仿生新材料的应用及展望
甲虫,作为一种人们熟知的生物,早在几十亿年前就已经存在于地球之上。经过漫长的生物演变过程,其前鞘翅结构已进化成为一种具有特殊功能的生物结构。例如,甲虫的鞘翅板三维结构便是一个集伪装与防护相结合的微观结构,它是一个高度进化、质量轻、强度高的生物结构,如图1所示。南京大学Chen等利用秸秆等农业副产物,仿照甲虫的鞘翅结构,研制了一种新型仿生夹层混凝土夹芯板SCBEPs,对SCBEPs的力学性能和保温性能进行了有限元分析,据分析结果得知:该结构夹芯板具有极高的刚度、更密实的表面密度和更好的耐久性,相比传统建筑行业的普通夹芯板,不仅可以节省能源,还可做到绿色环保。
图1甲虫鞘翅板的生物原型
人类目前对于建筑物设计的发展水平已经达到了前所未有的高度,不仅能上天入地,还可横跨江海。人类之所以在建筑领域能够有如此成熟的设计,有一大半的功劳要归功于自然界的“建筑大师”。著名生物学家Charles认为:“蜂巢是世界上最宏伟的建筑物。”蜜蜂用蜂蜡建造的蜂巢是一座既牢固又轻巧、既美观又实用的杰出建筑。蜂巢轻质高强,是建筑材料的发展方向之一。人类从蜂巢上获得了巨大的启示,创造发明了蜂窝泡沫砼、蜂窝泡沫塑料、蜂窝泡沫橡胶及蜂窝泡沫玻璃等仿生结构材料。实践证明,这些仿生蜂窝状材料,既隔热又保温,结构轻巧、造型美观。目前,仿照蜂巢结构设计制备的建筑物已遍布世界(图2)。
图2仿蜂巢建筑物设计
仿生智能修复材料
材料在服役期间不可避免地会产生微裂纹和坏损,由此引发的宏观应力裂纹会严重影响材料的使用以及设备的运行,甚至会造成材料的失效并造成损失惨重的事故。如果能在材料内部产生微裂纹前对其进行预防,对于延长材料的使用寿命、消除工程应用的安全隐患、提高材料的利用率具有重要意义。但是材料内部产生微裂纹的时间点是不易察觉的,因此如何能够实现材料的自我修复及愈合是一个需要迫切解决的问题。
自修复自适应界面材料是近几十年来兴起的一种新型仿生智能材料,其核心源于对自然界生物体损伤及愈合机理的研究与模仿,通过补给所需的物质和能量,进而实现材料内部或者外部损伤的自修复与自愈合。自修复自适应界面材料是一种功能类集成材料,它不仅囊括了智能材料的基础性质,在接受外界环境的刺激时,还能主动地调节自身的材料属性,以达到适应外界环境改变的效果。自适应的含义包括了材料各方面的性质,如自我回复能力:指的材料的外形、结构等发生改变后可以自动还原;自我调节能力:材料的物理化学状态随着外部环境的变化而发生调整。
仿照猪笼草等植物的表皮结构制备的润滑液浸渍涂层,同样也是一种不错的自修复界面材料。图3所示为Wong等关于仿猪笼草结构的最新研究成果,与很多动植物表层分泌保护液的过程类似,当表面的润滑浸润层受到机械外力作用而被破坏时,在多孔介质储层中的润滑油会通过与多孔介质的动态反馈机制自动补充到表面浸润层,使其恢复到原来的稳定状态,从而维持原有的材料性能。
图3仿猪笼草超光滑自修复多孔表面
“变色龙”当属自然界中的自感知伪装大师。变色龙的表皮有一种结构——皮肤感受器,在变色龙皮肤感受器的表皮细胞内存储着黑色、红色、绿色、紫色、蓝色、黄色等各种颜色的色素细胞。当外界的环境发生变化时,皮肤感受器会接受到光线或温度变化带来的刺激,进而调整内部色素细胞的状态,实现身体的换色。图4所示为加州大学伯克利分校开发的仿生柔性自感知电子皮肤,通过光照响应等外界条件的改变,该皮肤可实现变色。
图4仿变色龙自感知柔性皮肤
仿生节能减阻材料
将仿生材料应用于能源环境研究领域始终是热点前沿问题。大自然中具有自清洁界面的生物十分众多,尤其是栖息在深海中的海洋生物。部分海洋生物随着气候的变化要进行迁徙,迁徙的距离甚至可达上万公里,其表皮自清洁界面的微结构自此过程中发挥了极其重要的作用。海洋生物的自清洁表面可以有效地减小其迁徙时所受海水的阻力,确保其能够完成迁徙。海洋生物的表皮中通常存在着含有大量亲水基团的蛋白基体,这些基体与海洋生物的表皮层稳固的结合形成一层较厚的疏水层,使得表皮具有自清洁的能力。例如鲨鱼的体表,是一种盾鳞的结构,这种结构之间的沟槽为开发海洋防污减阻涂层提供了思路,图5所示为仿照鲨鱼盾鳞结构设计的自清洁减阻材料。
图5仿鲨鱼盾鳞自清洁减阻材料
仿鲨鱼盾鳞结构防污减阻材料的研究始于20世纪80年代,美国国家宇航局将该研究称为未来航空产业的关键技术。仿鲨鱼盾鳞结构防污减阻材料对于飞行器的设计至关重要,是实现飞行器提速、延长飞行器续航时间、减少飞行器燃料损耗的关键一环。
