在与人工智能的竞争中,未来哪些职业会胜出,哪些又将被淘汰呢
其实,现在已经有大量的企业使用AI电话推销员,只是很多人都没有发现这一点罢了,但对此,我是深有体会的。
也许是由于早年做生意的原因,我每天所接到的各类推销电话是非常多的,日均不少于10个,我本身是不胜其烦的,但近几年却发现了个好玩的事情,那就是辨别给我打电话的到底是人还是AI。在正常的对话之中,基本上很难判断出来,但如果你给出一个意料之外的提问,那么则可能得到一句生硬的回答,此时你会恍然大悟,原来给你打电话的并不是一个人,而是AI。试一试,很有意思。
当然,我们相信,在弱人工智能时代,AI推销员是不可能胜过电话推销员的,但问题在于AI推销员的成本要比真人低很多,而且工作效率很高。
虽然AI推销员的成功率可能不足真人的三分之一,但是它们一天能够打出的电话却是真人的数倍。可见,简单的脑力劳动也是不能够战胜AI的。有人说AI无法完成具有创造性的工作,这么说其实还是小看人工智能了。就拿写作来说吧,写作无疑是一个具有创造性的工作,但即便是现在,AI写稿的能力也已经不容小觑了。AI写出的小说能与真人作者相比吗?当然,无论是现在,还是将来,只要是处于弱人工智能时代,AI都不可能写出海明威笔下的那种传世巨著,但写网络爽文是一点问题也没有。那种一天就能码出8000字的网络小说,真人还真就未必比AI写得好。
看来,即便是具有一定创造性的工作,也未必就能够在与人工智能的竞争中立于不败之地。
不过,这也并不是说AI就无所不能,还真有一些职业是人工智能所替代不了的,比如牧师。客观的来讲,牧师的工作并没有太高的技术难度,AI完全可以胜任,但牧师这个职业最为重要的并不是专业技能,而是要求从事这个职业的必须是一个“人”,因为你没有办法保持一颗虔诚的心态去听一个录音机讲经布道,更没有办法对着一个机器进行忏悔。
同样的道理,医生也是人工智能所无法取代的,这并不是说人工智能无法通过深度学习达到真人医生的水平。
事实上现在手术机器人就已经可以完美地完成一些简单的微创手术了,而AI看胸片更是可以达到副教授的水平,但关键在于我们无法放心地把自己交给一台挥舞手术刀的机器,相同的道理,护士、健身教练、营养师这一类的职业同样也不会被人工智能所取代。另一方面,对主观审美要求较高的职业领域,人类也能够完败人工智能,比如摄影师、喜剧演员、画家等等,这些职业都需要较高的职业技能,但技能同样不是关键,关键还是在于主观审美和创意。那么,你还能想到哪些不会被人工智能所淘汰的职业呢?返回搜狐,查看更多
在未来会有哪些职业或许会被人工智能代替
科技在进步,放眼望去,无人驾驶行驶上路、无人超市无人便利店逐渐多起来、机场里勤勤恳恳的地勤机器人,不知不觉,人工智能已经贯穿于我们的生活,我们不禁感叹,人工智能时代已经悄然到来!人工智能确实帮助我们节省了很多时间,我们也享受了很多科技进步带来的便利,但换个角度来想,我们是否想过,科技的进步对我们每一个普通人来说,除了便利,是否还有挑战呢。
马云曾说过”相比起人类,机器学知识更快,记忆力也更好,快速计算的能力也更强更快,更重要的是,机器往往能把握好人类最难控制的一点,即情绪。机器不会生气,也不会累,也没有情绪,不会因情绪而影响做事的效果。所以,人类若想与机器人竞争,还不一定能胜利。
麦肯锡研究曾显示,到2020年的时候,全球范围内将会有将近700万个工作岗位消失,而美国斯坦福大学统计数据也曾显示,未来,美国范围内将会有超过45%的职业会消失,原因正是人工智能的进步,而这个数据,在作为发展中国家的中国,只会更加高。这样讲来可能还感受不出来什么,但最直接的一个问题:随着人工智能的发展,更多的职业将会被机器人取代,而且这个取代的速度,并没有我们想想的那么遥远,可能就是未来几年将会发生的事情。
那么,那么在未来将有哪些职业会被人工智能取代呢?是否与你有关呢?一起来看看吧。
一、司机、驾校教练
无人驾驶汽车早就在路上实现,并且相信很快将会普及,无人驾驶或将成为汽车行业发展的必然趋势,那么不难想想,司机、驾校教练这一类的职业将会消失。
二、人工客服
未来,大部分的客服工作将会由智能机器人取代,许多基础的客服环节将不再需要人类。其实现在一些公司已经将售后处理以及初次邀约部分的客服环节工作交给人工智能,人工智能也不像我们想象的那么不人性化,相反的是加入了许多人性化部分,以及优化了通话的语音语调,减去了人工长期的工作的声音疲惫,另一角度讲提高了工作效率。
三、流水线工人
其实这类工作目前消失的已经很多了,随着人工智能的发展,流水线工人的减少会更加明显。
四、翻译
翻译类的产品市面上已经越来越多,并且越来越人性化,从前我们担心的翻译软件直译问题,也逐渐被优化,未来,外语翻译的障碍会减少。
未来,大量的基础性工作将被机器取代,也或将带来一波失业潮,贫富差距也会加大。将来社会发展有太多的不确定因素,但唯一确定的是,保持学习的心态和能力是关键,才能更好地适应这波人工智能潮。
人类为什么不会被人工智能取代?
