博舍

智能制造发展的三个阶段:数字化、网络化、智能化 人工智能发展的三个阶段是什么

智能制造发展的三个阶段:数字化、网络化、智能化

图1企业内部信息化

与此同时企业还有一个上游供应链和下游社会关系的问题,上游包括原材料、零部件、装备和人员招聘等,下游则与销售、银行、客户关系等相关联。这些属于企业的外部信息化问题。

企业的内部业务和外部业务,构成了企业信息化最基本的内涵。企业信息化最早就是从数字化开始的。计算机刚刚发明的时候,本来是做科学计算的,很快就被用来做业务处理,提升管理效果。这是一个从下往上发展的过程,开始是做一些数据处理系统,如财务管理,包括一些统计报表处理;随后,逐渐上升到管理层,也就是开发管理信息系统(MIS),从财务管理、人事管理,到生产管理,一层层往上走;最后,上升到了决策层和开发决策信息系统(DSS)。企业信息化,一开始就是处在数字化时期。

数字化起步

然而,利用计算机来改造企业的生产装备,实际上比管理信息系统起步还要早。1952年,即商用电子计算机发明的第二年,美国就有一家公司设计了一套数控装置,开发了第一台三坐标数控铣床。尽管这个铣床体积很大,造价也很高,但是开辟了一个数字控制的新时代。1958年,美国研制出第一台加工中心。这意味着,计算机改变制造业的时代,正式拉开了帷幕。随后,随着第一个微处理芯片的发明,各种各样、数以亿计的嵌入式系统开始嵌入到各种装备、各种产品当中去。制造业开始走向以数字制造技术为核心的计算机控制时代,当时国内叫做机电一体化。“机电一体化”这个提法没有完全点到问题的本质,那就是计算机控制。

可以看到,计算机系统很早就开始赋予各种制造装备以智能。如果按照前面智能的定义的话,那么智能制造这个问题,可以说很早就被提出来了。在整个信息化对制造业的改造过程当中,是工业软件支撑了企业数字化的发展,扮演了一个非常关键的角色。

最近电视台有一个关于中国制造业的讨论会,其中,关于“中国制造业还有什么不能制造?”的问题,提了十个方面,唯独没有提到工业软件。殊不知,中国制造业体量世界第一,占世界制造业的份额20%强,但是,中国的工业软件现在90%以上依靠进口,稍微复杂一点的,都不是国产。而且,中国工业软件的市场份额,仅占世界工业软件市场份额的1.7%。一个20%的制造业大国只占1.7%的份额,足以说明中国工业的“体质”太弱。看上去,大家对于这个问题的认识,还是存在着比较大的偏差。

其实早在上世纪70年代,就可以看到数字化对传统工业的改造蓬勃发展。特别是在1974年,第五代使用微处理芯片和半导体存储器的计算机数控装置研制成功以后,从生产装备的角度来看,发展非常迅速。拿数控机床来讲,从一轴到三轴到五轴到七轴,对基于信息化的工业化产生了革命性的影响。还有各种各样的计算机辅助系统,从辅助制图CAD、到计算机辅助工程仿真CAE、到计算机辅助制造CAM等,都对制造业的现代化产生了深远的影响,完全改变了人们对现代化的工业化的认识。

后来,随着计算机技术的发展,出现了全三维数字化和数字仿真。工业数字化向高端方向发展。企业从接订单开始,一直到最后的产品交付,全流程完全依赖计算机软件的控制和支撑。

网络化崛起

上个世纪90年代初互联网开始在全球普及,企业的网络化随之也快速发展。在互联网没有普及应用之前,基本上所有的企业都是采用客户服务器(C/S)的架构,但客户服务器只能解决本地域的联网问题。互联网兴起之后,异地可以联网,企业也很快开始走向网络化。

除了应用互联网之外,企业的网络化有两个主要的方向,一个就是内部网,将企业内部各个部门和下属单位所有的信息系统全部连在一个网上,不管这些部门是在北京,还是在印度或墨西哥。这样极大地提高了企业内部业务的运行效率和有效性。当然,只是实现了信息和数据的交换,还没有做到智能化。

另外一个是外部网。企业的外部联系,全部通过互联网进行。也就是说,把企业内部网的一部分向外部合作单位开放,求得横向打通。比方说生产汽车的,会把生产计划向上游的座椅工厂开放,后者可以进入企业内部网络,了解相关部门的生产进度,以便准确、及时供货。企业跟银行连通之后,只要座椅被汽车制造厂验收,银行就会自动打款给上游供应商。这样,就做到了外部信息系统的一体化。

互联网带来的制造和生产的网络化,正是基于内部网和外部网实现。这个可以看做是早期的“互联网+制造”的核心内涵。可以说“互联网+制造”实际上始于上世纪90年代。

制造业网络化带来的重大技术突破,至少表现在以下三个方面。

第一个就是关联设计系统。在虚拟设计与制造的环境下,网络可以支持成百上千个在线用户同时进行实时设计,使得一个系统或者一台装备的总体、子系统之间的三维设计结果相互关联。IBM早期大量发展计算机辅助设计的一个根本动力,就是数字化图纸可以通过网上传送,可以在全世界任何一个IBM的工厂,生产所设计的零部件。当时,新产品的设计速度加快了16倍,产品更改和更新的速度提高了数百倍。“互联网+”为制造能力的提升开辟了一个难以想象的巨大空间,对企业来讲是一个全新的竞争优势。

第二个是网络化协同平台,网络化带来的不仅仅是大家交换信息,而且可以带来工程人员的协同工作。一些大的企业,如波音公司,率先建立了自己非常强大的网络化协同平台。2000年9月以波音、洛克希德?马丁、雷神、BAE及R&R为代表的美英国防航空巨头,发起组建了大名鼎鼎的Exostar,探索国防航空行业的供应链网络协同。目前,通过Exostar进行供应链管理和协同的有六大主制造商,涵盖16000个不同规模的专业供应商。随后,欧洲国防航空行业的四巨头,空中客车、达索航空、赛峰和泰雷兹,也跟随美国竞争对手的脚步,发起设立了一个属于欧洲国防航空工业的网络化协同制造平台BoostAeroSpace,于2011年正式对行业内客户提供服务。

第三个是全三维标注技术,任何一个产品只要把三维的图做出来,零部件的图纸就可以利用计算机软件和系统自然而然地分解和生成。这就使得企业得以形成单一的数据源管理。美国国防部和航空航天近几年非常重视的数字主线(DigitalThread),也正是这样一种技术的发展和延伸。

然而,不管是关联设计也好,网络化协同平台也好,全三维标注也好,背后的根本支撑,其实并不是网络,而是工业软件。这一切,都是依靠各种各样的工业软件来支撑的。今天大家讨论的中国还不能生产的工业产品,可能很重要的原因就是没有相应的工业软件支撑的制造设备。集成电路有很多难以突破的核心技术。其中,集成电路的设计就是重要的一环。高端集成电路的设计图纸,人工是画不出来的,是靠计算机辅助设计软件画出来的。没有最先进的这种软件,就不可能设计出最先进的集成电路。如果国外只卖给我们前二代、前三代的设计软件,那么中国也就只能去设计前二代、前三代的相关产品。工业软件的重要性由此可见一斑。

智能化发展

企业智能化的发展,可以回溯到上个世纪六十年代初。通过图2的制造业智能化发展,可以看到制造业如何从数字化走到网络化,再走到智能化。

图2:制造业智能化的发展史

可以看到制造业的智能化,实际上跟数字化基本上是同步的,不过在早期,只是单机、单个装备而已。像CAE这种非常复杂的软件,需要把计算、工程知识和人类的经验,都融合在里面。因此工业软件并不简单是软件,而是一门学问。只有学计算机软件的工程师,是设计不出先进的工业软件的。就智能化而言,从数据处理的角度来看,业务智能(BusinessIntelligence)也是很重要的一个分支。

过去几十年中国信息化的发展有两个不足之处。一个网络化的内向性问题,很多企业只做了内部网,几乎没有做外部网,这种情况与我们的国情有关。第二个就是业务智能的使用在中国发展非常缓慢,这可能是因为“拍脑袋做决策”已经成为习惯。

