成的局面就会发生变化,进而带来业务重组,从以前由人承担所有业务变成由人工智能和人共同分担业务,如影像诊断由人工智能完成,最终诊断由医生完成;围棋陪练由人工智能承担,棋艺解说由教练承担。

3.工作向高度智慧化转移

装载有人工智能的设备可以替代人的程序化工作,甚至部分非程序化工作,但现阶段人工智能仍有很大的局限性,如人工智能不能设定目标和规划未来、不能产生意识、不能对未曾有的变化作出反应、不能提出问题、不能设计分析框架、不能产生灵感、不具有常识判断力、不具有指挥人的领导能力(安宅和人,2015)。所以现阶段仍有四类工作是人工智能所无法替代的。一是高度创造性的思维工作。如通过综合分析各种知识归纳和提出新概念、通过多方面分析发现问题并提出解决方案、基于情感创造出文学艺术作品等。二是高度社会化的沟通工作。如包含理解、说服、交涉在内的工作,人际间交往与协同作业等。三是高度灵敏的肢体型工作。如演奏乐曲、表演舞蹈、高难度手工艺等。四是高度非程序化的工作。如看护、清扫工作。这些工作看似简单,但需要人根据知识、经验以及常识等对情境作出判断,如在清扫时对发现的废纸需要进行判断,确定它是重要笔记还是真正的废纸,而人工智能的扫地机是无法做到的(野口悠纪雄,2018)。但即使如此,现在几乎所有领域中都在使用人工智能,并且人工智能的工作领域还在不断扩展。在看护工作中,移动搀扶患者机器人已经开始出现;人工智能已能够进行文学、绘画及音乐的初步创作,人与人工智能协同作业的状态已成为普遍现象。在这种状态下,人的工作内涵必然要向高度智慧化转移。

(二)人机关系与工作定位

在刚开始引进人工智能的生产过程中,人仍是作业的主体,人工智能起辅助性和支持性作用。人工智能辅助人进行数据和信息处理方面的业务,支持人做一些复杂的、技术性的工作,从事需要肢体劳动的、程序化的操作,但对于需要高度认知能力的工作,如推理与决策,以及需要与人沟通的工作,如协调、开发与咨询、沟通与互动,人工智能的贡献相对较少,但这种情况将会发生改变。世界经济论坛《职业前景报告2018》发表了2018年人与设备的工作时间占比值和2022年人与设备的工作时间占比的预测值(见表1)。对于所有业务,2022年设备的工作时间占总工作时间的比值会增加,其中设备在信息和数据处理、探索和获取业务信息的工作时间占比将超过人的工作时间。在行政、肢体的程序化任务、识别和评估业务信息、执行复杂技术任务中,设备的工作时间占比也将超过四成。即使在推理与决策以及沟通与互动这样原本主要由人来完成的业务中,设备的工作时间也将提高三成左右。因此,未来人工智能不仅能在生产过程中起辅助、支持的作用,而且在一些业务中将会作为“数字劳动力”发挥主导作用。进而言之,在人工智能时代,智能设备将越来越多地替代人的劳动,人机协作的关系将越来越显著。

 

表12018年、2022年人与设备的工作时间占比值单位:%

资料来源:作者根据世界经济论坛《职业前景报告2018》整理。

 

在人工智能时代,一些职业及一些工作被替代是不可避免的趋势,因此劳动者必须对职业及工作选择有清楚的认知。美国管理学学者达文波特(T.H.Davenport)和卡比(J.Kirby)认为,人工智能时代劳动者的工作定位,即如何选择能实现自身价值的职业,有五种方式,分别为:一是升级方式,即提升管理素质和掌握超越计算机的大局思维,向高级管理岗位发展。这要求对经营系统有透彻的理解,并需要有充分的计算机知识与技能。随着人工智能质量的提高、数量的增加,高级管理岗位的事务性工作将被大幅度替代,因此升级到高级管理岗位的人数会比以往少;二是转移方式,即转移到不能程序化、结构化的工作领域。现阶段,人工智能设备尚不能完全替代人的劳动,因此工作流程中会保留一些人的岗位。但随着人工智能水平的提高,这些岗位也将逐渐被替代,因此,这些岗位的劳动者,要有充分的危机感;三是介入方式,即学习计算机的程序化决策过程,掌握监视和调整计算机功能的新型能力,以现场管理者的身份介入基本上由人工智能实施的作业过程中;四是集中方式,即以计算机程序尚未渗透到的领域为唯一标准来选择职业或工作。这种方式要求特殊、高超的人类智慧及技能,需要早期、长期训练,甚至需要天赋;五是前进方式,指与时俱进,加大学习力度,研究开发能改变当前领域工作效率的高水平智能机器(T.H.DavenportandJ.Kirby,2015)。从与人工智能的关系看,升级方式、介入方式和前进方式,都需要学习人工智能技术。对这些人群,国家应该对他们的学习进行资助。转移方式中劳动者没有学习新技术的欲望或能力,他们的收入可能会减少,就业也不稳定,国家应从就业政策角度进行援助。集中方式需要从中小学起通过个性化教育对这方面的人才进行培养。

