新一代人工智能将给 电力调度带来哪些改变
碳达峰、碳中和目标下,以新能源为主体的新型电力系统正在加快构建,新能源的不确定性和难预测性对电力系统运行的影响更加突出,传统以人为中心的电力调度模式面临挑战。而新一代人工智能技术的创新发展正在引发链式突破,为提升电力调度技术支撑能力提供了新的途径。
新型电力系统加快构建,电力调度面临新挑战
电力系统是现代社会最重要、最庞大、最复杂的人工系统。作为电力系统的“大脑”,电力调度承担着确保电力系统安全高效经济运行的职责,其功能主要包括:预测用电负荷,安排发电任务、确定运行方式,监测和分析全系统运行状态,指挥操作、故障处理等。
在加快构建以新能源为主体的新型电力系统的新形势下,我国电力系统的结构形态和商业模式正在发生深刻变化,电力调度面临的挑战愈发严峻。
一是随着新能源、可控负荷、储能等不断增加,电网运行方式的不确定性日益增加。二是气象、市场和社会因素对新能源和负荷预测误差的影响越来越明显,电网实际运行情况与基于传统预测方法的预测结果之间的偏差扩大。三是“源-网-荷-储”协同运行导致各层级电网调度对象的数量呈指数级增加,监控信息大幅增长。受制于预测误差、边界条件、优化算法等条件限制,传统的基于优化建模的经济调度方法或求解时间过长,或难以得出结果,调度人员实时决策的压力剧增。四是电力市场下多方主体利益博弈加剧了电力系统运行的不确定性,多方利益平衡和电力平衡的交集空间变小,实现电力系统最优调度决策的复杂程度增加。
基于新一代人工智能的电力调度取得初步成效
面对挑战,电力调度亟须向智能化方向发展。2017年,国务院印发《新一代人工智能发展规划》,明确建立新一代人工智能关键共性技术体系,其中包括跨媒体分析推理技术、群体智能关键技术、混合增强智能新架构与新技术等。新一代人工智能技术为提升电力调度智能化水平提供了新思路、新手段。目前,人工智能技术在电力调度领域的应用已取得初步成效。
中国电科院、南瑞集团等单位的技术攻关人员将深度学习等人工智能技术引入电力系统有功和无功负荷预测业务,基于海量历史数据样本掌握电力系统有功频率、无功电压的分布特性,开发了母线负荷预测软件。该软件已在福建、江苏电力调度控制中心等得到应用,提升了母线负荷预测准确度。
技术攻关人员利用知识图谱技术,构建了电网设备操作、故障处理知识库。应用了知识库的调度自动化系统可根据电网运行数据和故障信息,主动向调度人员推送电网操作与故障处置预案,避免人为误操作的发生。相关研究成果已在江苏、福建、冀北电力调度控制中心等得到应用,提升了调度人员对电网事故的处置能力。团队还利用语音识别、语义理解等技术,结合调度业务语料,开发了调度语音助手。这一工具目前已在华东电力调度控制分中心和上海、江苏电力调度控制中心应用,丰富了电力调度人机交互手段,提升了交互效率。
探索电力调度领域人工智能应用新场景
面向加快构建新型电力系统的新形势,继续结合知识图谱、强化学习、群体智能等新一代人工智能技术,探索电力调度领域智能应用新场景,将有力支撑新型电力系统安全高效经济运行。
●基于知识图谱的调度优化决策
知识图谱是结构化的语义知识库。它是由节点和边组成的数据结构,每个节点表示现实世界中存在的“实体”,而每条边为实体与实体之间的“关系”。通俗地讲,知识图谱就是把所有不同种类的信息连接在一起得到一个关系网络,再运用网络结构描述现实世界中的概念、实体及其相互关系。其信息表达方式更接近人类认知世界的方式。