现在炒得比较多的概念就是人工智能,其中最热门的是深度学习和机器学习。这方面的发展主要是基于两个条件:超强的计算能力和充沛的大数据集。现在,一方面是计算机的运转速度很快,存储量也很大;另外就是很多重要的数据可以收集上来处理。如语音识别、图像识别,都不是今天才搞起来的。早在上世纪60年代初,中科院自动化所就开展了模式识别中的研究。但在当时,数据既算不过来,也存不过来。因此,70年代以后人工智能的动静就不大了。这几年人工智能又开始热起来,是因为数据量大了,计算机算的快了。当然,人工智能不仅仅是深度学习和机器学习,比方说人脑的模拟等,人工智能比较高级的发展阶段,还将有更大的发展。

智能化实际上是依托于计算科学,而不仅仅是计算机科学。美国国家总统信息技术委员会在2005年专门就“计算科学”的重要意义给时任总统小布什写过一个报告,其中讲到计算科学是由三个不同的元素组成的:计算机与信息科学、建模与模拟软件和计算的基础设施,这三点缺一不可。

在计算科学意义上的智能化,实际上包含四个基本的要素:模型、算法、软件和数据。研究任何一个问题,必须首先要把物理问题的数学模型构造出来;之后需要有一套模型计算的算法方法,例如各种微分方程和代数方程的求解;需要形成可以按算法重复执行计算的软件;而在计算的时候,则需要大量的数据处理和分析。如果只是做了信息的采集、存储、处理、检索和利用,这个不是智能的系统,而只是一个简单的信息系统;即使把它们都连成网络了,仍然只是一个联网的信息系统,而不是一个智能的系统。因此,判定一个系统是否是真正的、智能的系统,一定要从这四个方面去评估。很多地方搞智慧城市、搞智能制造,如果需要仔细推敲其真伪,最好的衡量的方法,就是利用这把具有四个维度的尺子。

周宏仁国家信息化专家咨询委员会常务副主任

本文节选自环球新工业杂志2017年第12期

--END--

声明:此文转载或改编于网络,由《纺织服装产业数字化》公众号整理分享给大家,仅供学习使用,不得用于商用。版权归原作者,如涉及版权,请联系我们(cpsiii@qq.com)删除。返回搜狐,查看更多

神经网络发展的三个阶段,人工神经网络的发展

1、人工神经网络的发展历史

1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络得到了进一步发展,更完善的神经网络模型被提出,其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究,加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐振理论(ART网)、自组织映射、认知机网络,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。1984年,他又提出了连续时间Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究,1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。1986年进行认知微观结构地研究,提出了并行分布处理的理论。1986年,Rumelhart,Hinton,Williams发展了BP算法。Rumelhart和McClelland出版了《Paralleldistributionprocessing:explorationsinthemicrostructuresofcognition》。迄今,BP算法已被用于解决大量实际问题。1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。1988年,Broomhead和Lowe用径向基函数(Radialbasisfunction,RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。90年代初,Vapnik等提出了支持向量机(Supportvectormachines,SVM)和VC(Vapnik-Chervonenkis)维数的概念。人工神经网络的研究受到了各个发达国家的重视,美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变为全球行为。在日本的“真实世界计算(RWC)”项目中,人工智能的研究成了一个重要的组成部分。

谷歌人工智能写作项目:小发猫

2、人工智能分为几个阶段

说起当下热议的人工智能,不得不提到风光无二的AlphaGo 人工神经网络发展经历几个阶段。AlphaGo 战胜世界围棋冠军李世石,引起了人类对人工智能的兴趣。而人工智能的概念,其实早有提出。

就人工智能的发展阶段而言,可以分为三个阶段。

1)1956年-1980年

1956年达特茅斯会提出了人工智能这一词汇,标志着人工智能正式诞生。

而这个阶段,人工智能已经在问题求解以及语言处理等方面取得了一些进步。但是,当时的技术条件并不能实现预期的目标。到了70年代,投资者和政府开始收缩人工智能经费,人工智能开始进入低谷期。

2)1980年-1993年

80年代,人工智能专家系统崭露头角,商业价值被广泛接受,人工智能研究重新兴起。但并没有持续多久,就被生产出来的个人电脑在性能上完全碾压,远远超过使用了AI技术的LISP机,AI再一次经历了寒冬。

3)1993年-至今

之后以神经网络技术为代表的AI技术逐步发展,人工智能开始进入缓慢发展期。1997年深蓝战胜国际象棋世界冠军卡斯帕罗夫,使得AI再次被热议。而随着现在科技的快速发展,硬件成本不断降低,数据量积累不断增大,AI技术不断成熟,人工智能又开始进入爆发期。各种人工智能产品开始如雨后春笋,不断的发展壮大起来。

3、人工智能的发展,主要经历哪几个阶段?