另一种生物,树蛙的趾、指末端吸盘及边缘沟壑明显,吸盘背面呈现出“Y”的形状。正是由于树蛙指、趾末端吸盘的存在,使得树蛙可在植物上敏捷自由的移动。树蛙脚趾表皮的结构为纳米尺度柱体密集排布组成六边形表皮结构单元,结构单元间的空隙充满流体分泌物,宽约1μm。树蛙脚趾表皮纳米级别的柱体及其间的狭缝可以通过在界面处保持液体薄膜来提高其与基体的黏性。该表皮结构通过黏性液体的充满界面和脱离界面实现界面的黏结和脱黏,有机黏剂不会硬化。狭缝的结构和生理系统可以储存和再生有机黏剂,便于其快速黏附于粗糙表面。
受树蛙趾结构的启发,武汉大学薛龙建课题组制备了一种微纳复合六边形柱状阵列,如图6所示。该结构由聚二甲基硅氧烷(PDMS)与聚苯乙烯(PS)混合制成,其中PS在PDMS正六边形阵列中呈垂直分布,该结构受到的应力可以在PS与PDMS间进行有效的传递。
图6仿树蛙趾结构六边形微纳结构
随着压电纳米发电机和摩擦电纳米发电机的相继问世,自供电系统对环境机械能的获取变得更加高效、低损耗和简单。将轻型可变电源引入仿生微型飞行器(BMAV)中,广泛应用于军事侦察或大气污染监测等领域,是当前将仿生材料应用于能源环境研究领域的前沿热点问题。北京交通大学魏国武等使用仿生技术研发了一种基于摩擦电机和压电器件相结合的混合柔性纳米发电机(图7),该纳米发电机不仅可以解决供电问题,还可智能监测周围环境的变化。
图7仿生微型飞行器纳米发电机
仿生智能医学材料
生物医学材料是将工程材料的设计理念运用在医学和生物学的综合体现。目的是为了缩小工程材料和医学材料之间的实际应用差距。生物医学材料的设计结合了工程材料设计和医用材料设计的技巧,以改善医疗诊断、医疗监测的水平。生物医学中仿生材料的概念目前处于医学材料研究的最前沿。
生物的微观世界由一群隐秘的微生物组成,这些微生物拥有令人震惊但尚未开发的功能,提供了巨大的探索机会。这些微生物物种形成微生物群,相互之间有效地协同作用,并执行难以置信的任务。目前人们正在有选择地、可控地将来自生物微观世界的不同物种组合起来,实现面向创新应用的功能仿生体系结构,以便更好地认识生物微观世界,从而带来新的机遇。美国新泽西州史蒂文斯理工学院机械工程系神经仿生学与神经电医学实验室Mannoor等成功地使用仿生3D打印技术在蘑菇上种植了蓝藻菌群(图8)。
图83D打印纳米生物技术
仿生材料在医学领域的应用及发展十分艰难,因为在这一领域关联着更多其他基础学科、科研方向的发展,如工程学、微生物学、细胞学、理化科学、预防医学等。目前来看,仿生材料在医学领域的应用尚处于起步的阶段,其未来的发展还有一段漫长的路要走,要坚信仿生材料在医学领域的应用将会对未来社会的进步、科技的进步做出重要的贡献。
仿生材料的出现将成为材料发展历史的又一座里程碑。如何低成本、高效率的制造出新型仿生材料将是其能否继续快速发展的关键问题。
未来仿生新材料的发展,要顺应国家发展战略,产学研相结合,不断推陈出新、满足新型高新技术产业发展的需求,将仿生科学与微生物学、工程学、细胞学、理化科学等学科紧密结合起来,精确地构建多尺度宏观/微观结构,实现材料的结构功能一体化。但是,就目前来看,国内许多与仿生材料相关的科研工作仅停留在实验室的制备和应用层面,在工程应用及工业生产中的实际效果仍有待考察和检验。因此,合理地设计生产制备工艺,优化制备方法,实现大规模精确的材料制造与加工成型,也是仿生材料领域亟待解决的瓶颈问题。
对于未来仿生新材料的规划展望如下:(1)应尽早突破生物材料结构与功能表征等关键技术,揭示典型生物材料卓越性能的内在规律;(2)建立出性能与功能仿生的设计模板,至少发展出几种典型极端环境(如超轻、抗电磁、低频隐身等)仿生材料的制备方法;(3)研制出满足未来装备智能化、无人化发展的环境敏感响应的材料;(4)对战场的生物附着、环境因素等研发出具有自感知、自适应、自修复能力、并能提升装备效能的新材料;(5)利用仿生新材料研制出典型的器件,且性能应处于世界先进水平,并在武器装备上得以应用。
参考文献(略)
在轨道交通中还有哪些黑科技,欢迎参加2019年8.14-16日在常州召开的第三届中国先进激光在轨道交通中的应用大会。
江苏省激光产业技术创新战略联盟的激光天地搜集整理!欢迎参加在苏州与2019年9月举办的第三届中国激光微纳加工技术大会来源:观察者网(ID:guanchacn)、央视一套(ID:CCTV-channel1),综合共青团中央(ID:gqtzy2014)转自:科技导报(STReview)
本文发表于《科技导报》2019年第12期
作者:王博,张雷鹏,徐高平,李晓白,李垚返回搜狐,查看更多
人工智能的发展现状与未来展望
姓名:李博澄
学号:14020110018
转载https://www.cnblogs.com/D2016/p/7067034.html
【嵌牛导读】:现在人工智能大火也引起了人们的担忧,那么我们所担心的能否成为现实呢?