来源:人机与认知实验室
〔摘要〕文章旨在对人工智能的技术本质进行分析,以回应为什么人类不会被人工智能取代的问题。通过历史分析的方法,以“器官投影说”等技术哲学思想作为分析工具,回顾了人工智能技术的历程。发现在理论上,人工智能的研究加深了对人类智能的模仿的同时,更倾向于由机器与人类共建智能系统的解决方案;实践中,人机关系也从“分离”更多地走向“交融”。因此,人类除了能在本质层面上作为人工智能这种人工物所模仿的终极目的而存在,还能在个体层面上作为大的人工智能系统的行动者发挥智慧功能,人类不会被人工智能取代。
〔关键词〕人工智能;器官投影;人机融合
一、“人类是否会被人工智能取代”的当代回应
随着计算机科技的高速发展,“人工智能”的研究取得了长足的进步。随着“阿尔法狗”在人类引以为傲的围棋领域中让人间棋圣尽尝败果,“微软小冰”以诗人的身份混迹文学圈乃至出版诗集却一直未被人发现,人工智能谱曲、播报新闻的案例亦是屡见不鲜……人工智能的一切进展在反映科技事业的长足进步的同时,也让人类智能的优越性受到挑战,关于“人类将被人工智能取代”的恐慌也在社会上流行。
那么人类是否会被人工智能取代?人们从不同的视角给出了各自的答案:
基于人工智能目前在现实实践活动中的表现及其发展趋势,有人认为人工智能可以取代人类。如互联网行业先驱李开复曾预测“未来10年估计有50%的人类工作将会受到人工智能的影响……预计将有90%的人被人工智能取代”。新闻传播领域,匡文波与韩廷宾结合“腾讯Dreamwriter”和“新华社快笔小新”在新闻采写中的表现认为“未来某些领域消息写作有可能会被人工智能所取代”。而在文学艺术领域,袁跃兴根据“微软小冰”人工智能成功发表诗篇甚至出版诗集却一直没被人识破而慨叹“‘人工智能’技术已经发起了对人类文学尊严的挑战”。
也有人基于人类思维或情感的特殊性,认为人类不会被人工智能所取代。此类观点的基本预设便是,人工智能并不能理解人类情感,甚至认为人工智能并无人类一般的“智慧”。如黄欣荣认为“机器毕竟是机器,在体力、智力方面胜过人类,但在情感、意志等方面,机器还无法匹敌人类,因为人工智能目前仍是有智力没智慧”。徐英瑾也“并不倾向于认为人工智能取代人类……现有的人工智能并不具备灵活运用各个领域的知识进行综合判断的能力,而几乎我们能够想到的大多数人类所执行的工作任务,都需要执行者以相对灵活的方式来调配各个领域内的知识”。刘润坤则基于人类审美能力的独特性指出“人工智能在未来相当长的一段时间无法取代艺术家,其根本原因就在于机器创作没有灵魂”。
总体来看,认为人类会被人工智能取代的一方,其主要出发点是人工智能的现实功用,尤其是当人类和人工智能都可以完成类似于驾驶汽车这类的活动,且人工智能可以有更低的失误率时,人工智能在社会分工层面取代人类将极可能实现。而认为人工智能不可取代人类者,则是坚持认为人类与机器在本质上存在的差异,比如虽然人工智能完全可以完成一副画作,但它们只是通过一些机械的动作完成色彩与线条的搭配,永远是“知其然不知其所以然”。
但两方的回应都具有明显的不完备性。对于认为人工智能可以取代人类的一方,即便人工智能的很多功能可以实现对人类的替代,但是依据“多重可实现原则”可知,人工智能实现这些功能的机制可能与人类完全不同。这就意味着人工智能与人类社会的对接方式不一定与人类一致,甚至在某些潜在的情境下人工智能会与人类社会无法兼容。对于认为人工智能无法取代人类的一方而言,所有对于人类理性、情感或自由意志的坚信更像一种形而上学的预设。因此即便人工智能创作出如梵高、塞尚再世级别的画作,人类依旧可以用“没有灵魂”来进行拒斥或批判。但这种观点本身缺乏论证,关于人类特性的预设也显得带有神秘的不可知论的特征。
综合以上,上述两方面回应的共同缺陷在于,他们的探讨并未结合人工智能的发展历程,因而脱离了对人工智能的构建机制的研究。这就让人类智能和人工智能之间的比较,像是两个“黑箱”之间的对话,人们并不能更好地理解人工智能之于人类的挑战性和人类之于人工智能的独特性。基于此,本文将从人工智能的技术本质的角度探究,“人类是否会被人工智能取代”的问题。
二、对人类的模仿:人工智能的技术起点
阿兰·图灵是第一位真正提出,如何验证机器已经产生人类思维的实验标准的科学家。在图灵的思想实验中,计算机程序或者说是广义的机器人是在与人进行一场精致的“模仿游戏”,即在人与机器的双盲对话中,机器不断模仿人类的语言习惯,以欺骗参与对话的人类,让人类相信自己是在与人而非机器对话。这一思想实验后来在计算机科学的发展中,被发展成为广义的“图灵测试”。按照这种标准,一旦机器通过图灵测试,就可以判定机器具有和人相一致的思维能力,这种观点被称为“强人工智能”的观点。
围绕着机器通过了图灵测试,是否就可以判定机器的思维机制与人类相同,人工智能哲学界引发争论,其中又尤以塞尔的“中文屋”思想实验较为著名。
“中文屋”思想实验的主要预设是,在一个大家看不见内在构造的屋子前,只要人们对其说出某些中文,屋子中就会给出相对应的中文回应,这给人一种屋子中的人或事物非常精通中文的感觉。但一种可能的情景却是,屋子中有一套完备的中英文的对照规则手册,屋子中的人或其他事物根据手册指示,先找到接收到的中文所对应的英文,再基于对照手册的指示对外给出一个中文的回应,这样即便屋子中的人或事物不懂中文,也会看似精通中文。