借助知识图谱技术提取和凝练电力调度控制中心常年积累的系统运行数据、调度专业知识和人工经验,再通过知识搜索和推理,优化调度策略,有助于提升调度策略的有效性和经济性。下一步可重点在基于知识图谱的电网故障处置成果基础上,把调控领域的知识图谱应用由固定规则判断提升到先验知识运用,并应用于日前调度计划优化编制等更复杂的调度核心业务,实现由知识驱动的优化调度辅助决策。
●基于混合增强智能的调度控制
混合增强智能是将人的作用或人的认知模型引入人工智能系统中,与机器智能共同形成混合增强智能的形态。这是人工智能或机器智能可行的、重要的成长模式。
混合增强智能技术与当前电力调度中人(调度员)与机器(调度自动化系统)协同合作方式高度契合,有望成为解决电力调度复杂问题的新工具。
实现混合增强智能调度需要解决众多理论和技术问题。基于混合增强智能的电力调度将打通机器和人之间的双向通道,实现复杂随机电力调度问题的人机共识和共融决策,可应对能源转型过程中“源-网-荷-储”多元资源参与调度运行带来的随机性强、状态演变复杂、决策变量多、利益主体诉求不一等问题,提升调度决策的智能化水平。
●基于群体智能的协同调度
群体智能是指在集体层面表现的分散、去中心化的自组织行为,比如蚁群、蜂群的集体行为,鸟群、鱼群为适应空气或海水而进行的群体迁移等。群体智能不是简单的多个体集合,而是超越个体行为的更高级表现,具有自组织性、高度自治性、高效协同性、自主学习性等优点,特别适合开放环境下利用竞争与合作等多种方式来解决复杂系统的决策问题。
群体智能的优点与能源互联网的互联、对等、互动等特征十分契合。将群体智能的协同、共享、控制等理念与能源互联网环境下地区电网可调控资源的多样化类型和优化目标结合,可提出能源互联网环境下的群体智能协同调度架构。上层为群体层,调控中心智能体代表电网利益,与新能源汽车充电站、智慧小区、储能站和负荷聚合商等群体的智能体共同完成地区电网层面的集体决策;中间层为子群层,包括直辖设备群和用户设备群,群体中心通过激励、合作等方式协调子群智能体共同完成群内决策;下层为终端层,归属群体中心直辖的设备由群体中心智能体通过功率快速分配算法直接控制,归属用户管理的设备由用户智能体自主控制,实现最优响应。
由此,可将传统集中式、单向的电力系统转变为参与者对等、与更多资源融合互动的系统。这一方面可以降低电力调度控制中心优化电力系统运行方式的难度,减轻调控压力,提升电力系统运行的安全性和经济性,另一方面能充分发挥海量负荷侧资源调控潜力,促进负荷侧资源参与电网互动,实现多方共赢。
(作者单位:中国电力科学研究院有限公司)
人工智能给军事安全带来的机遇与挑战
1.2提升军事情报分析效率
随着信息技术的发展,人类正在迎来一个“数据爆炸”的时代。目前地球上两年所产生的数据比之前积累的所有数据都要多。瀚如烟海的数据给情报人员带来了极大的困难和挑战,仅凭增加人力不仅耗费大量钱财,问题也得不到根本解决。与此同时,伴随大数据技术和并行计算的发展,人工智能在情报领域日益展现出非凡能力。目前,美军已经敏锐地捕捉到了人工智能在军事情报领域的巨大应用潜力,成立了“算法战跨职能小组”。该小组的首要职能就是利用机器视觉、深度学习等人工智能技术在情报领域开展目标识别和数据分析,提取有效情报,将海量的数据转换为有价值的情报信息,为打击ISIS等恐怖组织提供有力的技术支撑。机器算法的快速、准确、无疲劳等特点使其在大数据分析领域大展身手,展现出远超人类的能力。因此,美国防部联合人工智能中心主任沙纳汉中将就直言不讳地表示,算法就是“世界上最优秀、训练最有素的数据分析师”。
