人工智能产业生态图:人工智能产业发展现状及趋势
人工智能作为新一轮产业变革的核心驱动力,将催生新的技术、产品、产业、业态、模式,从而引发经济结构的重大变革,实现社会生产力的整体提升。
麦肯锡预计:到2025年全球人工智能应用市场规模总值将达到1270亿美元,人工智能将是众多智能产业发展的突破点。
通过对人工智能产业分布进行梳理,提出了人工智能产业生态图,主要分为:核心业态、关联业态、衍生业态三个层次。
人工智能产业生态图
下面将重点对核心业态包含的智能基础设施建设、智能信息及数据、智能技术服务、智能产品四个方面展开介绍,并总结人工智能行业应用及产业发展趋势。
智能基础设施智能基础设施为人工智能产业提供计算能力支撑,其范围包括智能传感器、智能芯片、分布式计算框架等,是人工智能产业发展的重要保障。
1.智能芯片智能芯片从应用角度可以分为训练和推理两种类型。从部署场景来看,可以分为云端和设备端两步大类。
训练过程由于涉及海量的训练数据和复杂的深度神经网络结构,需要庞大的计算规模,主要使用智能芯片集群来完成。与训练的计算量相比,推理的计算量较少,但仍然涉及大量的矩阵运算。目前,训练和推理通常都在云端实现,只有对实时性要求很高的设备会交由设备端进行处理。
按技术架构来看,智能芯片可以分为通用类芯片(CPU、GPU、FPGA)、基于FPGA的半定制化芯片、全定制化ASIC芯片、类脑计算芯片(IBMTrueNorth)。另外,主要的人工智能处理器还有DPU、BPU、NPU、EPU等适用于不同场景和功能的人工智能芯片。
随着互联网用户量和数据规模的急剧膨胀,人工智能发展对计算性能的要求迫切增长,对CPU计算性能提升的需求超过了摩尔定律的增长速度。同时,受限于技术原因,传统处理器性能也无法按照摩尔定律继续增长,发展下一代智能芯片势在必行。
未来的智能芯片主要是在两个方向发展:
一是模仿人类大脑结构的芯片;二是量子芯片。智能芯片是人工智能时代的战略制高点,预计到2020年人工智能芯片全球市场规模将突破百亿美元。
2.智能传感器智能传感器是具有信息处理功能的传感器,智能传感器带有微处理机,具备采集、处理、交换信息等功能,是传感器集成化与微处理机相结合的产物。
智能传感器属于人工智能的神经末梢,用于全面感知外界环境。各类传感器的大规模部署和应用为实现人工智能创造了不可或缺的条件。不同应用场景,如:智能安防、智能家居、智能医疗等对传感器应用提出了不同的要求。
未来,随着人工智能应用领域的不断拓展,市场对传感器的需求将不断增多,2020年市场规模有望突破4600亿美元。未来,高敏度、高精度、高可靠性、微型化、集成化将成为智能传感器发展的重要趋势。
3.分布式计算框架面对海量的数据处理、复杂的知识推理,常规的单机计算模式已经不能支撑。所以,计算模式必须将巨大的计算任务分成小的单机可以承受的计算任务,即云计算、边缘计算、大数据技术提供了基础的计算框架。
目前流行的分布式计算框架,如:OpenStack、Hadoop、Storm、Spark、Samza、Bigflow等。各种开源深度学习框架也层出不穷,其中包括TensorFlow、Caffe、Keras、CNTK、Torch7、MXNet、Leaf、Theano、DeepLearning4、Lasagne、Neon等等。
智能信息及数据信息数据是人工智能创造价值的关键要素之一,我国庞大的人口和产业基数带来了数据方面的天生优势。随着算法、算力技术水平的提升,围绕数据的采集、分析、处理产生了众多的企业。
目前,在人工智能数据采集、分析、处理方面的企业主要有两种:
