图像识别技术的原理
人类是怎么识别的?当我们看到一个东西,大脑会迅速判断是不是见过这个东西或者类似的东西。这个过程有点儿像搜索,我们把看到的东西和记忆中相同或相类的东西进行匹配,从而识别它。机器的图像识别也是类似的,通过分类并提取重要特征而排除多余的信息来识别图像。这就是最大的原理,看起来一点儿都不复杂对不对?
期初人工智能的先驱们也觉得这挺简单,然鹅……
那是1966年的夏天,人工智能之父Minsky给学生布置了一个暑假作业:要求学生通过编写一个程序,让计算机告诉我们它通过摄像头看到了什么。于是一大票人从此走上了图像识别的不归路,我想当时学生们的内心肯定是这样的:
毕竟,50多年过去了,这个作业还不能说真正做完……
那么,完成作业的方法是如何一步步升级的呢?
1970s-1980s到了上世纪七八十年代,Minsky布置的作业算是有了些眉目。现代电子计算机的出现,让计算机有机会尝试回答出它看到了什么东西。
研究人员首先从人类看东西的方法中获得借鉴。当时人们普遍认为,人类能看到并理解事物是因为通过两只眼睛可以立体地观察事物(现在看来当然是极大的误解……)。因此要想让计算机理解它所看到的图像,必须先将事物的三维结构从二维的图像中恢复出来,这就是所谓的“三维重构”的方法。
人眼三维效果示意图(图片来自网络)另一个灵感是,人们认为人之所以能识别出一个苹果,是因为人们已经有了先验知识:苹果是红色的、圆的、表面光滑的。如果给机器也建立一个这样的知识库,让机器将看到的图像与之匹配,是否可以让机器识别乃至理解它所看到的东西呢,这是所谓的“先验知识库”的方法。
先验知识分解这套方法只能够提取少数基本特征,实用性当然不高,只能用在某些光学字符识别、工件识别、显微/航空图片的识别等。
1990s到了上世纪九十年代,图像处理硬件技术有了飞速进步,人们也开始尝试不同的算法,包括统计方法和局部特征描述符的引入,使得计算机视觉技术取得了更大的发展,并开始广泛应用于工业领域。
在“先验知识库”的方法中,事物的形状、颜色、表面纹理等特征受到视角和观察环境所影响,在不同角度、不同光线、不同遮挡的情况下会产生变化。因此,研究者的新方法是,通过局部特征的识别来判断事物,对事物建立一个局部特征索引,即使视角或观察环境发生变化,也能比较准确地匹配上。
局部特征索引示意图2000s进入21世纪,得益于互联网兴起和数码相机出现带来的海量数据,加之机器学习方法的广泛应用,计算机视觉发展迅速。以往许多基于规则的处理方式,都被机器学习所替代:机器自动从海量数据中总结归纳物体的特征,然后进行识别和判断。
这一阶段涌现出了非常多的应用,包括典型的相机人脸检测、安防人脸识别、车牌识别等等。数据的积累还诞生了许多评测数据集,比如权威的人脸识别和人脸比对识别的平台——FDDB和LFW等,其中最有影响力的是ImageNet,包含1400万张已标注的图片,划分在上万个类别里。
基于机器学习的图像识别流程示意2010以后到了2010年以后,借助于深度学习的力量,计算机视觉技术得到了爆发增长和产业化。出现了神经网络图像识别,这就是目前比较新的一种图像识别技术了。
它是怎么工作的,我在《财富》杂志上见过一张简明的示意图,把它汉化过来给大家看,算是一目了然了:
来源:http://fortune.com再举一个医疗影像的图像识别案例,也异曲同工,就是下面这张腾讯觅影对早期肺癌的筛查流程图:
腾讯觅影对早期肺癌的筛查流程觅影系统会先基于腾讯深度学习技术,对数十万张肺部CT影像数据进行学习分析,获得精准定位可疑结节的能力,实现对良恶性判别,从而帮助提高医生诊断效率和准确率。
通过深度神经网络,各类视觉识别的任务精度都得到了大幅提升。在全球最权威的计算机视觉竞赛ILSVR上,千类物体识别错误率在2011年时还高达25.8%,从2012年引入深度学习之后,后续4年的错误率分别达到了16.4%、11.7%、6.7%、3.7%,出现了显著突破。现在,人脸识别甚至能做到误判率低于百万分之一。
归根结底,机器的图像识别和人类的图像识别原理相近,过程也大同小异。只是技术的进步让机器不但能像人类一样认花认草认物认人,还开始拥有超越人类的识别能力。
比如,我非常期待技术大牛能赶紧开发出口红色号识别软件!!!女:看看我和昨天有什么不同?我:嗯……好……好像没什么不同……女:我换了一支口红呀!你是眼睛瞎了吗?!!我:哦女友的口红啊,请放过我的肉眼…………
口红的色号可视化。来源:Github作者:@羡辙啊,差点忘了,我还没有女朋友。内牛满面.gif
.
