博舍

智能化空管技术研究与展望 智能化 大数据

智能化空管技术研究与展望

随着航空事业的快速发展,飞行流量急剧增加,空中交通日益复杂,对飞行安全、效率、空管服务品质等提出了更高的要求。传统完全依靠人工经验和技巧进行空域规划配置、流量调控和管制指挥的做法,已不能适应发展的需要,也给空管人员的工作带来很大的负荷和压力,出现“错、忘、漏、低效”现象。空管信息服务也从原来单一地为管制部门服务,扩展到为空管运行管理、机场、航空公司、旅客等提供及时、全面的信息服务。智能化技术在空管中推广应用,将提供更好的共同态势感知,及智能化、自动化辅助决策手段,大大提高空管的安全性和效率,提升空管服务品质。作者分析空管技术发展现状,提出智能化空管概念,介绍智能化空管总体框架,指出智能化空管技术主要研究发展方向,对智能化空管的科学研究和工程应用具有重要的现实意义。

1空管技术发展现状

伴随着全球经济发展、信息技术和通信技术等科技的进步,空管技术水平不断提升,空管运行概念的研究日益深入。1991年,国际民航组织(InternationalCivilAviationOrganization,ICAO)第10次航行大会上通过了新航行系统概念,即通信、导航、监视/空中交通管理(communicationnavigationsurveillance/airtrafficmanagement,CNS/ATM)系统。为了指导CNS/ATM系统的实施,ICAO发布了《全球空中航行计划》[1]。在实施过程中,各国意识到仅有技术是不够的,需要一个运行概念以指导CNS/ATM的实施。2003年,国际民航组织第11次航行会议上明确了全球空管一体化运行概念,将空中交通管理分为空域组织与管理(airspaceorganizationandmanagement,AOM)、需求和容量平衡(demandcapacitybalancing,DCB)、机场运行(aerodromeoperations,AO)、交通同步(trafficsynchronization,TS)、冲突管理(conflictmanagement,CM)、空域用户运行(airspaceuseroperations,AUO)和空管服务提供的管理(servicedeliverymanagement,SDM)7个部分。《全球空中交通管理运行概念》[2]和《空中交通系统全球效能手册》为空中交通管理提供了基本框架。秉承国际民航组织对未来航行系统的构想,2004年欧洲发起了单一欧洲天空空中交通管理研究(singleEuropeanskyairtrafficmanagementresearch,SESAR),2005年美国推出了下一代航空运输系统(nextgenerationairtransportationsystem,NextGen),2007年中国民航提出了新一代空中交通管理系统发展总体框架,2012年ICAO推出了航空系统组块升级计划(aviationsystemblockupgrade,ASBU)。

美国下一代航空运输系统(NextGen)的核心技术包括广播式自动相关监视(automaticdependentsurveillance-broadcast,ADS-B)、数据通信(datacommunications,DataComm)、航路自动化系统现代化(enrouteautomationmodernization,ERAM)、终端自动化系统现代化更新(terminalautomationmodernizationreplacement,TAMR)、NAS语音系统(NASvoicesystem,NVS)和系统广域信息管理(systemwideinformationmanagement,SWIM)等。

欧洲提出的SESAR的目标是重新规划欧洲空域以满足空中交通需求,提高空管系统效能,与2004年相比,2020年空域容量将提升3倍,故减少地面等待和空中延误,既能提高安全性,又对环境的影响减少10%,且使空管服务运行成本降低50%等。SESAR的关键技术涵盖空中交通管理的4个关键领域:高效的机场运行、高级空中交通服务、优化的空中交通网络服务和可靠的空管基础设施。