二、人工智能时代的能力需求

随着人工智能在生产过程中的普遍应用,人在生产中的地位不断发生变化,大量程序化作业、甚至越来越多的非程序化作业都将由自动化设备实施,而人必须能够驾驭智能设备,发现和解决工作流程中的问题,对智能设备进行更新创造,从而使其更好地服务于人类社会。从劳动者角度看,必须具备符合人工智能时代所需要的能力,才能使自己的劳动付出变得更有价值;从企业角度看,具有符合人工智能时代能力的员工,是创造价值所不可缺少的人力资源,值得大力引进和培养;从社会角度看,劳动队伍和后备力量都具备符合人工智能时代要求的能力,就可以稳定就业,促进社会经济持续发展。关于能力,可以对有认知能力和社会情感能力的基础理论进行研究。为了探讨能力与社会需求的关系,能力被分成诸多子能力,以验证与不同技术条件的适配性。在解析这些研究之后,笔者将提出符合人工智能时代要求的能力要件,以便为理论研究和政策决策提供参考。

(一)能力的两个方面

理论上看,人的能力一般包含两个方面。一个方面被称为认知能力,另一个方面是非认知能力。其中关于非认知能力有着几种不同的命名,如社会情感能力、软能力、社会能力、人格特质、性格(Heckman,Kautz,2012)。以下将沿用经济合作与发展组织(OECD)(2015)的表述样式,用“社会情感能力”来表示非认知能力。该研究认为,认知是关于获取和应用知识经验的过程,而认知能力就是所有与获取和应用知识经验有关的能力。认识能力有三个层次:第一层是基本能力,如模式识别、计算和记忆;第二层是获取能力,如检索、分类和解释;第三层是应用能力,如思考、推理和概念化。这三层能力的复杂程度从低到高、依次递进。与认知能力不同的是,社会情感能力是对目标实现、社会协作和情感控制产生影响的人格特征。例如,目标实现方面的忍耐、自律、意愿;社会协作方面的沟通、开放、体贴;情感控制方面的自尊、灵活、自信等。

在实际中,人是认知能力和社会情感能力的载体。换言之,这两种能力在人的身体中同时存在,相互影响、相互作用,形成了人的脑力活动和肢体行为。例如,批判性思考就是两种能力合二为一的结果。批判性思考既有认知能力的特点,即能够客观地进行逻辑推理,严守成本收益原则,冷静地进行战略分析。同时,因为批判性思考的对象是现实中的新问题,仅仅依靠过去的经验和教科书手法是不够的,还必须对新现象持有开放心态,根据具体情况,灵活改变思路和行动,而这些特点正是社会情感能力范畴的内容(池迫浩子,宫本晃司,2015)。

(二)能力需求变化与预测

技术进步使得工作环境发生变化,对劳动者的能力需求也出现了新变化。20世纪70年代以来,以大型计算机、电脑终端和互联网为代表的信息通信技术迅速发展,制造业以及服务业的生产过程大为改观,这使得对劳动者的社会情感能力的需求显著提高(Deming,2015)。在1980-2012年间,需要高度社会情感能力的职业就业人数占美国所有就业人数的比例增长了近12个百分点,而只需要认知能力的职业就业人数占比减少了3个百分点。另外,需要高度社会情感能力的职业的工资增长也比其他职业更快,并且2000年以后的增幅大于2000年之前。这是因为生产过程自动化,岗位任务重组,人员重新分配,团队形式增加,而社会情感能力可以降低协调成本,加强不同作业领域的有效合作。