一种是数据集提供商,以提供数据为自身主要业务,为需求方提供机器学习等技术所需要的不同领域的数据集;另一种是数据采集、分析、处理综合性厂商,自身拥有获取数据的途径,并对采集到的数据进行分析处理,最终将处理后的结果提供给需求方进行使用。对于一些大型企业,企业本身也是数据分析处理结果的需求方。智能技术服务智能技术服务主要关注如何构建人工智能的技术平台,并对外提供人工智能相关的服务。此类厂商在人工智能产业链中处于关键位置,依托基础设施和大量的数据,为各类人工智能的应用提供关键性的技术平台、解决方案和服务。
目前,从提供服务的类型来看,提供技术服务厂商包括以下几类:
(1)提供人工智能的技术平台和算法模型
此类厂商主要针对用户或者行业需求,提供人工智能技术平台以及算法模型。用户可以在人工智能平台之上,通过一系列的算法模型来进行人工智能的应用开发。此类厂商主要关注人工智能的通用计算框架、算法模型、通用技术等关键领域。
(2)提供人工智能的整体解决方案
此类厂商主要针对用户或者行业需求,设计和提供包括软、硬件一体的行业人工智能解决方案,整体方案中集成多种人工智能算法模型以及软、硬件环境,帮助用户或行业解决特定的问题。此类厂商重点关注人工智能在特定领域或者特定行业的应用。
(3)提供人工智能在线服务
此类厂商一般为传统的云服务提供厂商,主要依托其已有的云计算和大数据应用的用户资源,聚集用户的需求和行业属性,为客户提供多类型的人工智能服务。
从各类模型算法和计算框架的API等特定应用平台到特定行业的整体解决方案等,进一步吸引大量的用户使用,从而进一步完善其提供的人工智能服务。
此类厂商主要提供相对通用的人工智能服务,同时也会关注一些重点行业和领域。
需要指出的是:上述三类角色并不是严格区分开的,很多情况下会出现重叠,随着技术的发展成熟,在人工智能产业链中已有大量的厂商同时具备上述两类或者三类角色的特征。
智能产品智能产品是指将人工智能领域的技术成果集成化、产品化,具体的分类如下表所示:
人工智能产品
随着制造强国、网络强国、数字中国建设进程的加快,在制造、家居、金融、教育、交通、安防、医疗、物流等领域对人工智能技术和产品的需求将进一步释放,相关智能产品的种类和形态也将越来越丰富。
人工智能行业应用人工智能与行业领域的深度融合将改变甚至重新塑造传统行业,本节重点介绍人工智能在制造、家居、金融、交通、安防、医疗、物流行业的应用,由于篇幅有限,其它很多重要的行业应用在这里不展开论述。
1. 智能制造智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。
智能制造对人工智能的需求,主要表现在以下三个方面:
一是智能装备,包括自动识别设备、人机交互系统、工业机器人以及数控机床等具体设备,涉及到跨媒体分析推理、自然语言处理、虚拟现实智能建模及自主无人系统等关键技术。二是智能工厂,包括智能设计、智能生产、智能管理以及集成优化等具体内容,涉及到跨媒体分析推理、大数据智能、机器学习等关键技术。三是智能服务,包括大规模个性化定制、远程运维以及预测性维护等具体服务模式,涉及到跨媒体分析推理、自然语言处理、大数据智能、高级机器学习等关键技术。例如:现有涉及智能装备故障问题的纸质化文件,可通过自然语言处理,形成数字化资料,再通过非结构化数据向结构化数据的转换,形成深度学习所需的训练数据,从而构建设备故障分析的神经网络,为下一步故障诊断、优化参数设置提供决策依据。
2.智能家居参照工业和信息化部印发的《智慧家庭综合标准化体系建设指南》,智能家居是智慧家庭八大应用场景之一。受产业环境、价格、消费者认可度等因素影响,我国智能家居行业经历了漫长的探索期。
至2010年,随着物联网技术的发展以及智慧城市概念的出现,智能家居概念逐步有了清晰的定义并随之涌现出各类产品,软件系统也经历了若干轮升级。