为了在全球范围内推进新一代空中交通管理系统的实现,ICAO更新了《全球空中航行计划》(第4版),航空系统组块升级计划(ASBU)是其主要组成部分,用于指导各国将新技术合理应用到空管系统现代化建设中。ASBU以运行改进为核心,以现有空管技术和新技术应用为手段,提出了机场运行、全球互用的系统和数据、最佳容量和灵活飞行、高效的飞行轨迹等4个性能提升领域,每个领域由多个提升路径组成,并根据实现阶段分布在4个组块中,共构成52个模块。中国民航已实施了ASBU中的部分内容,并规划了将实施ASBU中的大量内容,开展了ADS-B、陆基增强系统、SWIM、持续下降进近和持续爬升运行等技术的研究。

空管是复杂的人在回路系统,管制员依托空管自动化系统进行指挥,飞行员依托飞机自动化系统进行飞行操控,空地协同配合实现安全高效航空运行。根据人与机器的关系可将空管自动化程度分为初级、中级和高级,如表1所示。

现有空管技术的自动化程度处于不同等级,例如,信息处理和融合处于自动化初级阶段,进离港排序等决策支持处于自动化中级阶段。

表1(Tab.1)表1空管自动化程度Tab.1Automationdegreeofairtrafficcontrol表1空管自动化程度Tab.1Automationdegreeofairtrafficcontrol自动化等级设计理念特色管制员负荷现状初级以人为主,机器为辅信息处理和融合自动处理和融合雷达数据,自动处理飞行情报,自动生成空中态势,短期冲突告警等繁忙时高度紧张,容易出错已实现中级增加决策支持手段空中交通流量管理,进离港排序,空域管理等负荷减轻,提升效能发展中高级机器为主,管制员监控,高级智能化管制员、机长行为的一体化自动监视;机场、空管、航空公司的整体运行协调,多元化空域,有人机和无人机的管理等负荷轻探索规划中

空管自动化的初级阶段以人为主,机器为辅,重点解决空管信息获取与处理问题。空管部门在地面配置了一次和二次监视雷达,在飞机上加装二次雷达应答机,设计和开发出高性能的雷达数据处理系统,实现了程序管制向雷达管制的转变。单雷达系统以其固有的局限性极大地限制了雷达管制效能的提高,因此,采用多雷达联网技术将来自多部雷达的目标位置测量数据进行融合,形成新的、精度更优的目标位置信息。在数据融合中,需要解决航迹校正、航迹关联、航迹数据融合计算等一系列关键技术问题[3–5]。多雷达航迹融合算法采用马赛克算法、加权平均法、卡尔曼滤波算法[6–7]等。随着自动相关监视(ADS)技术的发展,在多雷达联网的基础上应用ADS技术,可实现空中交通的有效管理。ADS航迹与系统航迹的融合采用优选法、加权平均法等方法。除了监视信息外,空管系统处理的另一类重要信息是飞行计划,将飞行计划与雷达航迹关联便于管制员进行指挥和空管系统的实时监控[8]。中期冲突探测与解脱是空中交通管制的重要决策支持工具,是提高空中交通飞行安全和减轻地面管制员工作负荷的一种有效手段,主要有概率型中期冲突探测算法[9]和非概率型中期冲突探测算法[10–11],但此类方法在实际应用中还不太成熟。

随着空中交通流量快速增长,在实施空中交通管理的过程中出现了一个新的课题——空中交通流量管理。空中交通流量管理是在空中交通流量接近或达到空中交通管制可用能力时,预先或适时采取适当措施,保障空中交通最佳地流入或通过相应区域,缓解交通拥挤的管理方法。空中交通流量预测是空中交通流量管理的基础。空中交通流量预测根据预测时间长短分为长期预测、中期预测和短期预测。科学、准确的中长期预测是各级航空决策部门制定发展战略、发展规划的依据,短期流量预测是空中交通网络流有序、畅通和高效的保障。国内外一些学者研究了运用趋势预测法、回归模型预测法[12]、神经网络预测法[13–14]、时间序列法[15]、聚类法[16]、灰色预测[17]等算法进行中长期空中交通流量预测。短期飞行流量预测基于四维航迹预测对空域飞行流量进行预测和统计。空中交通流量管理通过容量和流量匹配实现空中交通供需平衡,国内外一些学者对地面延误程序[18–20]、尾随间隔[21]、改航[22–23]、排序[24–25]等飞行流量调配技术进行了研究。在排序算法的理论研究方面,一些学者提出使用遗传算法[26]、蚁群算法[27]、鱼群算法[28]、粒子群算法[29]等方法进行优化排序调度。在系统研发方面,美国使用交通管理咨询工具(trafficmanagementadvisor,TMA)进行航班排序管理和跑道分配[30]。欧洲主要使用进场管理(arrivalmanagement,AMAN)和离场管理(departuremanagement,DMAN)系统[31–32]。