塞尔的“中文屋”思想实验就是在论证,即便机器人或者计算机可能在某些方面的表现不亚于人类,但是依旧不能说机器已经理解人类的思维方式。“一个弱意义上的人工智能程序只是对认知过程的模拟,程序自身并不是一个认知过程。”换言之“弱人工智能”的主要观点就是,人工智能可以在行为上模仿人类,但不代表它能像人类思维一般实现自我理解。
上述只是强弱人工智能之争的最基本内容,在人工智能哲学的后续发展中,关于“规则手册是否真的可能存在”“理解了规则手册是否相当于理解中文”等问题还引发了后续的诸多争论。相关的论述至今已经汗牛充栋,但本文的重点并不是细述强弱人工智能观点的分歧,而是试图发现它们都可接受的理论共识。
“图灵测试”最终的判断标准,是人工智能有没有骗过人类,或者更准确地说,就是人工智能是否已经掌握与人相似的表述方式。更广义地理解这一标准,也就是判定一个程序或机器人的设计好坏的标准在于,它的行为与表现究竟有多么接近人类。这样一来,即便是一个最终没能通过“图灵测试”的人工智能设计也具有积极的意义,因为它可能已经在接近人类的方向上又迈进了一步,它也完全可以保留自身的优势,在其最接近人类的方面做进一步的加强,甚至可能在这一方面超过人类。
也有人认为,塞尔的“中文屋”在很大程度上只是在给人类找回最后的颜面。因为如果只是在某些专业领域,比如数学计算或者棋类竞技上做一个长期的开发,人类很可能不是人工智能的对手。但即便如此,人类依旧可以有充分的理由认为,机器并不具有人类一般的智能,因为人工智能至多只是“规则手册”的良好执行者,并不真正理解其自身的行为。
综上可以发现,强弱人工智能观点的分歧,其实主要在于人工智能相较于人类智能的完备度的认可上。这反而彰显了它们在底层有这样一些最基本的共识:第一,人类智能是人工智能发展一直所参照和模仿的对象;第二,人工智能发展的完备程度只能以人类作为参照甚至以人类能否接受作为最终标准。 因此在这种意义上来讲,人工智能完全可以被视为人类智能的“投影”,这与技术工具发明的“器官投影说”相通。“人类在长期的劳动、生活过程中,学会了利用身边的各种器物以弥补我们自身的不足,进而还学会了主动制造原来不存在的各种工具和器械来增强人体自身的功能……人类发明、制造工具其实最初都是按照自身的某个器官做摹本。”只是人工智能的发明是以人类的智能器官———按照生理学或医学的概念范式就是大脑,按照哲学的概念范式就是心灵———作为模仿对象。
力主模仿人类“大脑”或“心灵”的人工智能研究,要提升研究水平的前提就是要有“投影”人类智能的方法。接下来的问题就是,人工智能研究中,这种“投影”的策略是什么?
三、对人类智能从浅到深的“投影”:人工智能的技术策略
按照器官投影说的说法,“投影”至少有两层含义,“一方面,人体器官的形状和功能‘投影’在工具中……另一方面,人体器官的尺寸、比例被抽象和放大到工具中”。在一般技术工具的发明和制造过程中,这两种“投影”都已经被应用到淋漓尽致的地步。以日常用来盛水或食物的碗为例,其原型就是人的双手捧起水或食物时聚拢在一起的形状,碗的发明就是实现了这种盛放物品的功能。同时,碗在实际的制作中口宽底窄,依然是配合人类的手型,但是又会依据碗的用途的不同,而放大或缩小相应的尺度。
但是人工智能想要投影人类智能并非易事。如果作为器官来看,人类的思维器官是最具复杂性和神秘性的脑。尤其在人工智能发展的初期,医学或生理学能够对大脑做出的解读并不多,这就让人工智能研究对于人类智能的投影只局限在表象层面的人类的行为。随着计算机技术水平的提高,人工智能的研究就走向对人类认知器官的某些特定功能的专门模仿。到了医学可以对脑有一个更深层次的解读,并且计算机技术可以实现对于脑更深层的模仿后,人工智能又来到一个新的纪元。
(一)对人类行为的投影
在心理学的预设当中,人类的行为是一种对于人类思维状态的表征。因此当人工智能可以对于人类的行为进行模仿时,也就在一定程度上实现了对于人类智能的模仿。
较初级的人工智能产物一般都是在极力模仿人类的各种行为。一些工业领域常用的智能维修机器人更是主要只是模仿人类操作器物的行为。很明显的是,单纯依靠此类人工智能技术并不能通过图灵意义上的“模仿游戏”的测试。从本质上说,此类人工智能产物是对于人类的“感知—动作系统”的模仿,更主要的是实现对于人类肢体动作的模仿。图灵的“模仿游戏”重点检测的则是更深层次的,机器对于人类“语言—思维系统”的模仿。
但是此类人工智能技术依然具有存在的意义,它在现如今的人工智能的整体设计当中主要充当一种辅助技术,尤其在人形机器人的肢体的设计与生产环节,因此相关研究依然在提升其技术精度,并仍被广泛应用于人形机器人的设计生产之中。
(二)对人类特定智慧功能的投影
此类的研究依然可以暂时悬置人类的认知器官的真实构造这一问题,而是直接“利用计算机作为硬件平台,通过编制聪明软件来模拟人类智力功能”。此类研究策略可以让人类的认知器官继续保持一种相对的“黑箱”状态,只要保证计算机硬件平台可以在输出端给出与人类的判断尽可能相似的结果就好。