1.3提升军事网络攻防能力
网络空间已经成为继陆、海、空、天之外的“第五维空间”,是国家利益拓展的新边疆、战略博弈的新领域、军事斗争的新战场。习近平主席在中央网络安全和信息化领导小组第一次会议上指出,“没有网络安全就没有国家安全”。网络攻防是军事安全领域中的重要一环,基于人工智能技术的自动漏洞挖掘可以显著提升军事系统的网络防御能力。目前,网络防御领域存在两大问题:一是网络技术人才短缺;二是当前的网络防御系统面对未知漏洞表现不佳。人工智能的新发展为提升网络防御水平提供了新途径,主要体现在网络系统漏洞自动化检测和自主监视系统等方面。以深度学习为代表的机器学习技术有望使得网络防御系统不仅能从以往的漏洞中学习,而且能在监视数据中不断提升对未知威胁的应对能力。有研究表明,人工智能可以从大量网络数据中筛选出可疑信息,以此增强网络防御能力。比如“蒸馏网络”公司(DistilNetworks)就利用机器学习算法来防御人类难以察觉的高级持续性威胁(APT)网络攻击。目前,美国亚利桑那州立大学的科学家已经研发出了一种能够识别“零日漏洞”的机器学习算法,并能够追踪其在黑客界的流动轨迹。麻省理工学院(MIT)“计算机科学和人工智能”实验室的研究人员也启动了PatternEx研究项目,意在构建一个机器学习系统,预期每天能检查36亿行日志文件,监测85%的网络攻击,并在投入使用时进行自动学习和采取防御措施。美国国防部高级研究计划局正计划将人工智能用于网络防御,重点发展的功能包括在投入使用之前自动检测软件代码漏洞以及通过机器学习探测网络活动中的异常情况等。
1.4为军事训练和培训提供新方式
人工智能为军事训练和培训也提供了新方式。在作战训练领域,人工智能技术与虚拟现实技术相结合能够极大提升模拟软件的逼真度和灵活性,为针对特定战场环境开展大规模仿真训练提供高效手段,真正实现“像训练一样战斗,像战斗一样训练”。首先,通过收集卫星图像、街景数据、甚至是无人机拍摄的三维图像,虚拟现实程序能够在人工智能的帮助下快速、准确地生成以全球任何一处场景为对象的综合训练环境(STE),帮助士兵进行更有针对性的预先演练,提升士兵执行特定任务的能力。其次,人工智能赋能军事训练模拟软件在不降低真实度的情况下快速生成训练环境、设计交战对手,摆脱了以往军事训练耗费大量人力物力布置训练场景的传统模式。再次,人工智能具备的自主性使得模拟军事训练不会以可预测模式进行,士兵必须使用各种设备和不同策略在复杂多样的环境中战斗,有利于提升士兵和指挥官在作战中的应变能力。最后,人工智能通过在模拟对战中与人类反复交手从而迭代学习,系统借助大量复盘模拟可以不断完善应对方法,为参谋人员提供参考借鉴。这一过程类似于与AlphaGo进行围棋对战。换言之,人工智能不仅可以扮演模拟军事训练中人类的强大对手,还可以在每次胜利时向人类传授一种针对这次战役或行动的新策略。除此之外,人工智能在军事训练的其他领域也有着广泛应用。目前,一个名为“神探夏洛克”(SHERLOCK)的智能辅导系统已经被用于美国空军的培训中。这个系统能够为美国空军技术人员提供如何操作电子系统对飞行器进行诊断的培训。同时,南加州大学的信息科学学院已经研制出了一个基于替身的训练程序,能够为派驻海外的军人提供跨文化交流训练。
1.5给军事理论和作战样式创新带来新的启发