【嵌牛鼻子】:人工智能、发展现状、展望
【嵌牛提问】:人工智能的现状和未来展望?
【嵌牛正文】:
1引言
2016年年初,韩国围棋国手李在石与围棋程序AlphaGo对弈中首战失利,再一次将人工智能拉入了公众的视野,使其成为2016年度话题度最高的科技之一。不可否认,近些年来人工智能发展迅速,很多人工智能产品已经开始进入人们的家中,如扫地机器人、智能保姆等,虽然它们还没有美国大片《终结者》中所描述得那么先进,但从前遥不可及的人工智能概念正在一步步变为现实却是不争的事实。人工智能的现状如何,它又将如何发展,都是学界较为关注的课题。
2人工智能综述
2.1人工智能的概念
人工智能即AI,其英文全称为ArtificialIntelligence。人工智能的概念要从人工和智能两方面来了解,所谓人工就是指人工智能脱胎于人类的文明,是人类智慧的产物;而智能则是指具有人工智能的计算机或其他�子设备可以模拟人类的智能行为和思维方式,人工智能是计算机科学的一个分支,它的近期主要目标在于研究用机器来模仿和执行人脑的某些智能功能,并开发相关理论和技术。
2.2人工智能的现实应用
如今的人工智能机器,可以在胜任一些复杂脑力劳动的同时,辅助人类进行记忆和逻辑运算等活动。现阶段学者已经研制出了一些可以模拟人类精神活动的电子机器,经过完善升级,这些电子机器将有希望超越人类的能力,协助人类完成一些执行难度较大的工作。但是目前研制出的自动化系统或者机器人虽然可以代替部分人类劳动,却还没有到达可以实现人类多方面协调和自我学习升级的智能水平,要制造出一款可以完全拥有人类智慧的机器,还需进一步深入研究。还有一些人工智能产物经常应用于各种商业用途,例如单位内部的客户信息系统,决策支持系统,以及我们在世面上可以看见的医学顾问、法津顾问等软件。
3人工智能发展现状
3.1智能接口技术研究现状
人工智能接口研究就是为了实现人机交流,为此学者必须从理论和实践两方面努力,解决计算机对文字和语言的理解与翻译、对自我的表达等功能问题。由于智能接口技术的研究和应用,计算机技术的发展获得了极大的推动力,在运行速率和人机交流等方面都有巨大提升。
3.2数据挖掘技术研究现状
数据挖掘技术主要是对各类模糊的、大量的应用数据、人未知的、潜在已经存在的数据进行整理挖掘进行细致的研究,寻找出对研究有用的数据。目前,数据库、人工智能、数理统计已经成为数据挖掘技术的三大技术支撑,以基础理论、发现算法、可视化技术、知识表示方法、半结构化等作为研究内容,为数据挖掘技术的发展提供理论和技术支持。
3.3主体系统研究现状
主体系统可以实现机器意图和想法的生成,是一种智能方面更接近人类的自主性实体系统。自主系统可以完成一些相对独立、自主的任务,甚至可以通过调整自我状态,应对环境和特殊情况的变化,进而保证自身规划任务的完成。在多主体系统研究中,主要是从物理和逻辑思维方面对主体进行智能行为的分析研究。
4人工智能发展中面临的问题
4.1识别功能的困惑
计算机识别技术研究在近些年取得了大量成果,其产品的实际应用范围较广,但不可否认的是,计算机识别的模式是基于一定的算法和程序设定的,其识别机制完全不同于人类的感官识别,因此,在计算机进行识别,尤其是图形识别时,对各种印刷体、文字、指纹等清晰图形可以快速识别,但对于相似度较高的物体,计算机识别能力相对较弱,识别失败的情况较为普遍。语音识别主要研究各种语音信号的分类。语音识别技术近年来发展很快,但是缺点是识别极易受到干扰,发音不标准的语音较易引发识别错误。
4.2GPS功能的局限性
GPS是企图实现一种不依赖于领域知识求解人工智能问题的通用方法,但是问题内部的表达形式和领域知识是分不开的,用谓词逻辑进行定理归结或者人工智能通用方法GPS,都可以从分析表达能力上找出其局限性,这样就减少了人工智能的应用范围[1]。
5人工智能的未来应用展望
人工智能与人生活最息息相关的应用范围就是融入人们的衣食住行和教育等方面,这也是人工智能未来最普遍的应用方向。
5.1无人驾驶的汽车
奔驰、丰田等很多大型汽车企业都在研究�o人驾驶的汽车,像007电影中的那种拥有自主辨别路况、自动驾驶等功能的汽车也许很快就会成为现实。自动驾驶的汽车要搭载的技术并不只人工智能一种,它还需要将自动控制和视觉计算等新型技术集成应用,改变现有汽车的体系结构,赋予其自动识别、分析和控制的能力。因此,自动驾驶汽车需要实现三方面的技术突破:其一,实现利用摄像设备、雷达和激光测距机来获得路况信息;其二,实现利用地图进行自动的车辆导航;其三,根据已有信息数据对车辆的速度和方向进行控制。未来的自动驾驶汽车还可以通过车辆之间的信息互通和互相感应,来协调车速和方向,避免车辆碰撞,实现自动驾驶车辆的安全行进。