贯穿其中的研究策略在很多的专门领域当中取得较好的成效,目前已经在实践领域当中有广泛使用的人工智能产品,实际上就是采用此类的研究策略。诸如大家所熟知的京东、阿里巴巴和腾讯集团推出的智能客服,以及华为的“YOYO智能助手”和小米的“小AI同学”等,实际上就是在实现对于人类某些方面的语言功能的模仿。
此类研究的局限性就在于它总是只能解决某一专门领域的问题,比如一个智能家居助手可以解决的问题是将室内温度调整到20℃,但是它可能并不能理解温度数据与人类关于“寒冷”“炎热”的感受,更不能体会“老人怕冷”“孩子怕热”这类的亲情关怀。
(三)针对人脑的技术投影
随着近现代生理学尤其是脑科学的发展,对于人类认知器官的认识也逐渐走向了精细化。信息技术的高度发达,让计算机系统的搭建也可以形成对于人类认知器官的深层次模仿。近年来,随着“在不同方向上观测不同认知任务下脑部神经的活动变化并获得相关类脑智能数据已成为可能……发展类脑智能现已成为人工智能学科以及计算机应用相关领域研究的热点”。例如前文中提到的阿尔法狗的构建理论基础,就是人工神经网络技术的深度学习策略,类脑人工智能是其技术实质。除了人工神经网络技术外,“参考人脑神经元结构和人脑感知认知方式来设计的”类脑芯片也在成为目前人工智能领域研究的重点,并且芯片的运算机制已经愈发地接近人脑思考问题的方式。
基于人类脑科学研究成果而发展出来的此类人工智能技术,被称作“类脑智能”。此类技术不再只是从模仿外部的人类的行为或功能来实现机器的智能涌现,而是直接着眼于人类智能的发端,对脑的结构进行更深层次的模仿。类脑智能的研究可谓是人工智能目前最前沿的进展之一。但是直到目前为止,针对人类复杂的大脑的研究尚处于起步阶段,要实现对人脑的整体解读仍需要一个很长周期的研究。
综上所述,人工智能研究的认识论基础是技术哲学意义上的“器官投影说”,脑科学的最新研究进展成为人工智能更精细化投影人类认知器官的理论工具。当然,认识论层面上的理论基础或理论预设都会带有一定的理想化的特征,尤其只是在近些年脑科学的新进展才更好地支撑了人工智能研究的发展。在此前和未来的很长一段时间里,人工智能的研究主要还是要集中在与人类相似的智能功能的实现层面上,而未必是内在结构上与人类认知器官的高度一致上。因此,这里实际上需要分析的问题是,当人工智能的结构构建必然与人类智慧器官自身存在差异的前提下,人工智能自身是否会有相应的局限,人类又可以通过扮演怎样的角色来协助人工智能突破这样的局限呢?
四、从分离到交融:人工智能与人的现实关联
一个人工智能产物能够存在于社会,必然因为它可以实现某些方面的功能,从而满足社会某些方面的需求。这些相应功能可以实现的实质就是,人与人工智能,同客观世界之间以特定的形式发生相互关联,并且在不同的情境下人与人工智能之间的关系将有所不同。
(一)作为世界的一部分的人工智能
在诸如前文中所提到的各种研究环节,人工智能实际上都被视为一种待研究的对象来看待。其实不仅在研究阶段,到了应用层面也同样需要经历一个人对人工智能的认识和熟悉的过程。这就像我们拿到一台新的个人计算机,对于操作界面和随机功能均有一个必要的熟悉过程一般,一个新的人工智能产物走入到生产生活中,人类作为操控者或者说工作上的“合作伙伴”,需要将人工智能作为一个崭新的客体来进行研究。
此时的人工智能相当于世界的一份子,对于人处于一种几乎未知的状态,人与人工智能也在一种比较充分的分离状态之下。
(二)作为人与世界的媒介的人工智能
关于人工智能最为常见的应用模式,就是让人工智能代替人类去从事一些与外在世界之间的交互。比如人类派出探险机器人去探测星体表面,此时的机器人就是以人类的代理者的身份去完成人类的指令。在此类的应用之中,人类将自己的指令翻译成人工智能可以理解的计算机指令,人工智能完成相应的行动;在反馈环节中,人工智能则是依靠自身携带的各类传感器,将其收集到的各类信息传递给人类以备后续分析。
作为中介的人工智能带有一定的被动性,多数时候只能服从于人类的操控。这种意义上来说,此类人工智能更像是人类的欲望或意向性的转移者。它们也同样可以被视为世界向人类传递信息的媒介,它将那些人类肉身难以轻易企及的处所的信息传递给了人类。
人与作为世界的媒介的人工智能之间,会因为“使用”这种行为而发生交互,“使用”一旦停止人机将再次分离。
(三)作为人的“身体”的人工智能
称人工智能可以作为人类的“身体”,并不只是意味着人工智能产物已然植入人类身体(虽然在技术层面这早已可以实现),而是重点说明人工智能在应用层面给人带来的体验。
这种体验时常让人不会轻易察觉到人工智能技术的存在,它“展现出部分透明性,它不是人类关注的中心……经过短时期的适应之后,你不会感觉到它的存在……它已经成为身体体现的一部分,具有人的身体的某部分特征,它成为人类身体的延伸”。最常见的例子就是,如今的智能手机基本都具有导航功能,并且很多的导航程序都已经具有了很明显的人工智能特征。人在行走的过程中,其实已经让导航软件加强甚至替代了自己的“方向感”或“路感”。当一个人来到陌生的城市,也很少将辨识方位视为需要提前很久去完成的准备工作。