智能家居以住宅为平台,基于物联网技术,由硬件(智能家电、智能硬件、安防控制设备、家具等)、软件系统、云计算平台构成的家居生态圈,实现人远程控制设备、设备间互联互通、设备自我学习等功能,并通过收集、分析用户行为数据为用户提供个性化生活服务,使家居生活安全、节能、便捷等。
例如:借助智能语音技术,用户应用自然语言实现对家居系统各设备的操控,如开关窗帘(窗户)、操控家用电器和照明系统、打扫卫生等操作。借助机器学习技术,智能电视可以从用户看电视的历史数据中分析其兴趣和爱好,并将相关的节目推荐给用户。
通过应用声纹识别、脸部识别、指纹识别等技术进行开锁等。通过大数据技术可以使智能家电,实现对自身状态及环境的自我感知,具有故障诊断能力。通过收集产品运行数据,发现产品异常,主动提供服务,降低故障率。还可以通过大数据分析、远程监控和诊断,快速发现问题、解决问题及提高效率。
3.智能金融人工智能的飞速发展,将对身处服务价值链高端的金融业带来深刻影响,人工智能逐步成为决定金融业沟通客户、发现客户金融需求的重要因素。
人工智能技术在金融业中可以用于服务客户,支持授信、各类金融交易和金融分析中的决策,并用于风险防控和监督,将大幅改变金融现有格局,金融服务将会更加地个性化与智能化。
智能金融对于金融机构的业务部门来说,可以帮助获客,精准服务客户,提高效率;对于金融机构的风控部门来说,可以提高风险控制,增加安全性;对于用户来说,可以实现资产优化配置,体验到金融机构更加完美地服务。人工智能在金融领域的应用主要包括:智能获客、依托大数据、对金融用户进行画像,通过需求响应模型,极大地提升获客效率。身份识别,以人工智能为内核,通过人脸识别、声纹识别、指静脉识别等生物识别手段,再加上各类票据、身份证、银行卡等证件票据的OCR识别等技术手段,对用户身份进行验证,大幅降低核验成本,有助于提高安全性。
大数据风控,通过大数据、算力、算法的结合,搭建反欺诈、信用风险等模型,多维度控制金融机构的信用风险和操作风险,同时避免资产损失。
智能投顾,基于大数据和算法能力,对用户与资产信息进行标签化,精准匹配用户与资产。
智能客服,基于自然语言处理能力和语音识别能力,拓展客服领域的深度和广度,大幅降低服务成本,提升服务体验。
金融云,依托云计算能力的金融科技,为金融机构提供更安全高效的全套金融解决方案。
4.智能交通智能交通系统(IntelligentTrafficSystem,ITS)是通信、信息和控制技术在交通系统中集成应用的产物。ITS借助现代科技手段和设备,将各核心交通元素联通,实现信息互通与共享以及各交通元素的彼此协调、优化配置和高效使用形成人、车和交通的一个高效协同环境,建立安全、高效、便捷和低碳的交通。
例如:通过交通信息采集系统采集道路中的车辆流量、行车速度等信息,信息分析处理系统处理后形成实时路况,决策系统据此调整道路红绿灯时长,调整可变车道或潮汐车道的通行方向等,通过信息发布系统将路况推送到导航软件和广播中,让人们合理规划行驶路线。
通过不停车收费系统(ETC),实现对通过ETC入口站的车辆身份及信息自动采集、处理、收费和放行,有效提高通行能力、简化收费管理、降低环境污染。
ITS应用最广泛的地区是日本,其次是美国、欧洲等地区。中国的智能交通系统近几年也发展迅速,在北京、上海、广州、杭州等大城市已经建设了先进的智能交通系统。
其中,北京建立了道路交通控制、公共交通指挥与调度、高速公路管理和紧急事件管理等四大ITS系统。广州建立了交通信息共用主平台、物流信息平台和静态交通管理系统等三大ITS系统。
5.智能安防智能安防技术是一种利用人工智能对视频、图像进行存储和分析,从中识别安全隐患并对其进行处理的技术。智能安防与传统安防的最大区别在于智能化,传统安防对人的依赖性比较强,非常耗费人力,而智能安防能够通过机器实现智能判断,从而尽可能实现实时地安全防范和处理。