以数字技术为轴心的自动化设备的应用,不仅要求劳动者提高社会情感能力的水平,同时也要求其认知能力和社会情感能力综合水平的提高。维因伯格(Weinberger,2014)利用美国职业大典的数据,对1977-2002年间各职业就业人员具有的计算能力、人际能力以10阶段法进行了赋值,根据数值把职业分为了两类,一类是计算能力与人际能力赋值均高于5的职业,一类是两种能力中一方赋值高于5而另一方赋值低于5的职业。分析发现,两种能力赋值均高于5的职业的就业人数增加,仅一种能力赋值高于5的职业的就业人数减少。该研究还以1972年和1992年的高中3年级中的两个年级层为对象,考察了各层人群的高中数学成绩、领导经验和高中毕业7年后的工资之间的关系。结果表明,同时具有数学能力和领导经验的人的工资在增加,只有一方面能力的人的工资没有变化,不具有这两方面能力的人的工资在减少。这个结论揭示了能力间互补的重要性,即认知能力与社会情感能力,不是各自单独产生价值,而是相互组合(互补)来产生更大的价值。技术进步并没有否定人的任何一方面的能力,而是要求在提高各自水平的基础上达到新高度的互补。由此可以推论出,兼有两种能力的劳动者在以人工智能为轴心的新技术时代将为社会所需,他们的劳动价值会得到社会认可。

 

表22018年、2022年关键能力需求

资料来源:世界经济论坛《职业前景报告2018》。

  

以上的推论不仅在以往的数据研究中得到了验证,在近未来的预测研究中也得出了同样的结论。世界经济论坛的《职业前景报告2018》发表了313家跨国企业管理高层的调查数据,从中可以看出2022年需要的关键能力中,属于认知能力的有8个,分别是:分析性思考与创新,主动学习与战略性学习,创造性、独特性和主动性,技术设计与编程,批判性思考与分析,解决复杂问题,问题推理与构思,系统分析与评估。与2018年相比,技术设计与编程、系统分析与评估是新增项目,反映出人工智能时代对劳动者的数字技能的强烈需求,揭示了劳动力素质提高的方向。而领导力和社会影响、情绪性智商属于社会情感能力的范畴。这两个能力同时出现在2018年、2022年两个时间段里,由此可以说,社会情感能力在未来的人工智能技术环境中是不可缺少的。只要生产过程中有人的存在,只要市场及组织内部环境不断变化,就需要社会情感能力去发现问题、运用技术技能去解决问题从而实现劳动的价值。另一方面,包括脑力、肢体在内的基本认知能力的需求将会减少,如操作灵活性、持久性与准确性,视觉、听觉与说话,读、写、算等能力。一些基本操作能力的需求也会减少,如财务和物资资源管理、设备安装与维护、质量管理与安全管理等能力。这些能力基本用于实施程序化业务,其工作的操作标准简单明了,个人发挥创造性的空间较少,从能力层次看,虽然属于知识经验应用能力范畴,但处于低级层次。

世界经济论坛在2016年对人工智能时代的能力需求变化进行了探讨。当时的研究报告指出,高层次认知能力不仅在当时受到重视,而且在2020年对其的需要将会进一步增加。而对于与肢体相关的能力,专家大都认为其需求将会减少。尤其是设备维护、质量管理与安全管理等能力,2016年报告中还有五成的人认为需求会处于稳定状况(世界经济论坛,2016)。由于2016年、2018年的调查方式不同,因此不能对其进行严格的对比,但可以看到能力变化的趋势,即对高层次认知能力的需求一直处于增强趋势,而对设备安装与维护等低层次能力的需求则明显减弱,这反映出人工智能时代对能力的高层次化有着越来越强的需求。

巴克什(Bakhshi)等利用美国和英国数据预测了两国2030年各职业的就业增长和职业所需的能力(Bakhshietal,2017)。该研究中的职业能力包括120项。美英两国各职业最为重视的能力有15项(见表3)。从表3看,美国和英国总体情况类似。在美国,与人际交往有关的能力会越来越重要,这些能力包括指导、社交知觉/认识、协调、服务导向、主动倾听,以及相关知识,如心理学和人类学、教育和培训、治疗和咨询、哲学和神学。认知能力范畴中的应用能力也会越来越重要,如要求能够了解当前和未来形势并且能够做出行动规划(战略性学习);能够了解新信息对当前和未来问题的解决与决策发挥影响(主动学习);能够提出有关某个主题的许多想法(思想流利性)。在英国,有10项属于认知能力范畴中的应用能力,这些能力是判断和决策、思想流利性、主动学习、战略性学习、原创性、系统评价、推理、解决复杂问题、系统分析、批判性思考。在人工智能技术更为广泛应用的近未来,劳动者只有充分具备这些能力,才能够有效解决新环境中出现的新问题,并且能够有针对性地提出新想法,积极吸收新信息;能够识别社会技术系统的变化,了解社会技术系统各环节的互连和反馈关系并采取正确行动。另外,英国对于人际交往的能力也非常重视,这些能力包括指导、协调,以及相关知识,如教育和培训等。