“方向感”本身属于人类智能的一部分,智能导航程序相当于加强了这种能力,但是在日常生活中,使用者会不自觉地将智能程序加成的“方向感”深以为然地视为自己天然具备的能力,这就是人工智能作为人类“身体”出现的最普遍的表现。
作为人的“身体”的人工智能,其影响力不仅在于实际的操作层面,而且在于它已经在人类的认知层面形成一种清晰的意向,让人类与其不自觉地相同一。
(四)人作为人工智能的“部件”
前文提到的“人工智能”总好像有一些很具象化的特征,也就是所有的人工智能产物似乎都有一个比较清晰的形态。不可否认的是,为了让人机交互显得更加友好,人工智能产品在其交互界面的设计上的确非常有人类色彩,如以人类的语音作为向导、仿照人类的形态制作输入输出设备等。
但实际上,人工智能系统的实际构造可能远比使用过程中所看到的界面要复杂得多。尤其是在分布式网络日益发达、大数据应用日益成熟的今天,理论上整个的网络信息平台都可能成为人工智能的数据库或云计算组件。因此,网络上的人类用户,在一定程度上就可能成为人工智能系统的某个空间节点上的部件一般的存在。并且需要注意的是“人比机器的优势之一就是:可以从较少的数据中更早地发现事物的模式”。也就是说作为人工智能“部件”的人类,一方面可以减轻实际应用层面上人工智能的计算压力,另一方面也在技术层面上搭建了以网络联结为基础的人机混合的智能系统结构。
人类充当人工智能系统的“部件”的原因大致上有两个:其一,就是实现应用目标的便利性的诱惑,毕竟在语言翻译等领域让人工智能短期内达到人类母语水平并不现实。在具体情境下,不一定非要人工智能通过模型计算给出合理的结果,直接转述人类在相应情境下的回应,可以更经济也更快速地实现应用需求。其二,就是目前人工智能领域研究的现实局限,前文提到的类脑人工智能的发展前景极具诱惑,其研发的基础就在于“以脑科学和信息科学的基本理论为指导……标记、获取、分析……精细脑网络结构与功能信息”。但攻克这项工程需要的可能是全人类长期的共同努力,突破人工智能的局限性不可能在一朝一夕,于是更可行的解决方案就是让人类作为宏观的人工智能系统的“部件”完成操作任务。
由此,在实际的应用层面上,随着人工智能功能的完善和大数据技术等的全面加持,人与人工智能之间不会再是泾渭分明的“分离”状态,而是随着彼此之间依赖的加深(人将人工智能默认为自身的功能,人工智能借助人类智慧的优势更快完成操作任务),人与人工智能实际上走向了一种“融合”的状态之中。
(五)从模仿到共建:人机融合的现实趋势
如前文所言,最理想的人工智能研究,其实是通过脑科学的“逆工程”制造出一个完整的人工生命,“这是对于传统的,通过具有某些特定功能的计算机子系统来分析性地构建智能系统的人工智能研究的替代方案。”
但是人工智能事业的发展,不能等待着此类研究的彻底完备,而是需要在实践中提升智能系统的问题解决能力,“这迫使我们要做出具体的工程决策,充分考虑抽象和具象的对象之间,以及观察的和理论的现象之间的关系”。在现实层面上,实际上需要被考虑的是人工智能性能的提升问题,既然“人机交互所产生的融合双重智能可以……提升人工智能系统的性能……更加高效地解决复杂问题”,那么人机融合就应该是被选择的趋势。
一个现代的人工智能系统不再应该被简单地视为与人类孤立的技术产物,而更应该被视为一个人类智慧与机器智慧所共建的广义的网络系统。这一网络系统的特征与巴黎学派的拉图尔、卡龙和劳等人所提出的“行动者网络”非常类似。“‘行动者网络’本身是一种‘异质型’网络,即人类行动者和非人行动者平等构成网络,在具体的科技活动中……平等地影响着网络,并且通过对于网络的‘协同’或‘背叛’影响网络的运作”。人与非人行动者会因为他们有共同的行为意向而联结在一起,并作为整体共同实现相应的实践目标。
并且应该与“行动者网络”理论的预设相一致的是,对于一个有某种明确的应用目的的智能系统而言,人与机器应该处于一种相对平等的状态之中。这里的“相对平等”的实现很可能是一种动态的总体的平等,即在某些具体的情境下,可能人类的主观意愿占据主导。但是在另一些情境下,机器的计算目标则更加重要。人类与机器在联结性和目的性等层面上发生的耦合,是人机共同构建智能系统的基础,它们之间彼此的协同促进,是共同提升系统功能的基本方法。
那么基于以上认识,我们又可以从何种意义上说明人类不会被人工智能取代呢?
五、结语:人有人的用处,人机共建新系统
人工智能是科学高度发展的智能化产物,其自身的本质依旧是技术人工物。任何广义的人工物,都具有主导其功能与构成的形式和质料。
从技术发展史的角度来说,人工智能的研究起步于对人类智能的模仿,因此人类的形式就是其追求的终极的形式,只是它用以实现人类智能的质料又与人类的肉身大相径庭。比如各类金属或有机材料是构建人工智能的机械身体的物质质料,各类运算机制和计算方法则是实现计算机智能的语言质料。这些现实的差异,以及人工智能后来所取得的一系列进步,让我们开始习惯于用一种对立甚至敌对的眼光去审视人类模仿自己而创造的各种人工智能产物。但不能忽视的却是,技术人工物得以持存的原因是某些目的性的实现。此时一个更加现实的问题就是,当人类不是以一种对立的姿态看待人工智能,而是以一种相互交融的态势与人工智能发生关联将会发生怎样的变化?