1孕育阶段这个阶段主要是指1956年以前。自古以来,人们就一直试图用各种机器来代替人的部分脑力劳动,以提高人们征服自然的能力,其中对人工智能的产生、发展有重大影响的主要研究成果包括:早在公元前384-公元前322年,伟大的哲学家亚里士多德(Aristotle)就在他的名著《工具论》中提出了形式逻辑的一些主要定律,他提出的三段论至今仍是演绎推理的基本依据。英国哲学家培根(F.Bacon)曾系统地提出了归纳法,还提出了“知识就是力量”的警句。这对于研究人类的思维过程,以及自20世纪70年代人工智能转向以知识为中心的研究都产生了重要影响。德国数学家和哲学家莱布尼茨(G.W.Leibniz)提出了万能符号和推理计算的思想,他认为可以建立一种通用的符号语言以及在此符号语言上进行推理的演算。这一思想不仅为数理逻辑的产生和发展奠定了基础,而且是现代机器思维设计思想的萌芽。英国逻辑学家布尔(C.Boole)致力于使思维规律形式化和实现机械化,并创立了布尔代数。他在《思维法则》一书中首次用符号语言描述了思维活动的基本推理法则。英国数学家图灵(A.M.Turing)在1936年提出了一种理想计算机的数学模型,即图灵机,为后来电子数字计算机的问世奠定了理论基础。美国神经生理学家麦克洛奇(W.McCulloch)与匹兹(W.Pitts)在1943年建成了第一个神经网络模型(M-P模型),开创了微观人工智能的研究领域,为后来人工神经网络的研究奠定了基础。美国爱荷华州立大学的阿塔纳索夫(Atanasoff)教授和他的研究生贝瑞(Berry)在1937年至1941年间开发的世界上第一台电子计算机“阿塔纳索夫-贝瑞计算机(Atanasoff-BerryComputer,ABC)”为人工智能的研究奠定了物质基础。需要说明的是:世界上第一台计算机不是许多书上所说的由美国的莫克利和埃柯特在1946年发明。这是美国历史上一桩著名的公案。由上面的发展过程可以看出,人工智能的产生和发展绝不是偶然的,它是科学技术发展的必然产物。2形成阶段这个阶段主要是指1956-1969年。1956年夏季,由当时达特茅斯大学的年轻数学助教、现任斯坦福大学教授麦卡锡(J.MeCarthy)联合哈佛大学年轻数学和神经学家、麻省理工学院教授明斯基(M.L.Minsky),IBM公司信息研究中心负责人洛切斯特(N.Rochester),贝尔实验室信息部数学研究员香农(C.E.Shannon)共同发起,邀请普林斯顿大学的莫尔(T.Moore)和IBM公司的塞缪尔(A.L.Samuel)、麻省理工学院的塞尔夫里奇(O.Selfridge)和索罗莫夫(R.Solomonff)以及兰德(RAND)公司和卡内基梅隆大学的纽厄尔(A.Newell)、西蒙(H.A.Simon)等在美国达特茅斯大学召开了一次为时两个月的学术研讨会,讨论关于机器智能的问题。会上经麦卡锡提议正式采用了“人工智能”这一术语。麦卡锡因而被称为人工智能之父。这是一次具有历史意义的重要会议,它标志着人工智能作为一门新兴学科正式诞生了。此后,美国形成了多个人工智能研究组织,如纽厄尔和西蒙的Carnegie-RAND协作组,明斯基和麦卡锡的MIT研究组,塞缪尔的IBM工程研究组等。自这次会议之后的10多年间,人工智能的研究在机器学习、定理证明、模式识别、问题求解、专家系统及人工智能语言等方面都取得了许多引人注目的成就,例如:在机器学习方面,1957年Rosenblatt研制成功了感知机。这是一种将神经元用于识别的系统,它的学习功能引起了广泛的兴趣,推动了连接机制的研究,但人们很快发现了感知机的局限性。在定理证明方面,美籍华人数理逻辑学家王浩于1958年在IBM-704机器上用3~5min证明了《数学原理》中有关命题演算的全部定理(220条),并且还证明了谓词演算中150条定理的85%,1965年鲁宾逊(J.A.Robinson)提出了归结原理,为定理的机器证明作出了突破性的贡献。在模式识别方面,1959年塞尔夫里奇推出了一个模式识别程序,1965年罗伯特(Roberts)编制出了可分辨积木构造的程序。在问题求解方面,1960年纽厄尔等人通过心理学试验总结出了人们求解问题的思维规律,编制了通用问题求解程序(GeneralProblemSolver,GPS),可以用来求解11种不同类型的问题。在专家系统方面,美国斯坦福大学的费根鲍姆(E.A.Feigenbaum)领导的研究小组自1965年开始专家系统DENDRAL的研究,1968年完成并投入使用。该专家系统能根据质谱仪的实验,通过分析推理决定化合物的分子结构,其分析能力已接近甚至超过有关化学专家的水平,在美、英等国得到了实际的应用。该专家系统的研制成功不仅为人们提供了一个实用的专家系统,而且对知识表示、存储、获取、推理及利用等技术是一次非常有益的探索,为以后专家系统的建造树立了榜样,对人工智能的发展产生了深刻的影响,其意义远远超过了系统本身在实用上所创造的价值。在人工智能语言方面,1960年麦卡锡研制出了人工智能语言(ListProcessing,LISP),成为建造专家系统的重要工具。1969年成立的国际人工智能联合会议(InternationalJointConferencesOnArtificialIntelligence,IJCAI)是人工智能发展史上一个重要的里程碑,它标志着人工智能这门新兴学科已经得到了世界的肯定和认可。1970年创刊的国际性人工智能杂志《ArtificialIntelligence》对推动人工智能的发展,促进研究者们的交流起到了重要的作用。3发展阶段这个阶段主要是指1970年以后。进入20世纪70年代,许多国家都开展了人工智能的研究,涌现了大量的研究成果。例如,1972年法国马赛大学的科麦瑞尔(A.Comerauer)提出并实现了逻辑程序设计语言PROLOG;斯坦福大学的肖特利夫(E.H.Shorliffe)等人从1972年开始研制用于诊断和治疗感染性疾病的专家系统MYCIN。但是,和其他新兴学科的发展一样,人工智能的发展道路也不是平坦的。例如,机器翻译的研究没有像人们最初想象的那么容易。当时人们总以为只要一部双向词典及一些词法知识就可以实现两种语言文字间的互译。后来发现机器翻译远非这么简单。实际上,由机器翻译出来的文字有时会出现十分荒谬的错误。例如,当把“眼不见,心不烦”的英语句子“Outofsight,outofmind”。翻译成俄语变成“又瞎又疯”;当把“心有余而力不足”的英语句子“Thespiritiswillingbutthefleshisweak”翻译成俄语,然后再翻译回来时竟变成了“Thewineisgoodbutthemeatisspoiled”,即“酒是好的,但肉变质了”;当把“光阴似箭”的英语句子“Timeflieslikeanarrow”翻译成日语,然后再翻译回来的时候,竟变成了“苍蝇喜欢箭”。由于机器翻译出现的这些问题,1960年美国政府顾问委员会的一份报告裁定:“还不存在通用的科学文本机器翻译,也没有很近的实现前景。”因此,英国、美国当时中断了对大部分机器翻译项目的资助。在其他方面,如问题求解、神经网络、机器学习等,也都遇到了困难,使人工智能的研究一时陷入了困境。人工智能研究的先驱者们认真反思,总结前一段研究的经验和教训。1977年费根鲍姆在第五届国际人工智能联合会议上提出了“知识工程”的概念,对以知识为基础的智能系统的研究与建造起到了重要的作用。大多数人接受了费根鲍姆关于以知识为中心展开人工智能研究的观点。