表32030年美国、英国各职业中最重要的15项能力

资料来源:作者根据Bakhshi等(2017)整理。

 

2017年,日本人才咨询公司阿德卡(Adecco)对309家上市公司管理高层进行了抽样调查,收集到了两个时间点(调查时间点为2017年、人工智能普遍应用的2035年)对各种能力的需求程度。结果显示(见表4),2035年最需要的前10项重要能力中,5项为认知能力,包括创造性、分析性思考与抽象性思考、解决复杂问题、信息收集和解决简单问题。5项是社会情感能力,分别是人际关系、灵活性、挑战精神、领导力和积极性与主体性。2017年的前10项重要能力中,4项为认知能力,依次是分析性思考与抽象性思考、解决复杂问题、创造性和信息收集;6项是社会情感能力,如人际关系、积极性与主体性、挑战精神、团队工作与协调性、灵活性和目标实现意愿。从数量看,不论是2017年还是2035年,认知能力和社会情感能力的排名基本相当,表明无论什么时代,均衡能力结构都是必要的。从内容看,不论是2017年还是2035年,认知能力和社会情感能力的子项目基本相同,反映出企业能力需求具有一定的稳定性。从个别能力变化看,有两个突出现象,一个是认知能力中,创造性需求的大幅上升。这表明在人工智能时代企业将进行业务重组,要求员工在高价值工作领域创新工作方式和取得突破;另一个是社会情感能力中,对灵活性的需求有所提升。这反映出企业需要员工充分发挥主动性,去发现生产流程中的问题、发现新的社会需求,而不仅仅是执行指令。

表42017年、2035年最需要的前10项重要能力

资料来源:作者根据西村崇(2017)整理。

 

(三)符合时代要求的能力要件

综合以上研究,笔者认为,在人工智能时代,能力的首要内容应该是与人工智能有关的新知识、新技能。此外要在人工智能的学习与应用过程中提高社会情感能力,主要是指与人沟通的方法与相关知识。再者,劳动者的能力结构要向高层次升级,应重点发展高层次认知能力。具体概括为两个方向:一是应用人工智能技术创造新产品、新服务的能力,这里称作创造性思维能力;二是发现新问题和解决新问题的能力,这里称作环境应变能力,包括主动学习与战略性学习、解决复杂问题等。在人工智能时代,对于劳动者而言,重要的是使能力结构升级以符合技术发展需要,不仅认知能力要达到新水平,还要与工作方式变化相匹配,而且与人工智能技术互补的社会情感能力也要同步发展。鉴于此,人工智能时代的能力要件可归纳为以下四个方面。

1.人工智能知识

正如读、写、算是工业社会所必须的基本能力一样,对于要在人工智能技术条件下工作的劳动者而言,人工智能的基础知识是不可缺少的。这是以往时代所没有的全新的能力。所谓的人工智能知识,首先是数学知识。因为人工智能的基础就是数理模型,主要包括概率、统计、线形代数等内容;其次是数据科学,是在计算机上收集、解析数据的知识和技能,需要有数理和计算机语言知识,需要计算机操作能力。有了这两方面的知识,就可以形成关于人工智能的新技能:能够使用程序语言,利用既成模块,编制、操作或使用具有简单的感应、解析、反馈等智慧行为的自动化装备。劳动者掌握了人工智能的新技能,不仅可以理解新设备的基本机制,甚至可以研究更先进的人工智能、或利用人工智能来提高生产效率。根据领域、岗位、业务的不同,涉及人工智能的内容会有所不同。国家的教育、经济以及科技部门应该与企业联手设计内容、层次不同的教材,设定认知资格制度,作为评价人才的标杆。

2.社会交流能力

在人工智能时代,要创造新价值,人际或社会交流能力愈发显得重要。创造新产品、新服务及新的工作模式,意味着要对现状有充分的了解,利用人工智能对现状进行改变、重组。这需要周边很多人及社会的理解、帮助及合作。因此,在人工智能时代,人应该提高自身的社会交流能力,能简明扼要地说明目的,开诚布公地寻求理解与帮助,诚实守信地与人合作。社会交流能力的基础是情感,所以人在情绪、意志等方面的情商以及对于文化艺术的审美都非常重要。人工智能时代社会交流能力的特点,就是大量运用网络社交媒体、互联网等工具。这些工具有其便捷之处,但也存在虚假信息等伦理道德问题以及易受黑客攻击的脆弱性问题。社会交流能力与创造性思维能力一样,需要长时间的培养,需要社会氛围的支撑。社会交流能力的特殊之处在于它涉及性格,而性格有天生的因素。所以,在学校教育以及企业教育中,既要传授基本的交流方法,也要考虑个人性格中的天生因素,因人施教,调动有利因素,培养能够从社会中学习、有益于社会的人才。