人类其实不单单可以作为人工智能所模仿的形式而存在,也可以作为技术系统当中真实有效的质料或部件。脱离开对人工智能的具象化的刻板预设,让人类、计算机和手机等智能单元都成为数据运算的可能参与者,这将是一种能让人工智能更快提升功能的解决方案。因此,在技术人工物的视角下审视人工智能的发展,其实质就是提供实现某类功能的可行的解决方案。在这种意义上来说,人非但不会存在被取代的可能,更可以与技术产物相互交融构建新的系统,人类智能不仅是人工智能研究中终极意义上的形式与目的,也是智慧功能实现层面上可以带来现实意义的行动者。
维纳用《人有人的用处》这一书名,来提示人们在控制论和信息论背景下应该重新思考“人”的概念。这里我们用“人有人的用处”来回应,为什么在现实的实践的视角下,人类不会被人工智能取代。当人类摒弃了人与机器的对立态度,在一个可以平等进行信息交换与计算的网络上共建一个人工智能系统,人类既能依旧作为智能系统的终极目的而发挥类本质层面上的导引作用,又可以在个体层面上履行新的社会分工责任———人将仍然有人的用处。
〔参考文献〕
[1]李开复,王咏刚.人工智能[M].北京:文化发展出版社,2017.[2]匡文波,韩廷宾.消息写作有可能被人工智能取代[J].新闻论坛,2017,(4):32-35.
[3]袁跃兴.“人工智能”技术能否取代诗人?[N].北京日报,2017-06-22(18).
[4]黄欣荣.人工智能对人类劳动的挑战及其应对[J].理论探索,2018,(5):15-21.
[5]徐英瑾.人工智能无法全面取代人类[N].第一财经日报,2018-09-18(A11).
[6]刘润坤.人工智能取代艺术家?——从本体论视角看人工智能艺术创作[J].民族艺术研究,2017,30(2):71-76.
[7]梅剑华.理解与理论:人工智能基础问题的悲观与乐观[J].自然辩证法通讯,2018,40(4):1-8.
[8]黄欣荣.卡普技术哲学的三个基本问题[J].自然辩证法研究,2012,28(8):27-31.
[9]王楠,王前.“器官投影说”的现代解说[J].自然辩证法研究,2005,21(2):1-4,17.
[10]钟义信.范式转变:AlphaGo显露的AI创新奥秘[J].计算机教育,2017,(10):9-14.
[11]宋小芹,王莉丽,张卫星.基于机会认知的类脑智能数据挖掘机制[J].计算机仿真,2016,33(11):375-378.
[12]陶建华,陈云霁.类脑计算芯片与类脑智能机器人发展现状与思考[J].中国科学院院刊,2016,31(7):803-811.
[13]吴国林.后现象学及其进展——唐·伊德技术现象学述评[J].哲学动态,2009,(4):70-76.
[14]刘伟,厍兴国,王飞.关于人机融合智能中深度态势感知问题的思考[J].山东科技大学学报(社会科学版),2017,19(6):10-17.
[15]骆清铭.脑空间信息学—连接脑科学与类脑人工智能的桥梁[J].中国科学,2017,47(10):1015-1024.
[16]Correia,L.Fromnaturaltoartificiallife[J].RevistaPortuguesadeFilosofia,2010:789-802.
[17]King,R.D.RiseoftheRoboScientists[J].ScientificAmerican,2011,304(1):72-77.
[18]李平,杨政银.人机融合智能:人工智能3.0[J].清华管理评论,2018,(Z2):73-82.[19]毕丞.行动者网络理论在科技传播领域中应用的可行性研究[J].自然辩证法研究,2014,30(3):76-82.
本文摘自:北京科技大学学报(社会科学版)2019年4月第35卷第2期
【毕丞:北京科技大学哲学教师】
未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”
人工智能时代,哪些职业和专业可能会被淘汰
最近,新华社推出了全球首个AI合成女主播。新闻一出,受到了不少人的关注。这位栩栩如生的女主播怎么看都像一个真人,播报的视频也很流畅自然。AI合成主播上线后立即投入到新闻报道中并实现量产,目前已参与两会新闻播报。现实中的主播只能每天工作8小时,这名AI女主播却能每天工作24小时!
2018年4月,西班牙世界零售大会上,刘强东宣布了一件大事:未来在京东员工数量减半,每天只需工作2-3小时.京东将全面实现「无人公司」,用AI技术颠覆传统管理与服务方式。
除此之外,未来还会有无人派件机,无人驾驶公交车等等。人工智能仿佛渗透在我们生活中的每个领域,也让人们感受到了前所未有的危机。未来,人类真的会像科幻电影里演得那样,被机器人统治吗?
《纽约客》杂志封面曾经展示了这样一个场景:一个胡子邋遢的乞丐盘腿坐在未来的曼哈顿大街上,拿着自己的空咖啡杯,等待着从身边经过的机器人的施舍,一个从他身边经过的机器人向他施舍了一些螺丝和螺丝帽。
这幅漫画当时在网络上疯传,人类向机器人乞讨,多么不可思议!
人工智能时代,职业如何变化?