5.2智能化的课堂
当前已经有一些智能化的教学软件,教师们可以在这些软件上把教学课件传送给学生,并进行授课答题,学生还可以与教师弹幕互动,使课堂变得妙趣横生,方便了教师的授课活动。对于学生而言,能够在期末十分便捷地回顾上课的错题,甚至能够在几年后翻阅学习过的课件;对于教师而言,能够精细地知道学生对知识的掌握程度,甚至能够发现最积极和最懈怠的学生。未来的智能课堂将更具有时间延展性,学生不仅可以在课堂学习知识,还可以利用智能电子设备进行课前预习和课后复习,从而使学生可以在更加趣味性的氛围中进行自主学习安排。
5.3自动化的厨房
今后的厨房将会更加智能化,当你做饭时,设定好你想要的菜谱,准备好所需的食材,烹调设备即可将饭菜制作得恰到好处。它会根据你食材的新鲜程度,为你推荐最适合的菜谱,并计算出其营养参考标准,并为你推荐其他食物,使膳食营养均衡。当你家中某样食材不足时,物流公司便会将时下最新鲜的这一食材送至你家中[2]。
6结语
人工智能这一概念是在1956年提出的,在当时,人工智能还只是人们头脑中的一种幻想,而在60年后的今天,人工智能的梦想已经逐渐照进现实,它甚至渗透进了工业、医学、服务等多个领域,可以说人工智能正在改变着我们生活的世界。但对于人工智能这个人类创造出来的技术,人们也存在一定的担忧,人工智能将向何方发展?人工智能发展到极致会不会脱离人类的控制?人工智能会不会超越人类的智慧?在诸多问题围绕下,人工智能技术依然在迅猛发展,它的未来如何,让我们拭目以待。
参考文献:【1】王宇楼.人工智能的现状及今后的发展趋势展望[J].科技展望,2016(22):299.
【2】吕泽宇.人工智能的历史、现状与未来[J].信息与电脑(理论版),2016(13):166-167.
人工智能的现状及今后发展趋势展望
论文导读:介绍了人工智能的概念及其目前发展概况,对人工智能的几种类型及应用,如:模式识别、专家系统作了简要的介绍。并对人工智能今后的发展前景进行了分析。关键词:人工智能
1引言
人工智能(ArtificialIntelligence),英文缩写为AI,也称机器智能。“人工智能”一词最初是在1956年Dartmouth学会上提出的。它是计算机科学、控制论、信息论、神经生理学、心理学、语言学等多种学科互相渗透而发展起来的一门综合性学科。从计算机应用系统的角度出发,人工智能是研究如何制造智能机器或智能系统,来模拟人类智能活动的能力,以延伸人们智能的科学。
2目前人工智能技术的研究和发展状况
目前,人工智能技术在美国、欧洲和日本依然飞速发展。在AI技术领域十分活跃的IBM公司,已经为加州劳伦斯·利佛摩尔国家实验室制造了ASCIWhite电脑,号称具有人脑的千分之一的智力能力,而正在开发的更为强大的新超级电脑——“蓝色牛仔”(BlueJean),据其研究主任保罗·霍恩称,“蓝色牛仔”的智力水平将大致与人脑相当。
3技术应用
随着AI的技术的发展,现代几乎各种技术的发展都涉及到了人工智能技术,可以说人工智能已经广泛应用到许多领域,其典型的应用包括:
3.1符号计算
计算机最主要的用途之一就是科学计算,科学计算可分为两类:一类是纯数值的计算,例如求函数的值;另一类是符号计算,又称代数运算,这是一种智能化的计算,处理的是符号。符号可以代表整数、有理数、实数和复数,也可以代表多项式,函数,集合等。随着计算机的普及和人工智能的发展,相继出现了多种功能齐全的计算机代数系统软件,其中Mathematic和Maple是它们的代表,由于它们都是用C语言写成的,所以可以在绝大多数计算机上使用。
3.2模式识别
模式识别就是通过计算机用数学技术方法来研究模式的自动处理和判读。这里,我们把环境与客体统称为“模式”。论文参考网。用计算机实现模式(文字、声音、人物、物体等)的自动识别,是开发智能机器的一个关键的突破口,也为人类认识自身智能提供线索。计算机识别的显著特点是速度快、准确性和效率高。识别过程与人类的学习过程相似。以“语音识别”为例:语音识别就是让计算机能听懂人说的话,一个重要的例子就是七国语言(英、日、意、韩、法、德、中)口语自动翻译系统。该系统实现后,人们出国预定旅馆、购买机票、在餐馆对话和兑换外币时,只要利用电话网络和国际互联网,就可用手机、电话等与“老外”通话。
3.3机器翻译
机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻译类。词典类翻译软件代表是“金山词霸”了,堪称是多快好省的电子词典,它可以迅速查询英文单词或词组的词义,并提供单词的发音,为用户了解单词或词组含义提供了极大的便利。汉化翻译软件的典型代表是“东方快车2000”,它首先提出了“智能汉化”的概念,使翻译软件的辅助翻译作用更加明显。