3.创造性思维能力

人工智能技术使程序化的工作自动化,把人从单一循环、重度及危险的劳动中解放出来,给予人更多的时间,为人的创造性思维提供了更大的可能性。同时,人也必须发挥自己特有的创造性思维能力,才能在人工智能时代确立自身的存在价值。所谓创造性思维能力,是利用人工智能技术,结合自己所在的特定领域,去发现社会及市场需求,提出关于新产品、新服务以及新工作模式的能力。创造性思维能力包括抽象能力、综合能力和应用能力。抽象能力,就是能够概括出事物本质并发展成为概念的能力。借助抽象能力进行分析和推理,才会产生新的认识。综合能力,就是能够融会贯通,把不同领域的知识连接起来,进行整合、分析和再创造的能力。经济学家熊彼特认为,创新有五种形式,即产品创新、技术创新、原材料创新、市场创新和组织创新,它们无一不是生产要素间组合与创造的结果(约瑟夫·熊彼特,2016)。利用人工智能提出关于新产品、新服务以及新工作模式的设想,是对人工智能与其他知识进行融合与创造的过程,所以需要综合能力。应用能力,是能够把知识应用于解决现实问题,也就是解决问题的能力。其中的关键是有目的意识,能够发现问题,使创造性活动具有经济价值与社会意义。而这恰恰是人类特有的能力,无法用计算机程序再现。创造性思维能力,需要长时间的培养,从幼儿园到大学、甚至到就业之后都必须接受持续的教育或启发。同时,要在家庭教育、学校教育和社会上形成鼓励独创、容许差异的宽松氛围。

4.环境应变能力

环境应变能力,就是能够根据不同情境作出不同决策的能力。在人工智能时代留给人的工作基本上都是非程序化工作,它们不可事先预测,也无法编制操控指南,需要劳动者根据自身掌握的知识、经验、常识以及悟性来灵活行动。现阶段的人工智能可以通过大样本学习来增加经验和提高应变能力,但世界是复杂的,很多变化都带有偶然性,解决方案没有经验可循,这限制了样本数量,从而制约了人工智能应变能力的提高。与人工智能不同的是,人所特有的生命体的构造使得其对事物的理解在很多情况下只需要小样本学习和借助常识就可以完成(李开复,王咏刚,2017)。在以往的人才培养中,人们也注意到了环境应变能力,但人工智能时代的特殊之处在于劳动者要接触更为复杂的数字技术,而数字技术的进步日新月异,人们为了防止知识的陈腐化,要能够主动学习,因为仅仅靠教师或上级安排的在岗或离职学习完全不够,要根据自己的具体情况,不间断地吸取新知识。战略性学习,是具有前瞻性的、有长远目标的学习。这个长远目标,可以是对自己所在领域发展前景的预测、自我发展方向的判断,也可以是对企业战略的理解,提前着手学习新知识,当环境变化时就可以游刃有余地应对。人工智能时代的劳动者往往处于与自动化设备合作的作业环境中,生产过程中的故障不仅有硬件的问题,也有计算控制系统的问题,只有在对硬件、软件充分理解的基础上,才能解决现场工作中的复杂问题。总而言之,人工智能时代的环境应变能力,有其鲜明的时代要求,在学校教育和企业教育中必须使用有针对性的教学方法来培养有用人才。

以上归纳了符合人工智能时代要求的四个方面的能力,这四个方面的能力并不是独立存在的,它们之间有着不可分割的联系。人工智能知识是新时代劳动者能力的基础,有了它才能够驾驭自动化设备,进行新产品、新技术及新价值的创造。创造性思维是人工智能时代劳动者能力的核心,突出显示了人的智慧价值。而社会交流能力和环境应变能力则对人的气质或性格提出了新要求,要求处于人工智能时代的劳动者区别于越来越聪明的自动化设备,在纷繁复杂的社会和飞速变化的技术环境中发挥人的作用。