在人工智能异军突起的时代,面临高考的考生们要选择什么专业?怎么填报志愿呢?大家一定不希望四年后毕业就失业的情况发生。
今天就为大家盘点一下未来容易被人工智能取代的职业和发展前景较好的职业,以及它们对应的专业。
李开复的《AI未来》里面有一张就业风险评估图,分析了什么工作是人工智能擅长的,什么是人工智能的难以做到的。
体力劳动图中,横向来看,左边是低技能结构化,右边是高技能非机构化,纵向来看,下面是弱社交,上面是强社交。
脑力劳动中,横向来看,左边是优化型,后边是创意或决策型。纵向与体力劳动图一致。如果是可量化的职业就成为优化型职业。
这两幅图分别将职业分为4个类型,图中左下角是危险区,左上角是安全区,右上角是结合区,右下角是慢变区。
落在危险区的工作有卡车司机、个人信用评估员,放射科医生等,都在未来面临被取代的高风险。安全区的工作如心理咨询师、理疗师在可预见的未来中不太容易被取代,因为这些是需要情感链接的工作,而机器人是没有情感的。
慢变区和结合区近两年还不会被取代,但是裁员将会增多,比如结合区的服务员、理财经理,甚至全科医生。日本有一个机器人酒店,服务员就是机器人,但是如果出现机器人解决不了的问题,那就需要人工服务。落在慢变区的职业,比如建筑工人、美术设计师,虽然不依赖社交技能,但是要与来灵活的思维和巧妙的设计,这种创造性的工作是否会被取代,取决于人工智能今后的发展。
1、什么职业专业是不易被取代的?
剑桥大学做了一项分析,有8类职业是不易被取代的。
❖第一类、程序员被取代的概率为8.5%。
理论上来说,一些基础的编程工作人工智能是可以完成的,但是并不是所有的编程工作它们都能做。
相关专业:计算机科学与技术、软件工程、网络工程、信息安全、互联网工程等。
推荐院校:清华大学、北京邮电大学、四川大学、电子科技大学等。
❖第二类、护理人士取代的概率为8.0%。
人类无法被机器模仿的一点就是同情心,人工智能可能可以为人提供一天的护理计划,但很难与人有感情的沟通,所以这个职业难以被取代。
相关专业:护理学、临床护理等。
推荐院校:北京大学、清华大学、复旦大学、上海交通大学、中南大学等。
❖第三类、健身教练被取代的概率为7.5%。
其实现在有很多健身软件,能帮助我们制定健身计划,或者教我们健身方法,但这都比不上我们看见一个有八块腹肌的健身教练有激励效果。
相关专业:体育学、运动医学,运动康复学等。
推荐院校:北京体育大学、上海体育学院、华中师范大学等。
❖第四类、牙医、理疗师被取代的概率只有2.1%。
在伦理上,技术要求上都是难以被取代的,尤其是牙医。
相关专业:口腔医学。
推荐院校:四川大学、中国医科大学、武汉大学等。
❖第五类、建筑师被取代的概率只有1.8%。
建筑师的工作立足于创意、审美、建筑理念等等,这些都是人工智能无法模仿的。
相关专业:建筑学、土木工程、城乡规划、风景园林等。
推荐院校:同济大学、清华大学、东南大学、华南理工大学等。
❖第六类、公关被取代的概率只有1.4%。
公关就是典型的强社交工作,需要关怀、说服等,人工智能难以做到。
相关专业:公关关系学。
推荐院校:中山大学、中国传媒大学、复旦大学等。
❖第七类、心理医生
因为机器无法理解人类的情绪。
相应专业:心理学、临床心理学、应用心理学。
推荐院校:北京师范大学、北京大学、华东师范大学、华中师范大大学、武汉大学、中山大学等。
❖第八类、教师
因为人工智能无法与学生很好的互动,也没法解决学生复杂的情况。
相关专业:教育学,各师范专业。
推荐院校:北京师范大学、华东师范大学、华中师范大学、西南大学等。
2、不易被取代的职业专业有什么特点?
❖需要创意
这类工作需要加入创意和情感的,结果难以被量化,或者得出的量化结果十分不稳定。以画家梵高为例,他的画作在他所处的时代并没有得到太多的认可,但随着时间的推移,人们对后印象派越来越认可,梵高的画作也越来越被大众欣赏。不过,即使现在对梵高的认可这么高的情况下,其作品还是受到很多不一样的评价。所以可以看出创意型的工作很难被量化或者评级。
❖社交性强
虽然人工智能在数据处理上有很大的优势,但是分析人类情感却是其一大短板。在与人类的沟通中,人工智能目前能做到的就是在内容库中选择合适的内容与人类交流,而无法根据人类的情感创造出交流内容。
未来,与人沟通、关怀、说服人,能使人信赖、增加人脉等是我们需要加强的地方,所以未来在填报职业,选择职业的时候要根据自身情况,更多考虑前面提到过的安全区和慢变区的专业和职业。
3、人工智能取代概率最高的职业有哪些?
❖电话销售员,工作内容单调、重复迟早是会消亡的。
❖打字员,现在的语音识别技术已经威胁到了速记领域。
❖会计,财务职能机器人方案已经变的很便捷了。
❖保险业务员、银行柜员、政府工作人员等等重复性很高的工作。
前面提到的优化型工作都是容易被取代的。以个人信用评估员为例,他们就是要通过数字将客户近期的商业信誉罗列出来,根据信用评估表一一对应,最终得出信用评分就可以了。这类工作的结果都是可以量化的,而人工智能是处理数据,量化结构的行家,所以这种可量化的工作是容易被取代的。
人工智能时代,如何选择专业?
专家预测,人工智能将在外文翻译上达到一定的水平,2026年能写出高中水平的文章,2027年能驾驶卡车,2030年能从事零售工作,2049年能写出畅销书……这简直是就是要淘汰一大批专业。
那么在这样的情况下,考生们要如何选择专业呢?