3.4机器学习
机器学习是机器具有智能的重要标志,同时也是机器获取知识的根本途径。有人认为,一个计算机系统如果不具备学习功能,就不能称其为智能系统。机器学习主要研究如何使计算机能够模拟或实现人类的学习功能。机器学习是一个难度较大的研究领域,它与认知科学、神经心理学、逻辑学等学科都有着密切的联系,并对人工智能的其他分支,如专家系统、自然语言理解、自动推理、智能机器人、计算机视觉、计算机听觉等方面,也会起到重要的推动作用。
3.5问题求解
人工智能的第一大成就是下棋程序,在下棋程度中应用的某些技术,今天的计算机程序已能够达到下各种方盘棋和国际象棋的锦标赛水平。但是,尚未解决包括人类棋手具有的但尚不能明确表达的能力。如国际象棋大师们洞察棋局的能力。论文参考网。另一个问题是涉及问题的原概念,在人工智能中叫问题表示的选择,人们常能找到某种思考问题的方法,从而使求解变易而解决该问题。到目前为止,人工智能程序已能知道如何考虑它们要解决的问题,即搜索解答空间,寻找较优解答。
3.6逻辑推理与定理证明
逻辑推理是人工智能研究中最持久的领域之一,其中特别重要的是要找到一些方法,只把注意力集中在一个大型的数据库中的有关事实上,留意可信的证明,并在出现新信息时适时修正这些证明。医疗诊断和信息检索都可以和定理证明问题一样加以形式化。因此,在人工智能方法的研究中定理证明是一个极其重要的论题。
3.7自然语言处理
自然语言的处理是人工智能技术应用于实际领域的典型范例,经过多年艰苦努力,这一领域已获得了大量令人注目的成果。目前该领域的主要课题是:计算机系统如何以主题和对话情境为基础,注重大量的常识——世界知识和期望作用,生成和理解自然语言。这是一个极其复杂的编码和解码问题。
3.8分布式人工智能
分布式人工智能在20世纪70年代后期出现,是人工智能研究的一个重要分支。分布式人工智能系统一般由多个Agent(智能体)组成,每一个Agent又是一个半自治系统,Agent之间以及Agent与环境之间进行并发活动,并通过交互来完成问题求解。
3.9计算机视觉
计算机视觉是一门用计算机实现或模拟人类视觉功能的新兴学科。其主要研究目标是使计算机具有通过二维图像认知三维环境信息的能力,这种能力不仅包括对三维环境中物体形状、位置、姿态、运动等几何信息的感知,而且还包括对这些信息的描述、存储、识别与理解。
目前,计算机视觉已在人类社会的许多领域得到成功应用。例如,在图像、图形识别方面有指纹识别、染色体识字符识别等;在航天与军事方面有卫星图像处理、飞行器跟踪、成像精确制导、景物识别、目标检测等;在医学方面有图像的脏器重建、医学图像分析等;在工业方面有各种监测系统和生产过程监控系统等。
1/2 1 2 下一页 尾页
人工智能产业的应用场景和发展模式
1、基础层面:主要有AI芯片、传感器、云计算、减速器等四类核心产品
(1)AI芯片——主要包括GPUFPGA等加速硬件与神经网络芯片、为深度学习提供计算硬件,是重点底层硬件。
(2)传感器——主要对环境、动作、图像等内容进行智能感知,是人工智能的重要数据输入和人机交互硬件。
(3)云计算/大数据——主要为人工智能开发提供云端计算资源和服务,以分布式网络为基础,提高计算效率,包括数据挖掘、监测、交易等,为人工智能产业提供数据的收集、处理、交易等服务。
(4)减速器——作为一种相对精密的机械,主要为人工智能产品降低转速,增加转矩,以满足不同场合下的工作需要,是重要的底层硬件。
2、技术层面:主要有计算机视觉、自然语言处理、语音识别、机器学习等四类核心技术
(1)计算机视觉——包括静动态图像识别与处理等,对目标进行识别、测量及计算。主要应用在智能家居、语音视觉交互、ARVR、电商搜图购物、标签分类检索、美颜特效、智能安防、直播监管、视频平台营销、三维分析等场景。
(2)自然语言处理——基于数据化和框架化,研究语言的收集、识别理解、处理等内容。主要应用在知识图谱、深度问答、推荐引导、机器翻译、预料处理、模型处理等场景。
(3)机器学习——主要以深度学习、增强学习等算法研究为主、赋予机器自主学习并提高性能的能力。主要应用在压缩技术、安防、数据中心、智能家居、公共安全等场景。
(4)语音识别——通过信号处理和识别技术让机器自动识别和理解人类口述的语言,并转换成文本和命令。主要应用在智能电视、智能车载、电话呼叫中心、语音助手、智能移动终端、智能家电等场景。
3、应用层面:主要分为智慧城市、智慧生产、智慧生活三大类应用场景