诚如恩格斯所言:“一旦技术上的进步可以用于军事目的,他们便立刻几乎强制地,而且往往是违背指挥官的意志而引起作战方式上的改变甚至变革。”技术进步作用于军事领域必然引起作战方式的改变甚至变革,这是恩格斯100多年前就向人们揭示的军事技术发展规律,人工智能技术当然也不例外。总体来看,以人工智能技术为支撑的智能化武器装备较传统武器装备具有突防能力强、持续作战时间长、战术机动性好、训练周期短以及综合成本低等显著优势。智能化无人系统可采用小型化甚至微型化设计,使用复合材料和隐身技术,以隐蔽方式或集群方式接近目标,让敌人难以察觉或无法防范。无人武器系统还可以突破人类生理局限,装备的性能指标和运转时长只需考虑制造材料、各类机械电子设备的承受极限和动力能源的携带量,不但使得系统在机动、承压方面能力得到革命性提升,并且能够实现远距离侦察打击和在目标区域的长时间存在。同样重要的是,与传统武器系统操控训练周期一般长达数年不同,无人系统操控员仅需数月或一年左右的训练即可远程操控“捕食者”“死神”等无人武器参加实战,更多作战人员不必直接踏上战场,有望大大降低战死率和随之而来的社会舆论压力。基于人工智能技术军事化应用的上述特点,近年来美军提出了以算法较量为核心的算法战、无人武器系统蜂群式作战、具有高度自适应性的“马赛克战”等一系列新作战样式。可以预见的是,随着人工智能技术的进一步发展,智能化条件下的军事理论和作战样式创新不会停止。
总而言之,人工智能可以帮助军事力量更加精准高效地运转,同时降低人类面临的生命危险。人工智能在无人作战、情报搜集与处理、军事训练、网络攻防、智能化指挥控制决策等军事领域的广泛运用具有“改变游戏规则”的颠覆性潜力,有望重塑战争形态,改写战争规则,推动智能化战争的加速到来。中央军委科技委主任刘国治中将等专家认为,人工智能必将加速军事变革进程,对部队体制编制、作战样式、装备体系和战斗力生成模式等带来根本性变化,甚至会引发一场深刻的军事革命。
人工智能给军事安全带来的风险和挑战
人工智能作为一种科学技术,同样具备“双刃剑”属性。人工智能一方面为人类社会发展进步和维护军事安全提供了新的动力和机遇,另一方面也带来了一系列威胁与挑战。综而观之,人工智能给军事安全带来的威胁和挑战主要有以下几个方面。
2.1人工智能军事应用带来的非预期事故
人工智能的军事应用存在诸多不确定性,容易带来非预期事故的发生。这主要由以下两点原因所致:一是由于人工智能内部的脆弱性问题(internalvulnerbility)。当前,人工智能还停留在弱人工智能阶段,而弱人工智能系统的特点在于它们接受了非常专门的任务训练,例如下棋和识别图像。战争可以说是最复杂的人类活动之一,巨量且不规律的物体运动仿佛为战场环境蒙上了一层“迷雾”,难以看清和预测战争全貌。在这种情况下,系统的应用环境无时无刻都在发生变化,人工智能系统可能将难以适应。因此,当前弱人工智能存在的根本脆弱性(brittleness)很容易损害系统的可靠性。交战双方部署的人工智能系统交互产生复杂联系,这种复杂性远远超出一个或多个弱人工智能系统的分析能力,进一步加剧了系统的脆弱性,发生事故和出错的概率将大大增加。此外,人工智能算法目前还是一个“黑箱”,可解释性不足,人类很难预测它的最终结果,也容易带来很多非预期事故。二是外部的攻击利用问题(externalexploitation)。研究人员已证明,图像识别算法容易受到像素级“毒”数据的影响,从而导致分类问题。针对开源数据训练的算法尤其容易受到这一挑战,因为对手试图对训练数据进行“投毒”,而其他国家又可能将这些“中毒”数据用于军事领域的算法练。目前对抗性数据问题(adversarialdata)已经成为一个非常严峻的挑战。