图像识别的原理和应用:从基础知识到实际案例
图像识别的原理和应用:从基础知识到实际案例
图像识别是一种利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对象的技术。图像识别是人工智能和计算机视觉的一个重要分支,它在各个领域都有广泛的应用,如遥感、通讯、军事、公安、医学、机器人等。
图像识别的基本过程可以分为以下几个步骤:
信息获取:通过传感器,将光或声音等信息转化为电信号,形成数字图像或波形。预处理:对原始数据进行一些操作,如二值化、平滑、变换、增强、恢复、滤波等,以提高图像质量和减少噪声。特征提取和选择:从预处理后的数据中提取出能够反映目标本质的特征,如边缘、纹理、颜色、形状等,并选择最有代表性和区分性的特征作为输入。分类器设计:根据特征空间中的数据分布,设计合适的分类器,如线性分类器、支持向量机、神经网络等,并通过训练数据确定分类器的参数。分类决策:将待识别的数据输入分类器,根据分类器的输出结果进行判断和标注。图像识别的应用可以分为以下几个方面:
遥感图像识别:利用航空或卫星拍摄的图像,进行地形地质探测、资源调查、灾害预测、环境监测、军事目标识别等。通讯领域的应用:利用图像传输、电视电话、电视会议等技术,实现远程通信和协作。军事、公安刑侦等领域的应用:利用图像识别技术,进行现场照片、指纹、手迹、印章、人像等的处理和辨识,以及历史文字和图片档案的修复和管理等。生物医学图像识别:利用CT、MRI等医学影像技术,进行临床诊断和病理研究,以及基因组学、蛋白质组学等生物信息学领域的分析。机器视觉领域的应用:利用摄像头或其他传感器,使机器人或其他智能设备具有视觉功能,实现自主导航、目标跟踪、场景理解等任务。图像识别是一个不断发展和创新的领域,随着计算机硬件和软件的进步,以及大量数据和算法模型的出现,图像识别技术将会更加智能化和高效化,并在更多领域发挥重要作用。
AI中的图像识别技术的原理及过程
伴随着图像处理技术的飞速发展,推动了图像识别技术的产生和发展,并逐渐成为人工智能领域中重要的组成部分,并广泛地运用于面部识别、指纹识别、医疗诊断等等领域中,发挥重要作用。
这也给学生思考课题给了更多的空间,今天小编就来浅谈热门课题方向中图像识别技术,希望给学生更多的启发!