从此,人工智能的研究又迎来了蓬勃发展的以知识为中心的新时期。这个时期中,专家系统的研究在多种领域中取得了重大突破,各种不同功能、不同类型的专家系统如雨后春笋般地建立起来,产生了巨大的经济效益及社会效益。例如,地矿勘探专家系统PROSPECTOR拥有15种矿藏知识,能根据岩石标本及地质勘探数据对矿藏资源进行估计和预测,能对矿床分布、储藏量、品位及开采价值进行推断,制定合理的开采方案。应用该系统成功地找到了超亿美元的钼矿。专家系统MYCIN能识别51种病菌,正确地处理23种抗菌素,可协助医生诊断、治疗细菌感染性血液病,为患者提供最佳处方。该系统成功地处理了数百个病例,并通过了严格的测试,显示出了较高的医疗水平。美国DEC公司的专家系统XCON能根据用户要求确定计算机的配置。由专家做这项工作一般需要3小时,而该系统只需要0.5分钟,速度提高了360倍。DEC公司还建立了另外一些专家系统,由此产生的净收益每年超过4000万美元。信用卡认证辅助决策专家系统AmericanExpress能够防止不应有的损失,据说每年可节省2700万美元左右。专家系统的成功,使人们越来越清楚地认识到知识是智能的基础,对人工智能的研究必须以知识为中心来进行。对知识的表示、利用及获取等的研究取得了较大的进展,特别是对不确定性知识的表示与推理取得了突破,建立了主观Bayes理论、确定性理论、证据理论等,对人工智能中模式识别、自然语言理解等领域的发展提供了支持,解决了许多理论及技术上的问题。人工智能在博弈中的成功应用也举世瞩目。人们对博弈的研究一直抱有极大的兴趣,早在1956年人工智能刚刚作为一门学科问世时,塞缪尔就研制出了跳棋程序。这个程序能从棋谱中学习,也能从下棋实践中提高棋艺。1959年它击败了塞缪尔本人,1962年又击败了一个州的冠军。1991年8月在悉尼举行的第12届国际人工智能联合会议上,IBM公司研制的“深思”(DeepThought)计算机系统就与澳大利亚象棋冠军约翰森(D.Johansen)举行了一场人机对抗赛,结果以1:1平局告终。1957年西蒙曾预测10年内计算机可以击败人类的世界冠军。虽然在10年内没有实现,但40年后深蓝计算机击败国际象棋棋王卡斯帕罗夫(Kasparov),仅仅比预测迟了30年。1996年2月10日至17日,为了纪念世界上第一台电子计算机诞生50周年,美国IBM公司出巨资邀请国际象棋棋王卡斯帕罗夫与IBM公司的深蓝计算机系统进行了六局的“人机大战”。这场比赛被人们称为“人脑与电脑的世界决战”。参赛的双方分别代表了人脑和电脑的世界最高水平。当时的深蓝是一台运算速度达每秒1亿次的超级计算机。第一盘,深蓝就给卡斯帕罗夫一个下马威,赢了这位世界冠军,给世界棋坛以极大的震动。但卡斯帕罗夫总结经验,稳扎稳打,在剩下的五盘中赢三盘,平两盘,最后以总比分4:2获胜。一年后,即1997年5月3日至11日,深蓝再次挑战卡斯帕罗夫。这时,深蓝是一台拥有32个处理器和强大并行计算能力的RS/6000SP/2的超级计算机,运算速度达每秒2亿次。计算机里存储了百余年来世界顶尖棋手的棋局,5月3日棋王卡斯帕罗夫首战击败深蓝,5月4日深蓝扳回一盘,之后双方战平三局。双方的决胜局于5月11日拉开了帷幕,卡斯帕罗夫在这盘比赛中仅仅走了19步便放弃了抵抗,比赛用时只有1小时多一点。这样,深蓝最终以3.5:2.5的总比分赢得这场举世瞩目的“人机大战”的胜利。深蓝的胜利表明了人工智能所达到的成就。尽管它的棋路还远非真正地对人类思维方式的模拟,但它已经向世人说明,电脑能够以人类远远不能企及的速度和准确性,实现属于人类思维的大量任务。深蓝精湛的残局战略使观战的国际象棋专家们大为惊讶。卡斯帕罗夫也表示:“这场比赛中有许多新的发现,其中之一就是计算机有时也可以走出人性化的棋步。在一定程度上,我不能不赞扬这台机器,因为它对盘势因素有着深刻的理解,我认为这是一项杰出的科学成就。”因为这场胜利,IBM的股票升值为180亿美元。4人工智能的学派根据前面的论述,我们知道要理解人工智能就要研究如何在一般的意义上定义知识,可惜的是,准确定义知识也是个十分复杂的事情。严格来说,人们最早使用的知识定义是柏拉图在《泰阿泰德篇》中给出的,即“被证实的、真的和被相信的陈述”(Justifiedtruebelief,简称JTB条件)。然而,这个延续了两千多年的定义在1963年被哲学家盖梯尔否定了。盖梯尔提出了一个著名的悖论(简称“盖梯尔悖论”)。该悖论说明柏拉图给出的知识定文存在严重缺陷。虽然后来人们给出了很多知识的替代定义,但直到现在仍然没有定论。但关于知识,至少有一点是明确的,那就是知识的基本单位是概念。精通掌握任何一门知识,必须从这门知识的基本概念开始学习。而知识自身也是一个概念。因此,如何定义一个概念,对于人工智能具有非常重要的意义。给出一个定义看似简单,实际上是非常难的,因为经常会涉及自指的性质(自指:词性的转化——由谓词性转化为体词性,语义则保持不变)。一旦涉及自指,就会出现非常多的问题,很多的语义悖论都出于概念自指。自指与转指这一对概念最早出自朱德熙先生的《自指与转指》(《方言》1983年第一期,《朱德熙文集》第三卷)。陆俭明先生在《八十年代中国语法研究》中(第98页)说:“自指和转指的区别在于,自指单纯是词性的转化-由谓词性转化为体词性,语义则保持不变;转指则不仅词性转化,语义也发生变化,尤指行为动作或性质本身转化为指与行为动作或性质相关的事物。”举例:①教书的来了(“教书的”是转指,转指教书的“人”);教书的时候要认真(“教书的”语义没变,是自指)。②Unplug一词的原意为“不使用(电源)插座”,是自指;常用来转指为不使用电子乐器的唱歌。③colored在表示havingcolour(着色)时是自指。colored在表示有色人种时,就是转指。④rich,富有的,是自指。therich,富人,是转指。知识本身也是一个概念。据此,人工智能的问题就变成了如下三个问题:一、如何定义(或者表示)一个概念、如何学习一个概念、如何应用一个概念。因此对概念进行深人研究就非常必要了。那么,如何定义一个概念呢?简单起见,这里先讨论最为简单的经典概念。经典概念的定义由三部分组成:第一部分是概念的符号表示,即概念的名称,说明这个概念叫什么,简称概念名;第二部分是概念的内涵表示,由命题来表示,命题就是能判断真假的陈述句。第三部分是概念的外延表示,由经典集合来表示,用来说明与概念对应的实际对象是哪些。举一个常见经典概念的例子——素数(primenumber),其内涵表示是一个命题,即只能够被1和自身整除的自然数。概念有什么作用呢?或者说概念定义的各个组成部分有什么作用呢?经典概念定义的三部分各有作用,且彼此不能互相代替。具体来说,概念有三个作用或功能,要掌握一个概念,必须清楚其三个功能。第一个功能是概念的指物功能,即指向客观世界的对象,表示客观世界的对象的可观测性。对象的可观测性是指对象对于人或者仪器的知觉感知特性,不依赖于人的主观感受。举一个《阿Q正传》里的例子:那赵家的狗,何以看我两眼呢?句子中“赵家的狗”应该是指现实世界当中的一条真正的狗。但概念的指物功能有时不一定能够实现,有些概念其设想存在的对象在现实世界并不存在,例如“鬼”。第二个功能是指心功能,即指向人心智世界里的对象,代表心智世界里的对象表示。鲁迅有一篇著名的文章《论丧家的资本家的乏走狗》,显然,这个“狗”不是现实世界的狗,只是他心智世界中的狗,即心里的狗(在客观世界,梁实秋先生显然无论如何不是狗)。