飞行量的快速增加造成空域使用紧张问题日益突出,对空域管理水平也不断提高。自20世纪80年代以来,空域管理在空域规划、空域运行管理、空域容量评估等关键技术方面的研究不断深入并得到广泛应用。空域规划对航路网络[33]、终端区[34]、管制扇区[35]等空域进行规划设计;空域运行管理对空域分类、运行性能[36]等进行研究;科学、准确的空域容量评估是实施控制交通管理,充分利用空域资源的基础,空域容量评估的方法包括基于计算机仿真模型的评估[37–38]、基于历史统计数据分析的评估、基于数学模型的评估和基于管制员工作负荷的容量评估[39–40]。

虽然空中交通管制、空中交通流量管理、空域管理理念与方法的发展,以及中期冲突探测与解脱、进离港排序、协同决策等技术为空管人员提供了一定辅助决策支持手段,但空管工作对管制员的依赖程度仍然较高,由于人为的“错、忘、漏、低效”影响航空安全运行的事情不能完全避免。1996年,沙特波音747与哈萨克斯坦伊尔62客机在上升/下降中相撞,致400余人死亡。2002年德瑞边境,瑞士空管员指挥失误致俄罗斯图154客机与美航757货机相撞。2016年10月11日,上海虹桥机场由于管制员指挥失误造成两架飞机险些相撞。因此,飞行规模不断增大带来的运行和管理问题既不能完全依靠人工经验和技巧进行管制指挥、流量调控和空域管理,也不能仅靠管理系统规模的不断扩张来解决,亟需将人工智能技术应用到空中交通管理系统中,机器为主、管制员监控,实现高级智能化,达到空管自动化高级程度,适应日益复杂和大量的飞行任务。

2智能化空管概念2.1以深度学习为代表的人工智能

人工智能(artificialintelligence,AI)是研究、开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门多学科交叉的技术科学。在深度学习的推动下,人工智能取得了飞速发展。目前,深度学习成功应用于计算机视觉、语音识别、自然语言处理、人机博弈等多个领域。

2012年,深度学习算法AlexNet赢得了图像分类竞赛ILSVRC(ImageNetlargescalevisualrecognitionchallenge)冠军,GoogleInceptionNet网络获得2014年冠军,ResNet网络获得2015年冠军,这些卷积神经网络结构使深度学习技术在计算机视觉领域取得了突破性成就。深度学习能够更加智能、自动地提取复杂特征,在语音识别、语音合成、语言模型和机器翻译等领域都实现了巨大的技术突破。

深度学习在人机博弈上的突破使得深度学习被大众熟知。2016年,谷歌DeepMind研发的围棋对战程序AlphaGo战胜了人类围棋冠军。AlphaGo中使用了策略网络(policynet)、估值网络(valuenet)和蒙特卡罗树搜索等技术,其中,估值网络通过有监督的深度学习实现,策略网络通过深度强化学习实现[41]。2017年,AlphaGoZero仅使用纯粹的深度强化学习技术和蒙特卡罗树搜索,在很短的时间内击败了AlphaGo,证实了强化学习的强大能力[42]。强化学习可以在复杂的、不确定的环境中学习如何实现既定目标,可以广泛应用到需要做一系列决策的场景中,如机器人控制[43]、地面交通信号灯控制[44–45]等。国内外一些学者研究了强化学习在滑出时间预测[46–47]、地面等待[48]、空中交通流量管理[49–50]等空中交通领域的应用。