图像识别技术概述
图像识别技术的含义
图像识别是人工智能的一个重要领域,是指利用计算机对图像进行处理、分析和理解,以识别各种不同模式的目标和对像的技术。一般工业使用中,采用工业相机拍摄图片,然后再利用软件根据图片灰阶差做进一步识别处理。
在具体应用实践中,特别识别除了要弄清识别的对象具有是什么样的物体外,还应该明确其所在的的位置和姿态。当前图像识别已经被广泛应用到各个领域中,例如交通领域中的车牌号识别、交通标志识别、军事领域中的飞行物识别、地形勘察、安全领域中的指纹识别、人脸识别等。
图像识别技术的原理
图像识别原理主要是需处理具有一定复杂性的信息,处理技术并不是随意出现在计算机中,主要是根据一些医学研究人员的实践,结合计算机程序对相关内容模拟并予以实现。该技术的计算机实现与人类对图像识别的基本原理基本类似,在人类感觉及视觉等方面只是计算机不会受到任何因素的影响。人类不只是结合储存在脑海中的图像记忆进行识别,而是利用图像特征对其分类,再利用各类别特征识别出图片。计算机也采用同样的图像识别原理,采用对图像重要特征的分类和提取,并有效排除无用的多余特征,进而使图像识别得以实现。有时计算机对上述特征的提取比较明显,有时就比较普通,这将对计算机图像识别的效率产生较大影响。
图像识别技术的过程
由于图像识别技术的产生是基于人工智能的基础上,所以计算机图像识别的过程与人脑识别图像的过程大体一致,归纳起来,该过程主要包括4个步骤:
1是获取信息,主要是指将声音和光等信息通过传感器向电信号转换,也就是对识别对象的基本信息进行获取,并将其向计算机可识别的信息转换;
2是信息预处理,主要是指采用去噪、变换及平滑等操作对图像进行处理,基于此使图像的重要特点提高;
3是抽取及选择特征,主要是指在模式识别中,抽取及选择图像特征,概括而言就是识别图像具有种类多样的特点,如采用一定方式分离,就要识别图像的特征,获取特征也被称为特征抽取;
4是设计分类器及分类决策,其中设计分类器就是根据训练对识别规则进行制定,基于此识别规则能够得到特征的主要种类,进而使图像识别的不断提高辨识率,此后再通过识别特殊特征,最终实现对图像的评价和确认。
图像识别技术的常见形式
首先图像识别的发展经历了三个阶段:文字识别、数字图像处理与识别、物体识别。
文字识别的研究是从1950年开始的,一般是识别字母、数字和符号,从印刷文字识别到手写文字识别,应用非常广泛。
数字图像处理和识别的研究开始于1965年。数字图像与模拟图像相比具有存储,传输方便可压缩、传输过程中不易失真、处理方便等巨大优势,这些都为图像识别技术的发展提供了强大的动力。
物体的识别主要指的是对三维世界的客体及环境的感知和认识,属于高级的计算机视觉范畴。它是以数字图像处理与识别为基础的结合人工智能、系统学等学科的研究方向,其研究成果被广泛应用在各种工业及探测机器人上。
随着计算机及信息技术的迅速发展,图像识别技术的应用逐渐扩大到诸多领域,尤其是在面部及指纹识别、卫星云图识别及临床医疗诊断等多个领域日益发挥着重要作用。通常图像识别技术主要是指采用计算机按照既定目标对捕获的系统前端图片进行处理,在日常生活中图像识别技术的应用也十分普遍,比如车牌捕捉、商品条码识别及手写识别等。随着该技术的逐渐发展并不断完善,未来将具有更加广泛的应用领域。
基于神经网络的图像识别技术
目前,基于神经网络的图像识别是一种比较新型的技术,是以传统图像识别方式为基础,有效融合神经网络算法。在此,神经网络主要是指人工神经网络,换而言之就是本文中的神经网络不是动物体的神经网络,而主要是指人类采用人工模拟动物神经网络方式的一种神经网络。针对基于神经网络的图像识别技术,目前,在基于神经网络的图像识别技术中,遗传算法有效结合BP神经网络是最经典的一种模型,该模型可在诸多领域中进行应用。诸如智能汽车监控中采用的拍照识别技术,若有汽车从该位置经过时,检测设备将产生相应的反应,检测设备启动图像采集装置,获取汽车正反面的特征图像,在对车牌字符进行识别的过程中,就采用了基于神经网络和模糊匹配的两类算法。
基于非线性降维的图像识别技术
采用计算机识别图像是基于高维形式的一种识别技术,不管原始图片的分辨率如何,该图片产生的数据通常都具有多维性特征,这在一定程度上增大了计算机识别的难度。为使计算机的图像识别性能更为高效,采用随图像降维方法就是一种最直接而有效的方法。一般情况下,可对降维划分为非线性降维与线性降维两类,比如最普遍的线性降维方式就是主成分分与线性奇异分析等,该方式的特点是简单、理解更容易等,再对数据集合采用线性降维方式处理求解的投影图像使该数据集合的低维最优。
在信息技术中作为近年来新兴的图像识别技术已广泛应用于众多应用领域,随着信息技术的日新月异,图像识别技术也得到十分迅猛的发展。在众多社会领域中,有效应用图像识别技术将使社会与经济价值得到充分发挥。