概念的指心功能一定存在。如果对于某一个人,一个概念的指心功能没有实现,则该词对于该人不可见,简单地说,该人不理解该概念。最后一个功能是指名功能,即指向认知世界或者符号世界表示对象的符号名称,这些符号名称组成各种语言。最著名的例子是乔姆斯基的“colorlessgreenideassleepfuriously”,这句话翻译过来是“无色的绿色思想在狂怒地休息”。这句话没有什么意思,但是完全符合语法,纯粹是在语义符号世界里,即仅仅指向符号世界而已。当然也有另外,“鸳鸯两字怎生书”指的就是“鸳鸯”这两个字组成的名字。一般情形下,概念的指名功能依赖于不同的语言系统或者符号系统,由人类所创造,属于认知世界。同一个概念在不同的符号系统里,概念名不一定相同,如汉语称“雨”,英语称“rain”。根据波普尔的三个世界理论,认知世界、物理世界与心理世界虽然相关,但各不相同。因此,一个概念的三个功能虽然彼此相关,也各不相同。更重要的是,人类文明发展至今,这三个功能不断发展,彼此都越来越复杂,但概念的三个功能并没有改变。在现实生活中,如果你要了解一个概念,就需要知道这个概念的三个功能:要知道概念的名字,也要知道概念所指的对象(可能是物理世界)。更要在自己的心智世界里具有该概念的形象(或者图像)。如果只有一个,那是不行的。知道了概念的三个功能之后,就可以理解人工智能的三个学派以及各学派之间的关系。人工智能也是一个概念,而要使一个概念成为现实,自然要实现概念的三个功能。人工智能的三个学派关注于如何才能让机器具有人工智能,并根据概念的不同功能给出了不同的研究路线。专注于实现AI指名功能的人工智能学派成为符号主义,专注于实现AI指心功能的人工智能学派称为连接主义,专注于实现AI指物功能的人工智能学派成为行为主义。1.符号主义符号主义的代表人物是Simon与Newell,他们提出了物理符号系统假设,即只要在符号计算上实现了相应的功能,那么在现实世界就实现了对应的功能,这是智能的充分必要条件。因此,符号主义认为,只要在机器上是正确的,现实世界就是正确的。说得更通俗一点,指名对了,指物自然正确。在哲学上,关于物理符号系统假设也有一个著名的思想实验——本章1.1.3节中提到的图灵测试。图灵测试要解决的问题就是如何判断一台机器是否具有智能。图灵测试将智能的表现完全限定在指名功能里。但马少平教授的故事已经说明,只在指名功能里实现了概念的功能,并不能说明一定实现了概念的指物功能。实际上,根据指名与指物的不同,哲学家约翰·塞尔勒专门设计了一个思想实验用来批判图灵测试,这就是著名的中文屋实验。中文屋实验明确说明,即使符号主义成功了,这全是符号的计算跟现实世界也不一定搭界,即完全实现指名功能也不见得具有智能。这是哲学上对符号主义的一个正式批评,明确指出了按照符号主义实现的人工智能不等同于人的智能。虽然如此,符号主义在人工智能研究中依然扮演了重要角色,其早期工作的主要成就体现在机器证明和知识表示上。在机器证明方面,早期Simon与Newell做出了重要的贡献,王浩、吴文俊等华人也得出了很重要的结果。机器证明以后,符号主义最重要的成就是专家系统和知识工程,最著名的学者就是Feigenbaum。如果认为沿着这条路就可以实现全部智能,显然存在问题。日本第五代智能机就是沿着知识工程这条路走的,其后来的失败在现在看来是完全合乎逻辑的。实现符号主义面临的观实挑成主要有三个。第一个是概念的组合爆炸问题。每个人掌握的基本概念大约有5万个,其形成的组合概念却是无穷的。因为常识难以穷尽,推理步骤可以无穷。第二个是命题的组合悖论问题。两个都是合理的命题,合起来就变成了没法判断真假的句子了,比如著名的柯里悖论(Curry’sParadox)(1942)。第三个也是最难的问题,即经典概念在实际生活当中是很难得到的,知识也难以提取。上述三个问题成了符号主义发展的瓶颈。2.连接主义连接主义认为大脑是一切智能的基础,主要关注于大脑神经元及其连接机制,试图发现大脑的结构及其处理信息的机制、揭示人类智能的本质机理,进而在机器上实现相应的模拟。前面已经指出知识是智能的基础,而概念是知识的基本单元,因此连接主义实际上主要关注于概念的心智表示以及如何在计算机上实现其心智表示,这对应着概念的指心功能。2016年发表在Nature上的一篇学术论文揭示了大脑语义地图的存在性,文章指出概念都可以在每个脑区找到对应的表示区,确确实实概念的心智表示是存在的。因此,连接主义也有其坚实的物理基础。连接主义学派的早期代表人物有麦克洛克、皮茨、霍普菲尔德等。按照这条路,连接主义认为可以实现完全的人工智能。对此,哲学家普特南设计了著名的“缸中之脑实验”,可以看作是对连接主义的一个哲学批判。缸中之脑实验描述如下:一个人(可以假设是你自己)被邪恶科学家进行了手术,脑被切下来并放在存有营养液的缸中。脑的神经末梢被连接在计算机上,同时计算机按照程序向脑传递信息。对于这个人来说,人、物体、天空都存在,神经感觉等都可以输入,这个大脑还可以被输入、截取记忆,比如截取掉大脑手术的记忆,然后输入他可能经历的各种环境、日常生活,甚至可以被输入代码,“感觉”到自己正在阅读这一段有趣而荒唐的文字。缸中之脑实验说明即使连接主义实现了,指心没有问题,但指物依然存在严重问题。因此,连接主义实现的人工智能也不等同于人的智能。尽管如此,连接主义仍是目前最为大众所知的一条AI实现路线。在围棋上,采用了深度学习技术的AlphaGo战胜了李世石,之后又战胜了柯洁。在机器翻译上,深度学习技术已经超过了人的翻译水平。在语音识别和图像识别上,深度学习也已经达到了实用水准。客观地说,深度学习的研究成就已经取得了工业级的进展。但是,这并不意味着连接主义就可以实现人的智能。更重要的是,即使要实现完全的连接主义,也面临极大的挑战。到现在为止,人们并不清楚人脑表示概念的机制,也不清楚人脑中概念的具体表示形式表示方式和组合方式等。现在的神经网络与深度学习实际上与人脑的真正机制距离尚远。3.行为主义行为主义假设智能取决于感知和行动,不需要知识、表示和推理,只需要将智能行为表现出来就好,即只要能实现指物功能就可以认为具有智能了。这一学派的早期代表作是Brooks的六足爬行机器人。对此,哲学家普特南也设计了一个思想实验,可以看作是对行为主义的哲学批判,这就是“完美伪装者和斯巴达人”。完美伪装者可以根据外在的需求进行完美的表演,需要哭的时候可以哭得让人撕心裂肺,需要笑的时候可以笑得让人兴高采烈,但是其内心可能始终冷静如常。斯巴达人则相反,无论其内心是激动万分还是心冷似铁,其外在总是一副泰山崩于前而色不变的表情。完美伪装者和斯巴达人的外在表现都与内心没有联系,这样的智能如何从外在行为进行测试?因此,行为主义路线实现的人工智能也不等同于人的智能。对于行为主义路线,其面临的最大实现困难可以用莫拉维克悖论来说明。所谓莫拉维克悖论,是指对计算机来说困难的问题是简单的、简单的问题是困难的,最难以复制的反而是人类技能中那些无意识的技能。目前,模拟人类的行动技能面临很大挑战。比如,在网上看到波士顿动力公司人形机器人可以做高难度的后空翻动作,大狗机器人可以在任何地形负重前行,其行动能力似乎非常强。但是这些机器人都有一个大的缺点一能耗过高、噪音过大。大狗机器人原是美国军方订购的产品,但因为大狗机器人开动时的声音在十里之外都能听到,大大提高了其成为一个活靶子的可能性,使其在战场上几乎没有实用价值,美国军方最终放弃了采购。