1、AI方面
在人工智能火热势头依旧的情况下,AI方面的人才也供不应求。据2018年《第一财经》报道,去年AI硕士应届生的年薪30万元左右,博士生年薪50万。而今年博士生已经拿到80万了。
部分院校已经率先开设了相关专业,比如中国科学院大学就有人工智能技术学院和自动化研究所,清华大学人工智能研究院、华中科技大学-人工智能与自动化学院&人工智能研究院等。
2、延展性强
人工智能的渗透性很强,经济学、医学等都可以与之结合,形成人工智能+X的创新应用。在我国颁布的《新一代人工智能发展规划》里明确提出,要重视人工智能与数学、计算机科学、物理学、心理学、社会科学、法学等专业教育的融合。
3、历史悠久
从上述发展来看,历史悠久的基础学科,如数学、物理学等都是不错的选择。
4、创意/情感
建筑学、教育学、心理学、管理学、护理学等需要情感与创意的专业也可以报考。
改变失业的四条途径?
❖找到人与人工智能最本质的区别,避开重复性、机械性的劳务;
❖提升数字化协作能力,能够借助网络智能平台与他人或者机器人一起办公;
❖培养批判式思维,不要仅仅停留在资料收集整理上,要思考总结;
❖保持终身学习的习惯,保持自己的社交能力、创造能力。
最后,我们想说即使在人工智能渗透各行各业的情况下,只要你有自己的核心技能,就不会被淘汰。欢迎大家到小鹰生涯规划院进行测评和咨询,了解个人天赋技能,能更好更快地找到擅长的领域,合适的专业。
相比焦虑、恐慌,我们更应该拥抱人工智能时代,在人工智能大爆发之前做好准备,从容迎接一切挑战。返回搜狐,查看更多
未来将被AI机器人取代的12个工作|CyberDaily
来源:science
根据这些工作的性质和类型,以下12个工作是AI机器人将来最有可能取代人类的:
1.客户服务主管
客户服务主管不需要高水平的社交或情感情报即可执行。现在,许多公司依靠AI来回答常见问题,解答和客户支持的问题。聊天机器人不仅成为客户互动的重要组成部分,它们还支持许多内部查询等功能。
2.簿记和数据录入
很长时间以来,你可能没有听说过簿记(类似会计)这一职业。在产品周期中引入AI和ML(机器学习)是有意义的,而不是再用人工进行数据输入和簿记。
3.接待员/服务
从长远来看,无论大型酒店还是小型酒店都可以自动办理入住手续,接待员的需求将减少。如今,即使在快餐店,人们也可以通过手机平板或标签下订单。随着AI的介绍,机器人很有可能会处理订购和其他相关功能。
4.校对
尽管在音调,理解和其他方面,编辑是一项更为复杂的工作,但校对要简单得多。可以通过不同的应用程序轻松地自动检测语法错误,句子结构和其他错误。例如,语法是专业人士为此目的使用的最著名的应用程序之一。
5.制造业和制药工作
这个领域可能是人们害怕AI会取代工作的最广泛的领域。当今天生产的大多数商品的生产过程已经机械化时,操作方面也可以由AI处理。
即使在制药实验室中,机器人也可以与科学家合作,提供更加安全的环境。科学家们将不再使自己的生命受到威胁。
6.零售服务
自动化服务已经逐渐取代了从事销售方式的人们。从专注于自动订购和付款选项的几家商家开始,AI也会很快涉足其中。
机器人正在取代许多购物集团中的零售商工作,以了解客户的消费模式。此外,对AI机器的高级数据分析还显示了客户将来可能会对其他产品感兴趣的产品。
7.快递服务
人工智能已经给交付行业带来了许多社会和经济变化,它简化了各种物流和供应链功能。无人机和机器人已经在接管快递服务。除了制造业之外,未来几年机器人自动化的兴起也将对运输业造成最大的影响。
8.医生
我们已经目睹了机器人外科医生在全球范围内执行关键操作,完全取代我们只是时间问题。与人类同行相比,机器人医生将为患者提供更准确,更有效的治疗方法。由于采取了更多的无菌措施并且没有人为错误的余地,因此感染的机会也更少了。(CyberDaily认为,可能是迟早的事情,但是医生不只是治疗的价值,关于医患之间的心理需要,机器人暂时是无法取代的。
9.士兵
军事专业人员确信,未来的战场将由无需不断监督就能遵循命令的机器人组成。在军事行动中,机器人被大量用于各种任务,例如监视,情报等。
最近,英国军方负责人表示:“到2030年,自主机器人可能很快构成英国军队的四分之一。”
10.出租车和公交车司机
该部门完全自动化的可能性为98%。自动驾驶汽车已经在这里,不久之后,全自动驾驶汽车将接管我们。根据《洛杉矶时报》的报道,在未来十年内,自动驾驶卡车将取代170万美国卡车司机。
11.市场研究分析师
研究分析师对于每个组织都至关重要,他们进行市场研究以提高其业务绩效。具有AI功能的机器人由于其提供的全面数据而在该领域越来越受欢迎。
12.保安人员
人工智能在物理安全领域取得了长足的进步。例如,Yelp的安全机器人可以使用其高清摄像头检查建筑物。它还具有定向麦克风和红外传感器,可以检测任何可疑活动。未来有84%的机会AI将完全自动化该领域。
随着人们越来越依赖于这些功能的技术,对于未来的工作,人为介入将是多余的。但是,对于每个有工作的人来说,未来看起来都暗淡无光吗?
*本文由CyberDaily编辑VKi编译,转载或联系请私信后台。
VKi|CyberDaily编辑,挖掘脑机接口、人工智能及机器人等科技资讯故事。
-未来已来,只是分布不均匀-