此外,黑客攻击还可能导致在安全网络上训练的算法被利用。当训练数据受到污染和“投毒”,就很可能产生与设计者意图不符的人工智能应用系统,导致算法偏见乃至更多非预期事故的发生。最后,人机协同也是一个很大的难题。无论是强化学习、深度学习,还是专家系统都不足以完全准确地反映人类的直觉、情感等认知能力。人工智能的军事运用是“人—机—环境”综合协同的过程,机器存在可解释性差、学习性弱、缺乏常识等短板,或将放大发生非预期事故乃至战争的风险。
2.2人工智能军备竞赛的风险
与核武器类似,由于人工智能可能对国家安全领域带来革命性影响,世界各国将会考虑制定非常规政策。目前,世界各国(尤其是中、美、俄等军事大国)都认识到人工智能是强化未来国防的关键技术,正在加大人工智能领域的研发力度,并竭力推进人工智能的军事应用,力图把握新一轮军事技术革命的主动权,全球人工智能军备竞赛态势初露端倪。具体而言,美国将人工智能视为第三次抵消战略的核心,建立“算法战跨职能小组”,筹划基于人工智能的算法战。2018年7月,美国防部设立专门的人工智能机构——联合人工智能中心(JAIC),大力推动军事人工智能应用。2019年2月12日,美国防部正式出台美军人工智能战略,并将联合人工智能中心作为推进该战略落地的核心机构。美国2021财年国防授权法案草案中也特别强调对人工智能、5G、高超声速等关键技术进行投资,建议对人工智能投资8.41亿美元,对“自主性”(autonomy)投资17亿美元。这些举措都体现出美国积极推动人工智能军事化、在人工智能领域谋求新式霸权的意图。俄罗斯在这一领域也不甘落后。2017年1月,普京要求建立“自主机器复合体”(AutonomousRoboticComplexs)为军队服务。中国政府则于2017年7月20日出台《新一代人工智能发展规划》,正式将发展人工智能上升到国家战略高度。军事领域也在通过“军民融合”战略加快“军事智能化发展”步伐,“促进人工智能技术军民双向转化,强化新一代人工智能技术对指挥决策、军事推演、国防装备等的有力支撑,推动各类人工智能技术快速嵌入国防创新领域”。
鉴于人工智能强大而泛在的技术本质以及军事领域对于强大技术的强烈需求,人工智能走向军事应用是难以阻挡的趋势,当前各国竞相推动人工智能军事化和发展人工智能武器便是其现实体现。大国间在人工智能领域的军备竞赛将会危及全球战略稳定,对国家安全带来严重威胁,埃隆·马斯克关于人工智能军备竞赛可能引发第三次世界大战的预言并非危言耸听。如同所有军备竞赛一样,人工智能领域的军备竞赛本质上都是无政府状态下安全困境的体现,如果缺乏信任和有效的军备控制措施,这将成为一场“危险的游戏”,直到一方把另一方拖垮或双方共同卷入战争,上演一场智能时代的“零和博弈”。
2.3扩展威胁军事安全的行为体范围和行为手段
传统上,威胁军事安全的主要行为体是主权国家的军队,但随着网络和人工智能技术的发展,这一行为体范围正在拓展。以网络攻击为例,根据攻防平衡理论,重大军事技术的出现将对攻防平衡产生重大影响,而有的军事技术天然偏向于进攻方。当前,人工智能技术的发展对提升网络攻击能力同样提供了极大机遇。可以预见,人工智能与深度学习的结合有望使得“高级持续威胁”系统成为现实。在这种设想下,网络攻击方能够利用APT系统24小时不间断地主动搜寻防御方的系统漏洞,“耐心”等待对方犯错的那一刻。随着人工智能逐步应用,将有越来越多的物理实体可以成为网络攻击的对象。