4、人工智能发展的三个阶段知识期

人工智能的发展大概分为三个阶段。第一个阶段,我们称之为计算智能,即让计算能存会算:机器开始像人类一样会计算,传递信息。例如分布式计算、神经网络。它的价值是能够帮助人类存储和快速处理海量数据,是感知和认知的基础。第二个阶段,我们称之为感知智能,即让计算机能听会看:机器开始看懂和听懂,做出判断,采取一些简单行动。例如,可以识别人脸的摄像头、可以听懂语言的音箱。它的价值是能够帮助人类高效地完成“看”和“听”相关的工作第二个阶段,我们称之为认知智能,即让计算机能理解会思考:机器开始像人类一样能理解、思考与决策。例如,完全独立驾驶的无人驾驶汽车、自主行动的机器人。它的价值是可以全面辅助或替代人类部分工作。目前人工智能仍处于初级阶段,我们仍然处于感知智能的初级阶段。人工智能技术发展的趋势将由目前相对成熟的领域出发,在不同领域进行尝试与实践,未来可能会在非监督学习、知识推理等方向有所突破。

5、有人可以介绍一下什么是"神经网络"吗?

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。目前使用得最广泛的是T.Koholen的定义,即"神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。"如果我们将人脑神经信息活动的特点与现行冯·诺依曼计算机的工作方式进行比较,就可以看出人脑具有以下鲜明特征:1.巨量并行性。在冯·诺依曼机中,信息处理的方式是集中、串行的,即所有的程序指令都必须调到CPU中后再一条一条地执行。而人在识别一幅图像或作出一项决策时,存在于脑中的多方面的知识和经验会同时并发作用以迅速作出解答。据研究,人脑中约有多达10^(10)~10^(11)数量级的神经元,每一个神经元具有103数量级的连接,这就提供了巨大的存储容量,在需要时能以很高的反应速度作出判断。2.信息处理和存储单元结合在一起。在冯·诺依曼机中,存储内容和存储地址是分开的,必须先找出存储器的地址,然后才能查出所存储的内容。一旦存储器发生了硬件故障,存储器中存储的所有信息就都将受到毁坏。而人脑神经元既有信息处理能力又有存储功能,所以它在进行回忆时不仅不用先找存储地址再调出所存内容,而且可以由一部分内容恢复全部内容。当发生"硬件"故障(例如头部受伤)时,并不是所有存储的信息都失效,而是仅有被损坏得最严重的那部分信息丢失。3.自组织自学习功能。冯·诺依曼机没有主动学习能力和自适应能力,它只能不折不扣地按照人们已经编制好的程序步骤来进行相应的数值计算或逻辑计算。而人脑能够通过内部自组织、自学习的能力,不断地适应外界环境,从而可以有效地处理各种模拟的、模糊的或随机的问题。神经网络研究的主要发展过程大致可分为四个阶段:1.第一阶段是在五十年代中期之前。西班牙解剖学家Cajal于十九世纪末创立了神经元学说,该学说认为神经元的形状呈两极,其细胞体和树突从其他神经元接受冲动,而轴索则将信号向远离细胞体的方向传递。在他之后发明的各种染色技术和微电极技术不断提供了有关神经元的主要特征及其电学性质。1943年,美国的心理学家W.S.McCulloch和数学家W.A.Pitts在论文《神经活动中所蕴含思想的逻辑活动》中,提出了一个非常简单的神经元模型,即M-P模型。该模型将神经元当作一个功能逻辑器件来对待,从而开创了神经网络模型的理论研究。1949年,心理学家D.O.Hebb写了一本题为《行为的组织》的书,在这本书中他提出了神经元之间连接强度变化的规则,即后来所谓的Hebb学习法则。Hebb写道:"当神经细胞A的轴突足够靠近细胞B并能使之兴奋时,如果A重复或持续地激发B,那么这两个细胞或其中一个细胞上必然有某种生长或代谢过程上的变化,这种变化使A激活B的效率有所增加。"简单地说,就是如果两个神经元都处于兴奋状态,那么它们之间的突触连接强度将会得到增强。五十年代初,生理学家Hodykin和数学家Huxley在研究神经细胞膜等效电路时,将膜上离子的迁移变化分别等效为可变的Na+电阻和K+电阻,从而建立了著名的Hodykin-Huxley方程。这些先驱者的工作激发了许多学者从事这一领域的研究,从而为神经计算的出现打下了基础。2.第二阶段从五十年代中期到六十年代末。1958年,F.Rosenblatt等人研制出了历史上第一个具有学习型神经网络特点的模式识别装置,即代号为MarkI的感知机(Perceptron),这一重大事件是神经网络研究进入第二阶段的标志。对于最简单的没有中间层的感知机,Rosenblatt证明了一种学习算法的收敛性,这种学习算法通过迭代地改变连接权来使网络执行预期的计算。稍后于Rosenblatt,B.Widrow等人创造出了一种不同类型的会学习的神经网络处理单元,即自适应线性元件Adaline,并且还为Adaline找出了一种有力的学习规则,这个规则至今仍被广泛应用。Widrow还建立了第一家神经计算机硬件公司,并在六十年代中期实际生产商用神经计算机和神经计算机软件。除Rosenblatt和Widrow外,在这个阶段还有许多人在神经计算的结构和实现思想方面作出了很大的贡献。例如,K.Steinbuch研究了称为学习矩阵的一种二进制联想网络结构及其硬件实现。N.Nilsson于1965年出版的《机器学习》一书对这一时期的活动作了总结。3.第三阶段从六十年代末到八十年代初。第三阶段开始的标志是1969年M.Minsky和S.Papert所著的《感知机》一书的出版。该书对单层神经网络进行了深入分析,并且从数学上证明了这种网络功能有限,甚至不能解决象"异或"这样的简单逻辑运算问题。同时,他们还发现有许多模式是不能用单层网络训练的,而多层网络是否可行还很值得怀疑。由于M.Minsky在人工智能领域中的巨大威望,他在论著中作出的悲观结论给当时神经网络沿感知机方向的研究泼了一盆冷水。在《感知机》一书出版后,美国联邦基金有15年之久没有资助神经网络方面的研究工作,前苏联也取消了几项有前途的研究计划。但是,即使在这个低潮期里,仍有一些研究者继续从事神经网络的研究工作,如美国波士顿大学的S.Grossberg、芬兰赫尔辛基技术大学的T.Kohonen以及日本东京大学的甘利俊一等人。他们坚持不懈的工作为神经网络研究的复兴开辟了道路。4.第四阶段从八十年代初至今。1982年,美国加州理工学院的生物物理学家J.J.Hopfield采用全互连型神经网络模型,利用所定义的计算能量函数,成功地求解了计算复杂度为NP完全型的旅行商问题(TravellingSalesmanProblem,简称TSP)。这项突破性进展标志着神经网络方面的研究进入了第四阶段,也是蓬勃发展的阶段。Hopfield模型提出后,许多研究者力图扩展该模型,使之更接近人脑的功能特性。1983年,T.Sejnowski和G.Hinton提出了"隐单元"的概念,并且研制出了Boltzmann机。日本的福岛邦房在Rosenblatt的感知机的基础上,增加隐层单元,构造出了可以实现联想学习的"认知机"。Kohonen应用3000个阈器件构造神经网络实现了二维网络的联想式学习功能。1986年,D.Rumelhart和J.McClelland出版了具有轰动性的著作《并行分布处理-认知微结构的探索》,该书的问世宣告神经网络的研究进入了高潮。1987年,首届国际神经网络大会在圣地亚哥召开,国际神经网络联合会(INNS)成立。随后INNS创办了刊物《JournalNeuralNetworks》,其他专业杂志如《NeuralComputation》,《IEEETransactionsonNeuralNetworks》,《InternationalJournalofNeuralSystems》等也纷纷问世。世界上许多著名大学相继宣布成立神经计算研究所并制订有关教育计划,许多国家也陆续成立了神经网络学会,并召开了多种地区性、国际性会议,优秀论著、重大成果不断涌现。今天,在经过多年的准备与探索之后,神经网络的研究工作已进入了决定性的阶段。日本、美国及西欧各国均制订了有关的研究规划。日本制订了一个"人类前沿科学计划"。这项计划为期15-20年,仅初期投资就超过了1万亿日元。在该计划中,神经网络和脑功能的研究占有重要地位,因为所谓"人类前沿科学"首先指的就是有关人类大脑以及通过借鉴人脑而研制新一代计算机的科学领域。在美国,神经网络的研究得到了军方的强有力的支持。美国国防部投资4亿美元,由国防部高级研究计划局(DAPRA)制订了一个8年研究计划,并成立了相应的组织和指导委员会。同时,海军研究办公室(ONR)、空军科研办公室(AFOSR)等也纷纷投入巨额资金进行神经网络的研究。DARPA认为神经网络"看来是解决机器智能的唯一希望",并认为"这是一项比原子弹工程更重要的技术"。美国国家科学基金会(NSF)、国家航空航天局(NASA)等政府机构对神经网络的发展也都非常重视,它们以不同的形式支持了众多的研究课题。欧共体也制订了相应的研究计划。在其ESPRIT计划中,就有一个项目是"神经网络在欧洲工业中的应用",除了英、德两国的原子能机构外,还有多个欧洲大公司卷进这个研究项目,如英国航天航空公司、德国西门子公司等。此外,西欧一些国家还有自己的研究计划,如德国从1988年就开始进行一个叫作"神经信息论"的研究计划。我国从1986年开始,先后召开了多次非正式的神经网络研讨会。1990年12月,由中国计算机学会、电子学会、人工智能学会、自动化学会、通信学会、物理学会、生物物理学会和心理学会等八个学会联合在北京召开了"中国神经网络首届学术会议",从而开创了我国神经网络研究的新纪元。