(1)智慧城市:智慧城市涉及到交通、教育、医疗、零售等与用户生活息息相关的场景,把这些场景集合在同一平台上,增强用户使用习惯将会增强,粘性就会提升。各类场景互联互通,最终达到提升城市运维效率、提升资源管理效率、提升居民生活品质的目的。
典型智慧城市应用场景
(2)智慧生产:形成产品生产导向向需求生产导向转变的智慧生产流程体系
(3)智慧生活:涵盖智慧居住、饮食、健康监护管理、家庭管理等应用场景
人工智能属于面向未来的新事物,应用场景是人工智能发展的主要驱动力。下面简要分析医疗、交通、教育、金融、生活、零售、安防、园区、环保、政务等10个细分领域的人工智能应用场景及商业模式。
典型应用1:AI+医疗——中国医疗人工智能处于风口期,医学影像和疾病风险管理为热点
智能医疗,从技术细分角度看,主要包括使用机器学习技术实现药物性能、晶型预测、基因测序预测等;使用智能语音与自然语言处理技术实现电子病历、智能问诊、导诊等;使用机器视觉技术实现医学图像识别、病灶识别、皮肤病自检等。从应用场景来看,主要有虚拟助理、医学影像、辅助诊疗、疾病风险预测、药物挖掘、健康管理、医院管理、辅助医学研究平台等八大AI+医疗市场应用场景,其中医学影像和疾病风险管理为热门领域。
典型应用2:AI+交通——中国市场规模庞大,形成四类无人驾驶主流商业产品
智能驾驶其涉及的领域包括芯片、软件算法、高清地图、安全控制等。目前主要商业产品有无人驾驶出租车、无人驾驶卡车、无人巴士和无人驾驶送货车;无人驾驶车辆将设计拥有更高的安全性且能极大地降低人力成本,成为诸多相关企业的关注的焦点。
(1)无人驾驶出租车:人驾驶出租车因为其安全性更高,因此被很多汽车服务业关注,目前,无人驾驶出租车已经处于测试阶段。2015年软件公司NuTonomy在新加坡开始无人驾驶出租车测试,计划2018年完成整个无人驾驶服务的商业化
(2)无人驾驶卡车:无人驾驶卡车能有效降低司机因长时间、长距离运输而疲惫导致的安全事故。2016年11月,中国福田汽车联合百度在上海发布了国内首款无人驾驶卡车。
(3)无人巴士:固定的行驶路径、固定的停靠车站,使得无人驾驶巴士成为解决公众出行的新办法。2017年10月,百度联合金龙客车合作生产无人公交车,预计在2018年实现整车量产。
(4)无人驾驶送货车:货物运输最后一公里为运输行业的瓶颈,无人送货车能够全天候工作,加大增加工作效率。2017年7月,英国杂货电商公司Ocado在伦敦东部测试了无人送货车。
典型应用3:AI+生活——以IoT为基础的家居生态圈,主要有八大市场热点领域
智慧生活是一个以IoT为基础的家居生态圈,其主要包括智能照明系统、智能能源管理系统、智能视听系统、智能安防系统等。市场热点集中在硬件支持、智慧场景应用、产品、平台等方面,主要有机器学习、无线模块、智能家庭平台、智能家居娱乐系统、家居安防、健康家庭医疗系统等智能家居市场八大热点。
典型应用4:AI+金融——智能金融变革金融业务全流程
AI技术赋能金融领域,主要包括智能风控、智能投顾、智能投研、智能支付、智能营销和智能客服等。从金融角度来讲,智能的发展依附产业链涉及资金获取、资金生成、资金对接到场景深入的资金流动全流程,主要应用于银行、证券、保险、p2p、众筹等领域。
典型应用5:AI+教育——千亿庞大市场规模,三大应用主体与十三大应用场景
智能教育可分为学习管理、学习评测、教学辅导、教学认知思考四个环节,全面覆盖“教、学、考、评、管”产业链条,并已在幼教、K12、高等教育、职业教育、在线教育等各类细分赛道加速落地。围绕教育机构、教师、学生等三大主体,智能教育产品主要应用于教育评测、拍照答题、智能教学、智能教育、智能阅卷等十三大场景。
典型应用6:AI+零售——实现零售购物的无人化、定制化、智能化,提升购物体验
AI+零售将实现零售购物的全面无人化、定制化、智能化,实现消费者购物体验的全面升级。典型的应用场景主要有智能提车和找车、室内定位及营销、客流统计、智能穿衣镜、机器人导购、自助支付、库存盘点等场景。
(1)智能停车和找车。为智能停车模块,帮助用户解决“快速停车及找车”的痛点。如阿里巴巴推出的喵街App中包含智能停车及找车模块,目前已经应用于几十家购物中心。
(2)室内定位及营销。在用户购物及浏览过程中快速根据用户需求、物品位置实现精准匹配。如北京大悦城等商场已经实现了室内导航及定位营销,iBeacon的技术解决方案颇受青睐。
(3)客流统计。实时统计客流、输出特定人群预警、定向营销及服务建议。如图普科技,利用开发客流统计解决方案,为天佑城的活动策划和招商部门提供客观数据佐证。
(4)智能穿衣镜。为用户提供个性化的定制服务,增加用户实际购物体验。智能虚拟穿衣镜已经在Lily、马克华菲等诸多品牌门店中部署。