例如,不法分子可经由网络侵入军用自动驾驶系统,通过篡改代码、植入病毒等方式使得军用无人车失去控制,最终车毁人亡。又比如通过入侵智能军用机器人,控制其攻击己方的人员或装备。同时,人工智能与网络技术结合可能进一步降低网络攻击的门槛。当智能化网络攻击系统研制成功,只要拥有足够多的资金便能有效提升自己的网络攻击能力,而不需要太高的技术要求。因此,未来恐怖分子利用人工智能进行网络攻击或攻击自主系统的算法、网络等,继而诱发军事系统产生故障(如军用无人车、无人机撞击己方人员),或者直接损坏军事物联网实体设备等,都会对军事安全产生很大威胁。
此外,人工智能的发展应用还将催生新的威胁军事安全的方式和手段。人工智能表现出诸多与以往技术不一样的特点,也自然会带来威胁军事安全的新手段,深度伪造(deepfakes)就是其中的典型代表,该技术为煽动敌对国家间的军事冲突提供了新途径。例如,A国雇佣代理黑客使用人工智能技术制作“深度伪造”视频或音频材料,虚构B国密谋针对C国采取先发制人打击,并将这段“深度伪造”材料故意向C国情报部门秘密透露,引发C国的战略误判,迫使其采取对抗手段。B国面对这种情况也将不得不采取措施予以应对,一场由A国借助人工智能技术策划的针对B、C两国的恶意情报欺诈就完成了。当前,“深度伪造”技术的发展速度远超相关的检测识别技术,“开发深度伪造技术的人要比检测它的人多100到1000倍”,这给各国安全部门抵御人工智能增强下的信息欺诈和舆论诱导制造了很多困难。此外,运用人工智能系统的军队也给自身带来了新的弱点,“算法投毒”、对抗性攻击、误导和诱骗机器算法目标等都给军事安全带来了全新挑战。
2.4人工智能产生的跨域安全风险
人工智能在核、网络、太空等领域的跨域军事应用也将给军事安全带来诸多风险。例如,人工智能运用于核武器系统将增加大国核战风险。一方面,人工智能应用于核武器系统可能会强化“先发制人”的核打击动机。核武器是大国战略威慑的基石,人工智能增强下的网络攻击将对核武器的可靠性构成新的威胁,在战时有可能极大削弱国家威慑力、破坏战略稳定。因此,尽管目前人工智能增强下的网络攻击能力的有效性并不确定,危机中仍将大大降低对手间的风险承受能力,增加双方“先发制人”的动机。信息对称是智能化条件下大国间进行良性竞争的基础和保障,但现实情况往往是,在竞争激烈的战略环境中,各国更倾向于以最坏设想来揣测他国意图并以此为假设进行斗争准备,尤其当面对人工智能赋能下的愈加强大的针对核武器系统的网络攻击能力,“先下手为强”确乎成为国家寻求自保的有效手段。另一方面,人工智能技术在核武器系统领域的应用还将压缩决策时间。人工智能增强下的网络攻击几乎发生在瞬间,一旦使核武器系统瘫痪,国家安全将失去重要屏障,给予决策者判断是否使用核武器的压力将激增。尤其在一个国家保持“基于预警发射”(lauch-on-warning)的情况下,核武器系统遭到人工智能增强下的网络攻击时几乎无法进行目标探测并且发出警报,更不可能在短时间内进行攻击溯源和判定责任归属,决策时间压缩和态势判断困难会使决策者承受巨大压力,极有可能造成战略误判,给世界带来灾难。