2.2智能化空管定义

智能化是指使对象具备灵敏准确的感知功能、正确的思维与判断能力,以及行之有效的执行功能而进行的工作,是信息化的最新阶段。

智能化空管是指适应现在和未来的航空运行概念和程序,充分利用先进的通信、导航、监视、气象分析、网络互联、物联网和信息处理技术,形成整体一致共享的空管运行态势感知,具有智能化的空管全过程预测预判分析、管控和服务能力手段,以全面提高空管管理、运行、指挥和服务智能化水平,并具有环境友好性。智能化空管的内涵体现在空域管理、飞行流量管理、管制指挥、飞行服务和支撑保障体系等领域的信息化,坚持安全第一,优化管理运行业务流程,提高空管运行效率和服务质量,达到“智能化决策、精细化管理、敏捷性运行、预防性安全、个性化服务”的智能化水平。

3智能化空管系统总体框架

智能化空管系统感知层获取信息,网络层传输信息,平台层实现信息存储、信息交换、信息处理等,应用层涵盖管制指挥、空域管理、流量管理、飞行服务、低空/通航、无人机空管保障等空管应用,可视化层提供高效快捷的智能化交互。通过分层原则实现基础平台和空管应用的灵活可扩充,智能化空管系统总体框架如图1所示。

图1(Fig.1)图1智能化空管总体框架Fig.1Architectureofintellectualizedairtrafficmanagement

智能化空管框架的具体组成如下:

1)感知层。感知层为空管安全高效发展提供基础保障,主要包括各类通信、导航、监视、气象、无线、图像采集、射频识别等设施设备。

根据传输信息对象的不同,空管通信分为语音通信和数据通信。语音通信包括:甚高频语音通信、高频语音通信、卫星语音通信等。随着飞行数的激增,语音信息交换频率增加且受到人员语言表达能力等方面的限制,语音通信不易实现航空数据的采集、传输、处理、共享和管理,阻碍了空中交通管理系统自动化的进一步发展。完善语音通信的覆盖,实施数据链通信和地面IP网络技术,推进航空移动通信,提高空管通信保障能力。

导航系统为航空器在远洋/荒漠区域飞行、航路/终端区域飞行和进近着陆区域飞行提供导航信息,确保航空器安全、有序飞行。远洋/荒漠飞行主要依靠星基导航系统和自主导航系统提供导航服务保障。航路/终端区导航由陆基导航系统、星基导航系统和自主导航系统提供空天地立体的导航服务保障。进近着陆导航使用仪表着陆系统、微波着陆系统、卫星导航等保障安全着陆。完善陆基导航设施布局,推进星基导航和无线等新技术的应用,提高空管导航保障能力。

空管监视设备主要有雷达、自动相关监视系统、多点定位监视系统等。雷达包括一次雷达、二次雷达、场面监视雷达、低空监视雷达等。自动相关监视主要包括合同式自动相关监视(automaticdependentsurveillance-contract,ADS-C)和广播式自动相关监视(ADS-B)。其中,ADS-C是点对点监视,多用于洋区和荒漠地区的远程监视;ADS-B为广播式监视,使飞机主动广播自身位置,具有更加广泛的应用前景[51]。多点定位监视系统实时监视机场场面和周围地区的活动目标。各类监视手段都有各自的适用范围,优化监视基础设施布局,提高新技术的应用水平,最大化地利用各类监视技术保证航空器飞行安全。

利用各类气象传感器、气象卫星、气象雷达设备等采集地面和空中气象信息,进行航空危险天气检测,为空管气象保障提供信息源。

空管基础设施利用卫星技术、数据链技术、计算机联网等技术,使用无线、探头、射频识别等新的技术是空中交通管理实现高度自动化、智能化的前提,是保证空中交通安全有序,减轻工作负荷的有效手段。