三、人工智能时代的劳动者能力培养

为了培养与人工智能时代相适应的人才,提高全社会的智慧水平,我们应该在理念、内容以及方式、手段上有所变革。

(一)突出个性化培养理念

在工业时代,大批量单品种生产是主流方式,为了提高效率实施机械化、专业化分工,产生了大量单一循环、目标明确的标准化工作岗位。企业将作业编成操作手册或计算机程序,要求劳动者达到按照手册或程序正确操作的能力标准。在这种体制下,劳动者和设备、产品一样都是标准化管理的对象,因此人才培养也是标准化的。体现在高等教育、职业教育及企业教育上,就是培养能够按照标准进行反复、简单作业的劳动者。教育方法基本上依靠大量、统一的习题,或反复练习。这样的理念与方法培养出来的学生或劳动者,只能做单纯的工作,其不仅在精度、速度方面要输给人工智能,并且会变得只能简单地对工作中的变化作出机械的反应,缺少发现问题、解决问题的能力,更谈不上创造新价值,而这种能力恰恰是人工智能时代的劳动者最需要的。因为程序化的工作都由人工智能完成,需要人来做的正是去发现工作系统的问题,不断地进行更新改进,提高生产效率,或者通过新思路、新方法创造新价值。因此,人工智能时代的人才培养,尤其要重视学习者的创造性思维能力,要在因材施教的理念下,充分发挥个人的潜在优势。

(二)构建人工智能素养教育体系

把人工智能教育贯穿小学、初高中、大学以及工作后的全部阶段,提高全社会的人工智能基本素养。目前,包括中国在内的主要国家都已经在小学及初高中开展计算机编程教育,在大学实施更为专业的人工智能教育。同时,针对在职者的相关教育也极为重要。这是因为人工智能技术对劳动的影响面越来越广泛,工作甚至职业变得愈发不确定,在职者要提前做好转业与转岗的准备。为了维持社会经济的可持续发展,国家应该就全社会、全生涯的人工智能素养教育制定战略规划,集结教育及各行业行政管理部门的力量,从资金、设备、师资、教材、技术资格认定、学习费用补助等诸方面制定具体措施。对于义务教育的中小学阶段,应该完善每个学校的信息网络,要使高速Wi-Fi网络覆盖全部校区,使每个学生都有自己专用的终端设备(电脑或平板电脑)。在教室等集体授课的场所,安装可以触屏输入、可以数据储存传递的电子黑板,在教学过程中使用人工智能设备。当前,教育界中能担任人工智能教学的教师人才十分欠缺。国家应该制定紧急行动计划,至少要在5年内填补中小学相关基础素养课程的空白,使每个学校至少有一名该学科的教师。教师的来源,可以直接从博士毕业生、企业的工程师等专业人才中招聘,可以不受教师资格的约束。在大学阶段,理工科要学习高度的人工智能技术,文科及美术、音乐等学科,也要开设人工智能专业课程,因为今后人工智能将在模拟人的艺术感受方面深入发展,需要既懂艺术又懂人工智能的人才。由于人工智能技术发展很快,要组织学术界和企业界的力量,及时更新课程,并且根据人在不同生涯阶段的特点编制有针对性的教材。应该利用大数据来补充劳动力市场信息系统并监控不断变化的技能需求,以适应所提供的课程与教材(OECD,2016)。要尽快设立国家人工智能技术资格认定制度,使学习成果能在社会上受到评价,提高学习者的学习积极性。对于在职人员的学习,应给予费用和时间上的支持。对于企业实施的员工培训,应该以减免培训费等激励政策给予扶持。

(三)实施问题导向及跨学科合作探讨的学习方式

创造性思维能力、社会交流能力的具体表现是能够利用人工智能技术解决现实问题,以及能够利用人工智能创造新产品、新服务与新工作模式。以往“满堂灌”的学习方式难以培养这些能力,今后应该加强问题导向及跨学科合作探讨方式的学习。所谓问题导向,就是有明确、真实并且具体的现实问题,解决这些问题是学习的目的。这需要企业与学校共同制订学习目标,引导学生进行社会实践。问题导向的学习方式,还需要学习材料具有现实性。数据要真实,设备及材料要先进,教材要能够反映前沿理论与实践。跨学科合作探讨学习包含四个方面,首先是跨学科的学习内容,即学生根据具体问题学习数学、统计、数据、人工智能以及物理、化学、生物、艺术等多学科知识,这需要打破以往文理分科的界限;其次是跨学科的学习成员,即打破以往班级学习约束,组成由不同专业背景学生构成的小组,尤其是大学阶段要尽可能采取这种办法;再次是小组学习方式,即在教师指导下以小组为中心进行讨论和得出解决方案。同时,要构筑互联网学习平台,教师与学生之间、学生与学生之间有充分的提问—反馈—讨论的渠道。跨学科合作探讨形式的学习方法,不仅有利于提高学习自主性和团队合作性,也有助于进行知识碰撞、知识整合和知识创造,从而提高综合能力和应用能力。