人工智能与网络的结合会极大提升国家行为体和非国家行为体的网络能力,同时也会催生出一系列新的问题。首先,人工智能技术的网络应用将提升国家行为体的网络攻击能力,可能会加剧网络领域的冲突。如前所述,基于人工智能的APT攻击可使得网络攻击变得更加便利,溯源问题也变得更加困难。与此同时,人工智能的网络应用可能会创造新的缺陷。目前人工智能的主要支撑技术是机器学习,而机器学习需要数据集来训练算法。一旦对方通过网络手段注入“毒数据”(如假数据),则会使得原先的人工智能系统非正常运行,可能带来灾难性后果。其次,由于人工智能算法的机器交互速度远超人类的反应速度,因此一旦将人工智能用于军事领域的网络作战,还有可能带来“闪战”风险,即人类还没来得及完全理解网络空间的战争就已经发生。此外,人工智能在太空领域的应用可能对全球战略稳定和军事安全带来破坏性影响。在人工智能的加持下,传统的反卫星手段将变得更加精准、更具破坏性、更难追溯,从而加大“先发制人”的动机,寻求先发优势。这容易破坏航天国家的军事安全和全球战略稳定,因为攻击卫星尤其是预警卫星往往被视为发动核打击的前兆。
结语
总体国家安全观强调,发展是安全的基础和目的,安全是发展的条件和保障,二者要同步推进,不可偏废。既要善于运用发展成果夯实国家安全的实力基础,又要善于塑造有利于经济社会发展的安全环境,以发展促安全、以安全保发展。因此,维护人工智能时代的军事安全并不代表放弃人工智能的发展,反而要大力推动其应用,使其成为维护军事安全的重要手段和支撑,并注重化解风险。如今,我国正处在由大向强发展的关键时期,人工智能有望成为驱动新一轮工业革命和军事革命的核心技术。因此,我们需要抢抓此次重大历史机遇,积极推动人工智能的研发和军事应用,推动军事智能化建设稳步发展,为建设世界一流军队增添科技支撑。
在当今时代,没有谁是一座孤岛,人工智能对于军事安全领域的影响是全球性的,因此推动人工智能领域的国际安全治理、构建人类命运共同体就显得尤为重要。由于人工智能的迅猛发展,目前对于智能武器尤其是致命性自主武器系统的相关法律法规还并不完善,各国在如何应对这些问题方面也没有明确的方法、举措和共识,但这些问题确关人类社会的未来前景和国际体系稳定。为了维护我国的军事安全以及整体的国家安全利益,应当推动人工智能技术治理尤其是安全领域的全球治理,在人工智能的军事应用边界(如是否应当将其用于核武器指挥系统)、致命性自主武器系统军备控制等领域开展共同磋商,在打击运用人工智能进行恐怖犯罪等领域进行合作,构建人工智能时代的安全共同体和人类命运共同体,维护国家军事安全和人类和平福祉。
免责声明:本文转自信息安全与通信保密杂志社,原作者文力浩,龙坤。文章内容系原作者个人观点,本公众号转载仅为分享、传达不同观点,如有任何异议,欢迎联系我们!
推荐阅读
2021年上半年世界前沿科技发展态势
2021年上半年世界前沿科技发展态势——信息领域
2021年上半年世界前沿科技发展态势——生物领域
2021年上半年世界前沿科技发展态势——能源领域
2021年上半年世界前沿科技发展态势——新材料领域
2021年上半年世界前沿科技发展态势——先进制造领域
2021年上半年世界前沿科技发展态势——航空领域
2021年上半年世界前沿科技发展态势——航天领域
2021年上半年世界前沿科技发展态势——海洋领域
转自丨信息安全与通信保密杂志社
作者丨文力浩,龙坤
编辑丨郑实
研究所简介
国际技术经济研究所(IITE)成立于1985年11月,是隶属于国务院发展研究中心的非营利性研究机构,主要职能是研究我国经济、科技社会发展中的重大政策性、战略性、前瞻性问题,跟踪和分析世界科技、经济发展态势,为中央和有关部委提供决策咨询服务。“全球技术地图”为国际技术经济研究所官方微信账号,致力于向公众传递前沿技术资讯和科技创新洞见。
地址:北京市海淀区小南庄20号楼A座
电话:010-82635522
微信:iite_er返回搜狐,查看更多