(5)机器人导购。增加用户购物过程的趣味性,从而提升销售。如零售机器人“豹小贩”实现从“人找货”到“货找人”的转变,自动走到人流量大的地方,主动推荐商品。
(6)自助支付。收银服务机提供屏幕视频、文字、语音三种指引方式,引导自助支付。如国内阿里的刷脸支付尝试。
(7)库存盘点。库存盘点机器人替代仓库管理员,提升工作效率。如德国MetraLabs推出机器人Tory,为德国服装零售商AdlerModemrkte提供库存盘点服务。
典型应用7:AI+安防——平安城市、园区、校园、家居、金融等一体化智能安防建设
智能安防是人工智能最先大规模应用,并持续产生商业价值的领域,主要依托低速无人驾驶、环境感知、目标检测、物体识别、多模态交互等技术,实现目标跟踪检测与异常行为分析,视频质量诊断与摘要分析,人脸识别与特征提取分析,车辆识别与特征提取分析等,实现平安城市、园区智能安防、校园智能安防、家居智能安防、金融智能安防等一体化智能建设。
(1)平安城市——开展城市监控报警联网系统建设,公安机关建监控系统,省级监控平台,地市级平台,实现城市智能公安联网监测检查。
(2)园区智能安防——工业园区安防系统由视频监控系统、入侵报警系统、门禁管理系统、电子巡更系统、停车管理系和综合管理平台等构成。
(3)校园智能安防——主要构建透明食堂监控、校园车辆卡口系统、手机移动监控等系统,实现技防各子系统高度集成联动、海量数据智能化分析并自动导出,实现安保工作基础平台信息化。
(4)家居智能安防——家居安防系统主要包括报警控制主机、无线传感器网络节点两大模块,负责对采集的信号进行分析和处理,以及安防情况进行远程监控。
(5)金融智能安防——金融安防系统包括技术防范系统和实体防护设施,技术防范系统主要包括视频安防监控系统、出入口控制系统、入侵报警系统和监听对讲系统等,实体防护设施主要包括专用门体、防弹复合玻璃、提款箱、运钞车、保管箱和ATM自动柜员机等。
典型应用8:AI+园区——实现物业硬件互联信息化、服务智慧化、产业智能化
在智慧园区场景下,从硬件设施到系统软件,从智慧物业到智慧服务,实现物业硬件信息化互联,服务智慧化、产业智能化。园区形成微型智慧生态,物业信息化互联,并为园区企业提供智慧化办公生产相关服务,吸引智慧产业入驻发展。
(1)园区互联信息化。园区安防、管网、能源等硬件设施互联互通,信息化自动化。场景构建主要打造智能化信息系统、智能门禁系统,集成园区智能硬件系统。
(2)园区服务智慧化。为园区企业提供智慧化科技创新、办公智慧化、园区生活智慧化相关服务。商务办公智慧化场景构建主要依托智能会议系统、智能客服系统、办公场景语音系统实现;科创孵化智慧化场景构建主要打造智慧产业孵化器。
(3)产业发展智能化。集聚信息技术、智能制造企业,推动产业化升级和智慧城市发展。场景构建主要依托导入相关产业资源,形成产业集聚。
典型应用9:AI+环保——实现环境监测实时动态化、环保装备智能化、管理智慧化
智慧环保场景下,从监测到管理,从环保硬件到服务平台软件,实现环保装备智能化、环保管理智慧化,并融合机器学习、机器人、人机交互、智能语音、大数据等技术,在智能环保机器人、环保服务平台领域发力,构建场景新生态。
典型应用10:AI+政务——打造政务部门数据集成共享,实现政务决策IT化
(1)城市全景精细呈现。打造GIS地理信息技术平台,依托智能化城市基础设施建设,展现城市数据。
(2)部门数据融合互通。引入信息技术集成服务商,集成市政、警务、交通、电力、等部门数据库系统,开辟数据接口,实现数据融合互通。
(3)智能化统计分析。构建城市政务管理云服务平台,实现智能化数据分析,为城市智慧化精细化管理提供决策依据和建议。
(4)对话数据,交互查询。建设统一查询系统,引入系统开发服务商,设计实现交互查询的查询系统,非隐私数据可民用开放。
(5)可视化部署、指挥调度。通过数据可视化云平台打造,实现突发事件应急联动,有效结合各部门数据资源,达到高效决策、部门联动、信息共享的指挥调度系统。
根据东滩产业内参《人工智能产业投资趋势及发展模式》的研究,中国人工智能产业空间集聚模式主要呈现智慧城市、产业集聚区/创新区、产业小镇/产业园区等三种形式。智慧城市建设、产业集聚区/创新区、产业小镇/产业园区三个层面互为促进,成为推动人工智能产业发展的主要路径。
(1)智慧城市
通过打造人工智能创新应用示范区/产业集聚区/小镇/园区等形式,形成深度应用场景,建设应用示范项目;促进人工智能在智慧政务、智慧交通、智能医疗、智能健康和养老等领域深化应用。典型的案例有上海、杭州、北京、深圳等智慧城市的建设。
(2)产业集聚区/创新区