当前,高清视频、智能分析等技术的发展,使得安防从传统的被动防御向主动判断和预警发展,行业也从单一的安全领域向多行业应用发展,进而提升生产效率并提高生活智能化程度,为更多的行业和人群提供可视化及智能化方案。
用户面对海量的视频数据,已无法简单利用人海战术进行检索和分析,需要采用人工智能技术作专家系统或辅助手段,实时分析视频内容,探测异常信息,进行风险预测。
从技术方面来讲,目前国内智能安防分析技术主要集中在两大类:
一类是采用画面分割前景提取等方法,对视频画面中的目标进行提取检测,通过不同的规则来区分不同的事件,从而实现不同的判断并产生相应的报警联动等。例如:区域入侵分析、打架检测、人员聚集分析、交通事件检测等。另一类是利用模式识别技术,对画面中特定的物体进行建模,并通过大量样本进行训练,从而达到对视频画面中的特定物体进行识别,如车辆检测、人脸检测、人头检测(人流统计)等应用。智能安防目前涵盖众多的领域,如街道社区、道路、楼宇建筑、机动车辆的监控,移动物体监测等。今后智能安防还要解决海量视频数据分析、存储控制及传输问题,将智能视频分析技术、云计算及云存储技术结合起来,构建智慧城市下的安防体系。
6.智能医疗人工智能的快速发展,为医疗健康领域向更高的智能化方向发展,提供了非常有利的技术条件。近几年,智能医疗在辅助诊疗、疾病预测、医疗影像辅助诊断、药物开发等方面发挥重要作用。
在辅助诊疗方面,通过人工智能技术可以有效提高医护人员工作效率,提升一线全科医生的诊断治疗水平。如利用智能语音技术可以实现电子病历的智能语音录入;利用智能影像识别技术,可以实现医学图像自动读片;利用智能技术和大数据平台,构建辅助诊疗系统。
在疾病预测方面,人工智能借助大数据技术可以进行疫情监测,及时有效地预测并防止疫情的进一步扩散和发展。
以流感为例:很多国家都有规定,当医生发现新型流感病例时需告知疾病控制与预防中心。但由于人们可能患病不及时就医,同时信息传达回疾控中心也需要时间。因此,通告新流感病例时往往会有一定的延迟,人工智能通过疫情监测能够有效缩短响应时间。
在医疗影像辅助诊断方面,影像判读系统的发展是人工智能技术的产物。早期的影像判读系统主要靠人手工编写判定规则,存在耗时长、临床应用难度大等问题,从而未能得到广泛推广。
影像组学是通过医学影像对特征进行提取和分析,为患者预前和预后的诊断和治疗提供评估方法和精准诊疗决策。这在很大程度上简化了人工智能技术的应用流程,节约了人力成本。
7.智能物流传统物流企业在利用条形码、射频识别技术、传感器、全球定位系统等方面优化改善运输、仓储、配送装卸等物流业基本活动。同时也在尝试使用智能搜索、推理规划、计算机视觉以及智能机器人等技术,实现货物运输过程的自动化运作和高效率优化管理,提高物流效率。
例如:在仓储环节,利用大数据智能通过分析大量历史库存数据,建立相关预测模型,实现物流库存商品的动态调整。大数据智能也可以支撑商品配送规划,进而实现物流供给与需求匹配、物流资源优化与配置等。
在货物搬运环节,加载计算机视觉、动态路径规划等技术的智能搬运机器人(如搬运机器人、货架穿梭车、分拣机器人等)得到广泛应用,大大减少了订单出库时间,使物流仓库的存储密度、搬运的速度、拣选的精度均有大幅度提升。
人工智能产业发展趋势从人工智能产业进程来看,技术突破是推动产业升级的核心驱动力。数据资源、运算能力、核心算法共同发展,掀起人工智能第三次新浪潮。人
工智能产业正处于从感知智能向认知智能的进阶阶段,前者涉及的智能语音、计算机视觉及自然语言处理等技术,已具有大规模应用基础。但后者要求的“机器要像人一样去思考及主动行动”仍尚待突破,诸如:无人驾驶、全自动智能机器人等仍处于开发中,与大规模应用仍有一定距离。