现阶段,包括中国在内的一些国家都在进行问题导向及跨学科合作探讨学习方式的实践,诞生了STEAM(Science,Technology,Engineering,Art,Mathematics)教育课程、问题/项目导向型教育课程(Problem/Project-BasedLearning:PBL)、创新思维课程等方法。但这些方式都处在发展过程中,需要专家和学者不断吸取有益经验对其进行改进。日本为了培养人工智能人才,制定了国家战略推行STEAM教育,并研究整理了具体案例,为各学校及企业提供参考材料。如日本某职业高中与企业合作,开展了STEAM教育课程。该课程的项目之一是设计使用便利的人工智能设备,推进智能化农业生产。项目分四个阶段进行。第一阶段引发学生对农业和机器人的兴趣,使用4个课时。教师启发学生考虑联系农业作业的实际需求,确定制作机器人的具体内容。企业技术专家介绍机器人控制语言,演示机器人的动作。学生进行讨论,得出关于制作方向的结论;第二阶段进行机器人控制与数学、物理等学科知识的应用,使用4个课时。具体任务有两个,一个是解剖分析现有农业机械,获得感性、基础认识,再使用控制语言设计机器人基本雏形,另一个是运用数学知识,探讨马达转速与机器人动作的关系,设计控制程序,制作马达。企业技术专家讲解高感度彩色感应器、图像识别等技术,联系物理知识,讲解关于摩擦作用的处理方法;第三阶段学习机器人开发的基本程序,使用4个课时。技术专家讲解现实社会中技术人员如何编写“产品规格书”、通用计算机语言、数据解析工具等,引导学生继续使用控制语言模块制作机器人;第四阶段进行总结和演示,使用4个课时。学生演示、讲解自己制作的机器人的特点以及与农业作业的关联。同时,教师引导学生梳理学习内容,激发今后学习机器人技能的兴趣(经济产业省,2019)。

(四)利用人工智能技术提高学习效率,增强学生的创造性思维能力、社会交流能力

现阶段的人工智能已经可以代替教师对学生进行辅导,提高学生的学习效率,如X-Tech、EdTech、LearnTech等技术。这些工具可以根据每个学生的实际情况,给出不同的学习指导方案,提高学习效率。有国外学校在教学中引进了人工智能系统,学生使用平板电脑阅读数学教材、做习题。人工智能系统收集所有学生的学习信息,包括答案、解题过程、速度、集中力、理解力等,在此基础上判断出每个学生的强、弱项,给出符合个人学习水平的阅读材料和习题,大大提高了学习效率。该学校利用人工智能对小学六年级学生进行了初中一年级上学期的数学课程教育,常规需要14周的学习内容仅用2周就完成了,并且学生们的考试成绩都超过了常规教育的平均点。如果能如此高效地接受知识,学生就可以把时间更多地用在联系实际的项目学习以及体育、艺术等活动上,强化学生创造力和社会交流能力的培养。如果说铅笔、笔记本、橡皮是传统必需的学习工具,那么当前与互联网无障碍连接的电子终端已经成为人工智能时代学习的必要工具。国家应该尽快完善义务教育、高中教育、大学教育和在职教育的电子化环境,引进人工智能设备,提高全社会的学习效率。

目前,人工智能正以前所未有的速度部分或完全替代人的劳动,社会生产率将会大大提高。我们必须精准理解人工智能对职业、劳动和能力的影响,从国家层面制定战略规划,运用市场经济杠杆和政策手段提高包括义务教育、高中教育、高等教育和在职教育在内的生涯教育的人工智能基本素养,维持社会经济的稳定发展。

 

参考文献

[1]陈明生.人工智能发展、劳动分类与结构性失业研究[J].经济学家,2019(10):66-74.

[2]丁晨.从适应到引领:人工智能时代职业教育发展的机遇、挑战与出路[J].中国职业技术教育,2019(13):53-59.

[3]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.

[4]毛旭,张涛.人工智能与职业教育深度融合的促动因素、目标形态及路径选择[J].教育与职业,2019(24):53-59.