依托区域较好的智能制造基础及信息技术优势,集聚人工智能、大数据、云计算、区块链、VR/AR等数字产业项目,将技术和应用扩散至周边区域,与其他产业交叉融合发展。典型的案例有上海张江人工智能岛、杭州高新区(人工智能)优势产业集聚地等。
(3)产业小镇/产业园区
作为大型经济开发区里的专业园区,或是以人工智能产业为特色的产业小镇,与周边科技、制造、新一代信息技术等产业协同发展。典型案例有苏州工业园人工智能产业园、杭州人工智能产业园、沧州高新技术产业开发区人工智能科技产业园等。
案例链接1:智慧上海
打造六大人工智能创新示范区
上海将着力打造6个人工智能创新应用示范区,形成60个深度应用场景,建设100个以上应用示范项目。构建“一带一区多点联动”的产业空间布局,包括“徐汇滨江-漕河泾-闵行紫竹”人工智能创新带、“张江-临港”人工智能创新承载区、华泾北杨人工智能特色小镇、上海松江洞泾人工智能特色产业基地。
上海人工智能产业空间格局
专业园区——上海张江人工智能岛
项目概况:上海张江人工智能岛位于张江科学城中区,占地面积6.6万平方米,建筑面积10万平方米,由张江集团负责开发运营的人工智能产业新标杆。产业方向以语音识别、视觉识别技术世界领先,信息处理、智能监控、生物特征识别、工业机器人、无人驾驶为主。目前吸引了包括微软、阿里巴巴、同济大学、云从科技在内的跨国巨头、BAT龙头、科研院所和独角兽企业入驻园区。成为上海市首批人工智能应用场景,并成为唯一的“AI+园区”实施载体。
产业发展策略:
(1)基金政企合作,打造开放创新平台。与龙头企业共建孵化器、共设投资基金,并搭建集创新转型工坊、创新实验室、项目实战空间、应用演进与运营四维一体的人工智能“能力开放工场”,塑造产业垂直生态。
(2)集聚世界创新大脑,引领高端发展。加强前瞻性研究,集聚世界一流科学家、学者开展人工智能基础理论、核心算法以及脑科学、基础系统等方面的基础研究,实现高端引领发展。
(3)技术与场景联合试验,助推远期产品落地。围绕智能安防、语音识别、机器视觉、深度学习等人工智能新技术,与应用场景进行深度融合,并在岛上进行联合试验和交互体验,并将技术和应用扩展至整个张江科学城。
典型案例2:智慧杭州
打造十大人工智能应用示范区
杭州人工智能产业发展规划建设10个人工智能应用示范园区和特色小镇,构建数据驱动、人机协同、跨界融合、共创分享的智能经济生态圈。构建“一廊一区多点联动”的产业空间布局。打造杭州城西科创大走廊,构筑杭州高新区(滨江)优势产业集聚地,人工智能产业基地多点布局。
专业园区——杭州人工智能产业园
项目概况:位于杭州高新技术开发区滨江区江虹路,与阿里巴巴、浙江大学等比邻而居,规划面积3.43平方公里,总建筑面积8万平方米,由四幢主体建筑合围而成。项目定位于打造集专业化服务功能、创新型孵化功能、多资源聚合功能、产学研转化功能于一体的人工智能产业新平台,成为省级人工智能技术研发、应用、产业化的示范基地,重点打造产业资源交换、孵化研发、传媒、生活等四大中心。以人工智能为特色,覆盖大数据、云计算、物联网等业态,集中力量招引机器人、智能可穿戴设备、无人机、虚拟/增强现实、新一代芯片涉及研发等领域。
产业发展策略:打造全球创客中心人工智能集聚区,广泛集聚以人工智能为代表的智慧产业创客极客,发挥创业创新集聚效应,在引领区域创新上发挥重要的作用与市场影响力,着力构建“一主三化五平台”产业发展服务体系及综合运营管理服务体系。
(1)一大生态——打造有利于人工智能产业快速发展的生态系统;
(2)三化产业载体——人工智能技术成果化(孵化器)、人工智能成果产业化(加速器)、人工智能产业资本化(倍增器);
(3)五大发展平台——产业产学研合作平台、产业技术成果交易平台、产业公共服务平台、产业企业家交流平台、产业投资发展平台;
(4)运营管理体系——建立人工智能产业联盟,与投资行业协会、国内知名投资机构、金融服务机构、投融资服务组织等建立紧密的合作关系,为创新创业者提供全面专业的资本服务。
总的看来,中国人工智能产业集聚创新发展主要体现在四方面,即集中展示AI在特点场景下的纵向应用,如:学校、医院、工厂、家庭等,整合各类AI技术,打造整体式的解决方案;体现AI在特定行业中的创新应用,如:交通、政务、安防、环保、教育、金融等行业,推动人工智能对行业产生显著的带动作用;通过AI跨领域跨行业的集中应用,如:园区、社区等,实现人工智能对区域的全面赋能;通过龙头企业的带动,搭建AI产业发展开放平台,集聚产业链上下游资源,实现区域人工智能产业的协同创新发展。
▌说明:东滩顾问·廖义桃原创文章,转载请注明出处!
▌编辑:波波
▌关注:请搜索“东滩顾问”公众号关注我们哦!返回搜狐,查看更多