1.智能服务呈现线下和线上的无缝结合分布式计算平台的广泛部署和应用,增大了线上服务的应用范围。同时人工智能技术的发展和产品不断涌现,如智能家居、智能机器人、自动驾驶汽车等,为智能服务带来新的渠道或新的传播模式,使得线上服务与线下服务的融合进程加快,促进多产业升级。
2.智能化应用场景从单一向多元发展目前人工智能的应用领域还多处于专用阶段,如人脸识别、视频监控、语音识别等都主要用于完成具体任务,覆盖范围有限,产业化程度有待提高。随着智能家居、智慧物流等产品的推出,人工智能的应用终将进入面向复杂场景,处理复杂问题,提高社会生产效率和生活质量的新阶段。
3.人工智能和实体经济深度融合进程将进一步加快党的十九大报告提出:“推动互联网、大数据、人工智能和实体经济深度融合”。
一方面,随着制造强国建设的加快,将促进人工智能等新一代信息技术产品发展和应用,助推传统产业转型升级,推动战略性新兴产业实现整体性突破。
另一方面,随着人工智能底层技术的开源化,传统行业将有望加快掌握人工智能基础技术并依托其积累的行业数据资源实现人工智能与实体经济的融合创新。
#专栏作家#拼搏的80后,人人都是产品经理专栏作家。10年互联网从业经历,具有各类型B端、C端产品的设计经验,关注区块链及人工智能的技术发展及应用场景探索。
本文原创发布于人人都是产品经理。未经许可,禁止转载
题图来自Unsplash,基于CC0协议
把握智能制造发展的趋势与重点
作者:郧彦辉
智能制造是先进制造技术和新一代信息技术的深度融合,代表着我国制造业高质量发展的主要方向。习近平总书记指出:“要以智能制造为主攻方向推动产业技术变革和优化升级,推动制造业产业模式和企业形态根本性转变,以‘鼎新’带动‘革故’,以增量带动存量,促进我国产业迈向全球价值链中高端。”
智能制造发展的新趋势
经过多年培育,我国智能制造已经取得长足进展。总体上看,我国智能制造发展从初期的理念普及、试点示范阶段进入试点示范引领、供需两端发力、多方协同推进的新阶段,通过深入推进数字化转型行动、大力实施智能制造工程、开展工业互联网创新发展行动,制造业重点领域的智能化水平不断提升,当前规模以上工业企业关键工序数控化率和数字化研发设计工具普及率分别达到55.7%、75.1%。智能制造成为推动我国制造业高质量发展的强劲动力。
当前,随着人工智能、数字孪生等新一代信息技术的发展,我国智能制造发展呈现出以下三个新趋势。
智能制造的人本化。人本智能制造是智能制造发展的新理念,智能制造的发展开始重点考虑社会的制约因素,智能制造系统设计正在纳入人的因素,人的利益和需求日益成为生产过程的核心。譬如,人机合作设计和人机协作装备的推出,使人从许多机械化生产中解脱出来,人与机器可以发挥各自优势,协作完成各项工作,推动产业模式的变革。
智能制造的多领域集成发展。在早期,智能制造主要侧重于物理系统的感知与集成,随后开始与信息系统进行深度融合,近年来则进一步与社会系统进行融合。在多领域集成发展的过程中,智能制造通过不断融入更多的制造资源、信息资源和社会资源,催生出预测制造、主动制造等数据驱动的制造新模式,使制造模式从单一化走向多元化,制造系统从数字化走向智能化。
企业组织形态发生较大改变。随着智能制造技术的日趋复杂,传统产业链的模式正在被打破,终端客户倾向于选择完整的解决方案。相应地,制造企业的生产组织和管理方式也正在发生重大变革,以客户为中心和数据驱动更为普遍,企业组织架构正在向扁平化、平台化方向转变。
智能制造发展存在的突出问题
我国制造业正在积极适应智能制造发展的新趋势,并且在一些关键领域和技术上抢占了优势地位。但同时也存在着一些突出的问题。