6、神经网络算法的人工神经网络

人工神经网络(ArtificialNeuralNetworks,ANN)系统是20世纪40年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信息存储、良好的自组织自学习能力等特点。BP(BackPropagation)算法又称为误差反向传播算法,是人工神经网络中的一种监督式的学习算法。BP神经网络算法在理论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。而且网络的中间层数、各层的处理单元数及网络的学习系数等参数可根据具体情况设定,灵活性很大,在优化、信号处理与模式识别、智能控制、故障诊断等许多领域都有着广泛的应用前景。人工神经元的研究起源于脑神经元学说。19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。人们认识到复杂的神经系统是由数目繁多的神经元组合而成。大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动。神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为输出端的突起,它只有一个。树突是细胞体的延伸部分,它由细胞体发出后逐渐变细,全长各部位都可与其他神经元的轴突末梢相互联系,形成所谓“突触”。在突触处两神经元并未连通,它只是发生信息传递功能的结合部,联系界面之间间隙约为(15~50)×10米。突触可分为兴奋性与抑制性两种类型,它相应于神经元之间耦合的极性。每个神经元的突触数目正常,最高可达10个。各神经元之间的连接强度和极性有所不同,并且都可调整、基于这一特性,人脑具有存储信息的功能。利用大量神经元相互联接组成人工神经网络可显示出人的大脑的某些特征。人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂。人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对于写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。所以网络学习的准则应该是:如果网络作出错误的的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图象模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能作出正确的判断。如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此操作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够作出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。(1)人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。如盲人的听觉和触觉非常灵敏;聋哑人善于运用手势;训练有素的运动员可以表现出非凡的运动技巧等等。普通计算机的功能取决于程序中给出的知识和能力。显然,对于智能活动要通过总结编制程序将十分困难。人工神经网络也具有初步的自适应与自组织能力。在学习或训练过程中改变突触权重值,以适应周围环境的要求。同一网络因学习方式及内容不同可具有不同的功能。人工神经网络是一个具有学习能力的系统,可以发展知识,以致超过设计者原有的知识水平。通常,它的学习训练方式可分为两种,一种是有监督或称有导师的学习,这时利用给定的样本标准进行分类或模仿;另一种是无监督学习或称无为导师学习,这时,只规定学习方式或某些规则,则具体的学习内容随系统所处环境(即输入信号情况)而异,系统可以自动发现环境特征和规律性,具有更近似人脑的功能。(2)泛化能力泛化能力指对没有训练过的样本,有很好的预测能力和控制能力。特别是,当存在一些有噪声的样本,网络具备很好的预测能力。(3)非线性映射能力当对系统对于设计人员来说,很透彻或者很清楚时,则一般利用数值分析,偏微分方程等数学工具建立精确的数学模型,但当对系统很复杂,或者系统未知,系统信息量很少时,建立精确的数学模型很困难时,神经网络的非线性映射能力则表现出优势,因为它不需要对系统进行透彻的了解,但是同时能达到输入与输出的映射关系,这就大大简化设计的难度。(4)高度并行性并行性具有一定的争议性。承认具有并行性理由:神经网络是根据人的大脑而抽象出来的数学模型,由于人可以同时做一些事,所以从功能的模拟角度上看,神经网络也应具备很强的并行性。多少年以来,人们从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度企图认识并解答上述问题。在寻找上述问题答案的研究过程中,这些年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“神经网络”。神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动。不同领域的科学家又从各自学科的兴趣与特色出发,提出不同的问题,从不同的角度进行研究。下面将人工神经网络与通用的计算机工作特点来对比一下:若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。元器件的局部损坏及程序中的微小错误都可能引起严重的失常。心理学家和认知科学家研究神经网络的目的在于探索人脑加工、储存和搜索信息的机制,弄清人脑功能的机理,建立人类认知过程的微结构理论。生物学、医学、脑科学专家试图通过神经网络的研究推动脑科学向定量、精确和理论化体系发展,同时也寄希望于临床医学的新突破;信息处理和计算机科学家研究这一问题的目的在于寻求新的途径以解决不能解决或解决起来有极大困难的大量问题,构造更加逼近人脑功能的新一代计算机。人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异感这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。60年代末期,人工神经网络的研究进入了低潮。另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。1985年,Ackley、Hinton和Sejnowski将模拟退火算法应用到神经网络训练中,提出了Boltzmann机,该算法具有逃离极值的优点,但是训练时间需要很长。1986年,Rumelhart、Hinton和Williams提出了多层前馈神经网络的学习算法,即BP算法。它从证明的角度推导算法的正确性,是学习算法有理论依据。从学习算法角度上看,是一个很大的进步。1988年,Broomhead和Lowe第一次提出了径向基网络:RBF网络。总体来说,神经网络经历了从高潮到低谷,再到高潮的阶段,充满曲折的过程。

7、BP神经网络的发展历史

人工神经网络早期的研究工作应追溯至上世纪40年代。下面以时间顺序,以著名的人物或某一方面突出的研究成果为线索,简要介绍人工神经网络的发展历史。1943年,心理学家W·Mcculloch和数理逻辑学家W·Pitts在分析、总结神经元基本特性的基础上首先提出神经元的数学模型。此模型沿用至今,并且直接影响着这一领域研究的进展。因而,他们两人可称为人工神经网络研究的先驱。1945年冯·诺依曼领导的设计小组试制成功存储程序式电子计算机,标志着电子计算机时代的开始。1948年,他在研究工作中比较了人脑结构与存储程序式计算机的根本区别,提出了以简单神经元构成的再生自动机网络结构。但是,由于指令存储式计算机技术的发展非常迅速,迫使他放弃了神经网络研究的新途径,继续投身于指令存储式计算机技术的研究,并在此领域作出了巨大贡献。虽然,冯·诺依曼的名字是与普通计算机联系在一起的,但他也是人工神经网络研究的先驱之一。50年代末,F·Rosenblatt设计制作了“感知机”,它是一种多层的神经网络。这项工作首次把人工神经网络的研究从理论探讨付诸工程实践。当时,世界上许多实验室仿效制作感知机,分别应用于文字识别、声音识别、声纳信号识别以及学习记忆问题的研究。然而,这次人工神经网络的研究高潮未能持续很久,许多人陆续放弃了这方面的研究工作,这是因为当时数字计算机的发展处于全盛时期,许多人误以为数字计算机可以解决人工智能、模式识别、专家系统等方面的一切问题,使感知机的工作得不到重视;其次,当时的电子技术工艺水平比较落后,主要的元件是电子管或晶体管,利用它们制作的神经网络体积庞大,价格昂贵,要制作在规模上与真实的神经网络相似是完全不可能的;另外,在1968年一本名为《感知机》的著作中指出线性感知机功能是有限的,它不能解决如异或这样的基本问题,而且多层网络还不能找到有效的计算方法,这些论点促使大批研究人员对于人工神经网络的前景失去信心。60年代末期,人工神经网络的研究进入了低潮。另外,在60年代初期,Widrow提出了自适应线性元件网络,这是一种连续取值的线性加权求和阈值网络。后来,在此基础上发展了非线性多层自适应网络。当时,这些工作虽未标出神经网络的名称,而实际上就是一种人工神经网络模型。随着人们对感知机兴趣的衰退,神经网络的研究沉寂了相当长的时间。80年代初期,模拟与数字混合的超大规模集成电路制作技术提高到新的水平,完全付诸实用化,此外,数字计算机的发展在若干应用领域遇到困难。这一背景预示,向人工神经网络寻求出路的时机已经成熟。美国的物理学家Hopfield于1982年和1984年在美国科学院院刊上发表了两篇关于人工神经网络研究的论文,引起了巨大的反响。人们重新认识到神经网络的威力以及付诸应用的现实性。随即,一大批学者和研究人员围绕着Hopfield提出的方法展开了进一步的工作,形成了80年代中期以来人工神经网络的研究热潮。