2)网络层。网络层是传输融合各类空管信息的基础,空管运行信息除了通过传统的空管基础通信网、空管业务数据传输网和地空通信网等进行传输,还可以使用新兴的互联网、移动网络等向公众发布信息。

3)平台层。构建面向智能空管的信息服务平台,主要包括信息存储、信息处理、信息交换、服务调度、应用集成、空管大数据挖掘等。应用系统广域信息管理(SWIM)创建基于标准数据模型和基于互联网协议的航空网,最大限度地提高互用性。研究云计算、智能化大数据挖掘等技术在空管信息服务中的应用,为智能化空管应用层提供支撑。

4)应用层。包括管制指挥、空域管理、流量管理、飞行服务、低空/通航、无人机空管保障等。研究聚类[52]、强化学习、深度学习等机器学习技术在空管运行中的应用,提高应用层智能化水平。

5)可视化层。对空管自动化系统用户界面的智能化进行提升,通过空管门户、虚拟化可视、空管智能化UI、移动空管应用等新方式为空管、机场、航空公司、旅客等各类用户提供高效快捷的智能化交互。

4智能化空管主要研究方向展望4.1智能化空管数据处理

随着空管业务和技术的迅猛发展,数据类型繁多、体量巨大、时效性强的各类空管数据急剧膨胀,如何收集、存储、分析和挖掘这些大规模的数据是智能化空管的一个研究方向。

综合利用航空通信、导航、监视、气象等领域的新技术为空中交通管理提供更完善的基础设施保障。研究机载数据、文本数据、音频数据、视频数据等空管大数据全面、即时、不间断的收集。

使用云计算技术,将空管信息的处理与服务应用由云计算平台处理完成,实现高效的数据处理、传输、交互,提高空管系统的安全性和可靠性,降低数据管理的复杂性和重复性。

使用深度学习、聚类分析等数据挖掘方法从监视、飞行计划、天气、空域、空管设施设备、文本、音频、视频、空管业务操作等数据中充分挖掘出空管决策支持信息,进行航迹预测、安全监控、空管系统效能评估等空管应用。

4.2智能化辅助决策

研究基于深度学习、强化学习等人工智能方法的态势感知、智能推理、决策支持等技术,为空管运行中的冲突管理、空中交通流量管理、规划管理、进离场排序、机场运行等提供决策支持。

1)智能化冲突管理

冲突管理是一套能够对交通流和航空器间隔的管理方式加以完善的完整系统,包括使用地面工具协助管制员评估交通状况和确定合适的间隔,从而把航空器高效、安全地汇聚在一起并保持一定间隔,以及使用机载工具确保飞行机组能够遵循间隔管理指令。研究使用先进的数据计算、人工智能技术高效准确地进行冲突探测,为管制员提供决策支持。

通过智能化的手段进行无人机识别,加强无人机感知与规避能力,研究将无人机与有人机纳入共同空域进行管理的方法和措施,使无人机像有人驾驶航空器一样使用整个空域。

2)智能化空中交通流量管理

随着协同式流量管理的提出,传统的优化模型已很难对复杂系统进行建模,基于多智能体的仿真建模技术在空中交通流量管理领域具有广泛的应用前景。基于大量历史运行数据对大面积航班延误的产生机理、内部规律、影响等进行分析,使用智能化技术建立空中交通流量问题识别模型,对未来空中交通流量发展态势进行推演。使用监督学习、非监督学习、强化学习等人工智能方法建立科学、系统的流量控制策略,对提高空中交通流量管理水平,保障空中交通安全、顺畅、高效运行具有重要实用意义。研究利用协同决策技术、智能仿真技术、智能决策技术为空中交通流量管理提供决策支持是空中交通流量管理的发展方向。