制造业企业智能化水平“参差不齐”,使智能制造的人本化推进缓慢。近年来,我国积极开展智能制造应用试点工作,推进示范项目、推广典型经验。截至2021年底,我国工业互联网的应用已经覆盖45个国民经济大类,工业APP数量突破60万个,建成了700多个数字化车间、智能工厂,培育较大型的工业互联网平台超过150家,连接工业设备超过7800万台(套)。但企业智能化转型尤其是实现人机协同是一项系统工程,当前我国许多企业仍处于工业2.0、工业3.0阶段,对生产设备、业务流程等进行全面更新或者改造升级,对工人进行新技能培训,需要大量的资源投入,但资金等要素短缺严重限制了企业的人本化改造。
智能制造的一些基础性技术存在短板,使多领域集约发展的根基不牢。目前,我国已经掌握了长期制约产业发展的部分智能制造技术,包括机器人技术、感知技术、复杂制造系统、智能信息处理技术等。以智能控制系统、工业机器人、自动化成套生产线为代表的智能制造装备产业体系初步形成。但智能制造的共性技术、关键技术仍存在短板。比如,我国工业软件实力较弱,工业仿真设计软件基本被国外垄断,高档数控机床、智能传感器等对进口的依赖程度较大,很大一部分新材料处于实验室研究阶段无法开展应用转化,等等。
企业生产管理模式智能化转型存在明显的弱项。以客户为中心和数据驱动的企业生产和管理模式需要以新型管理技术人才队伍和全新的行业标准为支撑。从人才队伍来看,我国智能制造人才存在结构式缺口。据人力资源和社会保障部统计,2020年我国智能制造领域的人才需求为750万人,而缺口为300万人;到2025年,人才缺口预计达到450万人。从标准体系来看,我国正在逐步构建智能制造标准体系,已经发布国家标准285项,牵头制定国际标准28项,石化、建材、纺织等14个细分行业构建了智能制造标准体系,但大多行业领域智能制造标准体系仍不健全。长期以来,我国处于全球产业价值链的低端位置,在国际制造标准领域中的话语权和影响力较弱,在国内智能制造标准与国外标准体系对接与互认方面仍然有待加强。
智能制造发展的突破重点
未来一段时期是我国智能制造发展的关键时期。习近平总书记强调:“我们要顺应第四次工业革命发展趋势,共同把握数字化、网络化、智能化发展机遇。”应抢抓这一历史性契机,通过一系列政策创新积极引领我国智能制造进行战略性的重点突破,实现我国制造业的“换道超车”、跨越发展。
筑牢技术底基,夯实智能制造发展核心动力。强化人工智能、认知科学、仿生制造等基础研究,推动制造技术、信息技术在智能制造中深度融合发展。聚焦制造业企业生产全过程,以“揭榜挂帅”方式集中资源,攻克一批共性和关键技术,突破精密加工等先进工艺技术。围绕工业母机、智能传感等关键领域,整合资源力量建设智能制造领域制造业创新中心、技术创新中心、工程研究中心等创新载体。
深化推广人本化的应用,拓展需求侧拉动作用。智能制造技术重在应用,因此,应根据人的特性和需求,打造出可供选择的多元化应用场景,培育推广智能化设计、网络协同制造、大规模个性化定制等新模式新业态。聚焦企业、行业等转型升级需求,打造典型应用场景,推动企业各环节智能化改造,探索有效推广路径,实现智能制造从点到线到面的系统发展。
加快中小企业智能化转型,实现大中小企业融合发展。中小企业是智能制造升级的最大短板,也是最大潜力所在。要完善“政府—平台企业—行业龙头企业—服务机构—中小微企业”多级联动的推进机制,搭建融合发展生态。通过推进“虚拟”产业园和产业集群建设,以信息流推动供应链、产业链上下游企业间的数据贯通、资源共享和业务协同,提升产业链资源优化配置和动态协调水平,带动中小企业智能化升级。
强化支撑体系建设,为智能制造发展提供重要保障。加强标准体系建设,包括加强基础共性、关键技术和行业应用标准制修订和试验验证,积极推广标准的实施和标准应用试点示范。积极参与国际标准合作,参与国际标准的制定。加强数字化人才培养,深化产学研协同发展机制,构建体系化的培养方案,依据行业应用需求,提升教学内容与行业应用契合度,培养出一支规模庞大的智能制造人才队伍。
[责编:王晓秋]