8、人工神经网络,人工神经网络是什么意思

一、人工神经网络的概念人工神经网络(ArtificialNeuralNetwork,ANN)简称神经网络(NN),是基于生物学中神经网络的基本原理,在理解和抽象了人脑结构和外界刺激响应机制后,以网络拓扑知识为理论基础,模拟人脑的神经系统对复杂信息的处理机制的一种数学模型。该模型以并行分布的处理能力、高容错性、智能化和自学习等能力为特征,将信息的加工和存储结合在一起,以其独特的知识表示方式和智能化的自适应学习能力,引起各学科领域的关注。它实际上是一个有大量简单元件相互连接而成的复杂网络,具有高度的非线性,能够进行复杂的逻辑操作和非线性关系实现的系统。神经网络是一种运算模型,由大量的节点(或称神经元)之间相互联接构成。每个节点代表一种特定的输出函数,称为激活函数(activationfunction)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重(weight),神经网络就是通过这种方式来模拟人类的记忆。网络的输出则取决于网络的结构、网络的连接方式、权重和激活函数。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。神经网络的构筑理念是受到生物的神经网络运作启发而产生的。人工神经网络则是把对生物神经网络的认识与数学统计模型相结合,借助数学统计工具来实现。另一方面在人工智能学的人工感知领域,我们通过数学统计学的方法,使神经网络能够具备类似于人的决定能力和简单的判断能力,这种方法是对传统逻辑学演算的进一步延伸。人工神经网络中,神经元处理单元可表示不同的对象,例如特征、字母、概念,或者一些有意义的抽象模式。网络中处理单元的类型分为三类:输入单元、输出单元和隐单元。输入单元接受外部世界的信号与数据;输出单元实现系统处理结果的输出;隐单元是处在输入和输出单元之间,不能由系统外部观察的单元。神经元间的连接权值反映了单元间的连接强度,信息的表示和处理体现在网络处理单元的连接关系中。人工神经网络是一种非程序化、适应性、大脑风格的信息处理,其本质是通过网络的变换和动力学行为得到一种并行分布式的信息处理功能,并在不同程度和层次上模仿人脑神经系统的信息处理功能。神经网络,是一种应用类似于大脑神经突触连接结构进行信息处理的数学模型,它是在人类对自身大脑组织结合和思维机制的认识理解基础之上模拟出来的,它是根植于神经科学、数学、思维科学、人工智能、统计学、物理学、计算机科学以及工程科学的一门技术。二、人工神经网络的发展神经网络的发展有悠久的历史。其发展过程大致可以概括为如下4个阶段。1.第一阶段----启蒙时期(1)、M-P神经网络模型:20世纪40年代,人们就开始了对神经网络的研究。1943年,美国心理学家麦克洛奇(Mcculloch)和数学家皮兹(Pitts)提出了M-P模型,此模型比较简单,但是意义重大。在模型中,通过把神经元看作个功能逻辑器件来实现算法,从此开创了神经网络模型的理论研究。(2)、Hebb规则:1949年,心理学家赫布(Hebb)出版了《TheOrganizationofBehavior》(行为组织学),他在书中提出了突触连接强度可变的假设。这个假设认为学习过程最终发生在神经元之间的突触部位,突触的连接强度随之突触前后神经元的活动而变化。这一假设发展成为后来神经网络中非常著名的Hebb规则。这一法则告诉人们,神经元之间突触的联系强度是可变的,这种可变性是学习和记忆的基础。Hebb法则为构造有学习功能的神经网络模型奠定了基础。(3)、感知器模型:1957年,罗森勃拉特(Rosenblatt)以M-P模型为基础,提出了感知器(Perceptron)模型。感知器模型具有现代神经网络的基本原则,并且它的结构非常符合神经生理学。这是一个具有连续可调权值矢量的MP神经网络模型,经过训练可以达到对一定的输入矢量模式进行分类和识别的目的,它虽然比较简单,却是第一个真正意义上的神经网络。Rosenblatt证明了两层感知器能够对输入进行分类,他还提出了带隐层处理元件的三层感知器这一重要的研究方向。Rosenblatt的神经网络模型包含了一些现代神经计算机的基本原理,从而形成神经网络方法和技术的重大突破。(4)、ADALINE网络模型:1959年,美国著名工程师威德罗(B.Widrow)和霍夫(M.Hoff)等人提出了自适应线性元件(Adaptivelinearelement,简称Adaline)和Widrow-Hoff学习规则(又称最小均方差算法或称δ规则)的神经网络训练方法,并将其应用于实际工程,成为第一个用于解决实际问题的人工神经网络,促进了神经网络的研究应用和发展。ADALINE网络模型是一种连续取值的自适应线性神经元网络模型,可以用于自适应系统。2.第二阶段----低潮时期人工智能的创始人之一Minsky和Papert对以感知器为代表的网络系统的功能及局限性从数学上做了深入研究,于1969年发表了轰动一时《Perceptrons》一书,指出简单的线性感知器的功能是有限的,它无法解决线性不可分的两类样本的分类问题,如简单的线性感知器不可能实现“异或”的逻辑关系等。这一论断给当时人工神经元网络的研究带来沉重的打击。开始了神经网络发展史上长达10年的低潮期。(1)、自组织神经网络SOM模型:1972年,芬兰的KohonenT.教授,提出了自组织神经网络SOM(Self-Organizingfeaturemap)。后来的神经网络主要是根据KohonenT.的工作来实现的。SOM网络是一类无导师学习网络,主要用于模式识别﹑语音识别及分类问题。它采用一种“胜者为王”的竞争学习算法,与先前提出的感知器有很大的不同,同时它的学习训练方式是无指导训练,是一种自组织网络。这种学习训练方式往往是在不知道有哪些分类类型存在时,用作提取分类信息的一种训练。(2)、自适应共振理论ART:1976年,美国Grossberg教授提出了著名的自适应共振理论ART(AdaptiveResonanceTheory),其学习过程具有自组织和自稳定的特征。3.第三阶段----复兴时期(1)、Hopfield模型:1982年,美国物理学家霍普菲尔德(Hopfield)提出了一种离散神经网络,即离散Hopfield网络,从而有力地推动了神经网络的研究。在网络中,它首次将李雅普诺夫(Lyapunov)函数引入其中,后来的研究学者也将Lyapunov函数称为能量函数。证明了网络的稳定性。1984年,Hopfield又提出了一种连续神经网络,将网络中神经元的激活函数由离散型改为连续型。1985年,Hopfield和Tank利用Hopfield神经网络解决了著名的旅行推销商问题(TravellingSalesmanProblem)。Hopfield神经网络是一组非线性微分方程。Hopfield的模型不仅对人工神经网络信息存储和提取功能进行了非线性数学概括,提出了动力方程和学习方程,还对网络算法提供了重要公式和参数,使人工神经网络的构造和学习有了理论指导,在Hopfield模型的影响下,大量学者又激发起研究神经网络的热情,积极投身于这一学术领域中。因为Hopfield神经网络在众多方面具有巨大潜力,所以人们对神经网络的研究十分地重视,更多的人开始了研究神经网络,极大地推动了神经网络的发展。(2)、Boltzmann机模型:1983年,Kirkpatrick等人认识到模拟退火算法可用于NP完全组合优化问题的求解,这种模拟高温物体退火过程来找寻全局最优解的方法最早由Metropli等人1953年提出的。1984年,Hinton与年轻学者Sejnowski等合作提出了大规模并行网络学习机,并明确提出隐单元的概念,这种学习机后来被称为Boltzmann机。Hinton和Sejnowsky利用统计物理学的感念和方法,首次提出的多层网络的学习算法,称为Boltzmann机模型。(3)、BP神经网络模型:1986年,儒默哈特(D.E.Rumelhart)等人在多层神经网络模型的基础上,提出了多层神经网络权值修正的反向传播学习算法----BP算法(ErrorBack-Propagation),解决了多层前向神经网络的学习问题,证明了多层神经网络具有很强的学习能力,它可以完成许多学习任务,解决许多实际问题。(4)、并行分布处理理论:1986年,由Rumelhart和McCkekkand主编的《ParallelDistributedProcessing:ExplorationintheMicrostructuresofCognition》,该书中,他们建立了并行分布处理理论,主要致力于认知的微观研究,同时对具有非线性连续转移函数的多层前馈网络的误差反向传播算法即BP算法进行了详尽的分析,解决了长期以来没有权值调整有效算法的难题。可以求解感知机所不能解决的问题,回答了《Perceptrons》一书中关于神经网络局限性的问题,从实践上证实了人工神经网络有很强的运算能力。(5)、细胞神经网络模型:1988年,Chua和Yang提出了细胞神经网络(CNN)模型,它是一个细胞自动机特性的大规模非线性计算机仿真系统。Kosko建立了双向联想存储模型(BAM),它具有非监督学习能力。(6)、Darwinism模型:Edelman提出的Darwinism模型在90年代初产生了很大的影响,他建立了一种神经网络系统理论。(7)、1988年,Linsker对感知机网络提出了新的自组织理论,并在Shanon信息论的基础上形成了最大互信息理论,从而点燃了基于NN的信息应用理论的光芒。(8)、1988年,Broomhead和Lowe用径向基函数(Radialbasisfunction,RBF)提出分层网络的设计方法,从而将NN的设计与数值分析和线性适应滤波相挂钩。(9)、1991年,Haken把协同引入神经网络,在他的理论框架中,他认为,认知过程是自发的,并断言模式识别过程即是模式形成过程。(10)、1994年,廖晓昕关于细胞神经网络的数学理论与基础的提出,带来了这个领域新的进展。通过拓广神经网络的激活函数类,给出了更一般的时滞细胞神经网络(DCNN)、Hopfield神经网络(HNN)、双向联想记忆网络(BAM)模型。(11)、90年代初,Vapnik等提出了支持向量机(Supportvectormachines,SVM)和VC(Vapnik-Chervonenkis)维数的概念。经过多年的发展,已有上百种的神经网络模型被提出。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