[5]南旭光,汪洋.人工智能时代职业教育治理的限时挑战与路径选择[J].教育与职业,2018(18):25-30.

[6]潘文轩.人工智能技术发展对就业的多重影响及应对措施[J].湖湘论坛,2018(4):146-153.

[7][美]S.J.Russell,P.Norvig.人工智能:一种现代的方法(第3版)[M].殷建平,等译.北京:清华大学出版社,2018.

[8]王君,张于喆,张义博,等.人工智能等新技术进步影响就业的激励与对策[J].宏观经济研究,2017(10):169-181.

[9]万昆.人工智能技术带来的就业风险及教育因应[J].广西社会科学,2019(6):185-188.

[10][奥]约瑟夫·熊彼特.经济发展理论[M].何畏,等译.北京:商务印书馆,2016.

[11]安宅和人.人工知能はビジネスをどう変えるか[J].DiamondHarvardBusinessReview,2015(11):43-58.

[12]池迫浩子,宮本晃司.家庭、学校、地域社会におけるスキルの育成:国際的エビデンスのまとめと日本の教育実践·研究に対する示唆[R/OL].2015-08-27.https://berd.benesse.jp/feature/focus/11-OECD/pdf/FSaES_20150827.pdf.

[13]経済産業省.“未来の教室”実証事業成果報告:ベジタリア株式会社[R/OL].2019-07-12.https://www.learning-innovation.go.jp/verify/z0044/.

[14]野口悠纪雄.AI入門講座[M].東京:東京堂出版,2018.[15]西村崇.AI時代に必要なスキルは「対人関係力」と「創造力」、アデコが調査報告[EB/OL].2017-05-17.https://xtech.nikkei.com/it/atcl/news/17/051701429/.

[16]D.H.Autor,L.F.Levy,R.J.Murnane.Theskillcontentofrecenttechnologicalchange:anempiricalexploration[J].QuarterlyJournalofEconomics,2003(4):1279–1333.

[17]D.H.Autor.Whyaretherestillsomanyjobs?Thehistory andfutureofworkplaceautomation[J].JournalofEconomicPerspectives,2015(3):3–30.

[18]H.Bakhshi,J.M.Downing,M.A.Osborneetal.Thefuture ofskills:employmentin2030[R/OL].2017-12-30.https://futureskills.pearson.com/research/assets/pdfs/technical-report.pdf.

[19]T.H.Davenport,J.Kirby.Beyondautomation[J].Harvard BusinessReview,2015(6):59-65.

[20]D.J.Deming.Thegrowingimportanceofsocialskillsinthelabormarket[J].NBERWorkingPaper,2015:21473.

[21]C.B.Frey,M.A.Osborne.Thefutureofemployment:how susceptiblearejobstocomputerisation?[R].WorkingPaper,OxfordMartinProgrammeonTechnologyandEmployment,2013.

[22]J.J.Heckman,T.Kautz.Hardevidenceonsoftskills[J].LaborEconomics,2012:451-464.

[23]ShotaroTani.Isyourjobrobot-ready?Ourinteractive calculatorletsyoufindouthowthreatenedyouare[R/OL].2017-04-22.https://asia.nikkei.com/Economy/Is-your-job-robot-ready.

[24]C.J.Weinberger.Theincreasingcomplementaritybetweencognitiveandsocialskills[J].TheReviewofEconomicsandStatistics,2014(5):849-861.

[25]WorldEconomicForum.Thefutureofjobs:employment,skillsandworkforcestrategyforthefourthindustrialre-volution[R/OL].2016-01-18.https://reports.weforum.org/future-of-jobs-2016/preface/.

[26]WorldEconomicForum.Thefutureofjobsreport2018:Centrefortheneweconomyandsociety[R/OL].2018-09-17.https://www.weforum.org/reports/the-future-of-jobs-report-2018.

[27]OECD.Skillsforsocialprogress:thepowerofsocialand emotionalskills[R/OL].2015-12-30.OECDSkillsStudies,OECDPublishing,Paris,http://dx.doi.org/10.1787/9789264226159-en.

[28]OECD.Skillsforadigitalworld[R/OL].2016-12-30.https://www.oecd.org/els/emp/Skills-for-a-Digital-World.pdf.

 

刘湘丽.人工智能时代的工作变化、能力需求与培养[J/OL].新疆师范大学学报(哲学社会科学版),2020(04):1-12[2020-05-20].https://doi.org/10.14100/j.cnki.65-1039/g4.20200518.001.

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