3)智能化规划管理

空管运行中积累了大量的监视数据、飞行计划数据、气象信息、空域结构信息、空域容量、飞行流量调配措施等历史数据,对这些数据运用大数据技术、深度学习、机器学习等人工智能技术进行处理、训练和应用,为长期性空域规划、空域结构和运行程序优化等规划管理提供有力支撑。

4)智能化进离场排序

考虑空域状态、飞机性能、气象条件、管制规则等因素,使用深度学习、数据挖掘等方法对运行数据进行分析,并对进离港航班智能排序,既能提高空域利用率,合理分配使用跑道,又能减少进离场延误,降低航空公司和机场运行成本,减轻管制员工作负荷,且提高管制指挥的安全可靠性。

5)智能化机场运行

机场为航空器运行提供必要的地面设施,运用移动互联网、地理信息系统(geographicinformationsystem,GIS)、智能视频分析、大数据挖掘等技术实现航班运行信息和车辆活动的实时感知、地面资源的智能分配等,充分发挥机场基础设施的作用;通过机场协同决策提升机场运行效率。

4.3空管指挥语音识别

较长时期内空管指挥都是模拟语音为主、数字信息为辅的运行模式。管制员基于连续的管制画面在大脑中形成空中态势,分析航空诸元,通过地空通话安全、高效地指挥飞机。空管语音是空中交通管制的一种重要手段,研究空管指令语音识别、管制指令自然语言理解、管制指令决策输出等,用于自动应答机长、空管指挥安全监控等,具有较大的实用性。

1)自动应答机长

管制模拟机是空中交通管制员养成和在岗培训的一个重要训练工具。训练过程中由专人模拟多名飞行员与管制员进行管制地空通话,执行虚拟飞行目标的操作,以配合管制员的训练。因此,模拟机长的人员工作负荷大,配合训练效率低。将空管语音识别、自然语言理解、语音合成等技术应用于管制模拟机,使用自动应答机长代替模拟机长,实现管制指令自动应答和虚拟飞行目标的自动操控,可以大幅度减少训练负荷,降低训练成本,提高管制模拟机的训练效率。

2)空管指挥安全监控

空中交通管制工作对管制员的依赖性极强,近年来,民航出现的不安全事件较大程度上与陆空通话差错有关。Eurocontrol调查显示飞行员的无线电通话80%不够准确,30%的事故因通信错误造成(其中,受机场环境影响高达50%),23%的高度层偏差和40%的跑道入侵事件也与地空通话质量有关。现有空管系统无法接入陆空通话数据,不能及时获得管制指令信息,因此不能检测空管通话差错。空管语音识别和指令解析是解决上述问题的新思路。

运用深度学习为代表的人工智能技术,以空管语音识别[53–54]、空管指令理解[55–56]为基础,融合空管实时态势智能检测管制指令的不一致、不安全等风险,及时提示管制员进行处置,防止不安全事件发生,可以大幅度减少空管指挥中“人为”不安全风险,降低管制员工作负荷。

4.4空管指挥机器人

利用机器视觉、语音识别、空管信息处理等技术让机器人获得空域态势,具有管制员的感知能力;通过深度学习、强化学习等技术使机器人具备管制规划和推理能力;运用语音控制、语音合成等技术,使机器人具备发布空管指令,填写电子进程单等行动能力。具备了感知、规划、推理、行动等能力的空管指挥机器人能够代替管制员进行空中交通管制,在必要时或在其提出要求时通知管制员,达到空管自动化的高级阶段。

5结论

对现有空中交通管理战略规划、空管运行概念、空管关键技术及空管系统进行分析,针对空管智能化趋势,提出空管智能化总体框架以及重点研究的技术内容,可以为加强智能化空管顶层设计,制定空管智能化总体框架及实施路线图提供参考;展望智能化空管主要研究方向,为早日突破智能化空管关键技术,推广应用到空管管制指挥、飞行流量管理、空域管理等实际运行中,提高空管信息处理、决策支持的智能化水平指明方向,最终实现空管运行安全、效率和服务品质的提升。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