博舍

语音如何变成文字这是一篇你能读懂的技术原理 语音机器人的技术原理是什么

语音如何变成文字这是一篇你能读懂的技术原理

摘要

语音识别的技术原理是什么?

编辑注:本文为知乎用户张俊博原创,极客公园已获作者转载许可,原文链接:https://www.zhihu.com/question/20398418/answer/18080841。

简要给大家介绍一下语音怎么变文字的吧。希望这个介绍能让所有同学看懂。

首先,我们知道声音实际上是一种波。常见的mp3、wmv等格式都是压缩格式,必须转成非压缩的纯波形文件来处理,比如WindowsPCM文件,也就是俗称的wav文件。wav文件里存储的除了一个文件头以外,就是声音波形的一个个点了。下图是一个波形的示例。

在开始语音识别之前,有时需要把首尾端的静音切除,降低对后续步骤造成的干扰。这个静音切除的操作一般称为VAD,需要用到信号处理的一些技术。

要对声音进行分析,需要对声音分帧,也就是把声音切开成一小段一小段,每小段称为一帧。分帧操作一般不是简单的切开,而是使用移动窗函数来实现,这里不详述。帧与帧之间一般是有交叠的,就像下图这样:

图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。图中,每帧的长度为25毫秒,每两帧之间有25-10=15毫秒的交叠。我们称为以帧长25ms、帧移10ms分帧。

分帧后,语音就变成了很多小段。但波形在时域上几乎没有描述能力,因此必须将波形作变换。常见的一种变换方法是提取MFCC特征,根据人耳的生理特性,把每一帧波形变成一个多维向量,可以简单地理解为这个向量包含了这帧语音的内容信息。这个过程叫做声学特征提取。实际应用中,这一步有很多细节,声学特征也不止有MFCC这一种,具体这里不讲。

至此,声音就成了一个12行(假设声学特征是12维)、N列的一个矩阵,称之为观察序列,这里N为总帧数。观察序列如下图所示,图中,每一帧都用一个12维的向量表示,色块的颜色深浅表示向量值的大小。

接下来就要介绍怎样把这个矩阵变成文本了。首先要介绍两个概念:

1.音素:单词的发音由音素构成。对英语,一种常用的音素集是卡内基梅隆大学的一套由39个音素构成的音素集,参见TheCMUPronouncingDictionary。汉语一般直接用全部声母和韵母作为音素集,另外汉语识别还分有调无调,不详述。

2.状态:这里理解成比音素更细致的语音单位就行啦。通常把一个音素划分成3个状态。

语音识别是怎么工作的呢?实际上一点都不神秘,无非是:

第一步,把帧识别成状态(难点);第二步,把状态组合成音素;第三步,把音素组合成单词。

如下图所示:

图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。图中,每个小竖条代表一帧,若干帧语音对应一个状态,每三个状态组合成一个音素,若干个音素组合成一个单词。也就是说,只要知道每帧语音对应哪个状态了,语音识别的结果也就出来了。

那每帧音素对应哪个状态呢?有个容易想到的办法,看某帧对应哪个状态的概率最大,那这帧就属于哪个状态。比如下面的示意图,这帧对应S3状态的概率最大,因此就让这帧属于S3状态。

那这些用到的概率从哪里读取呢?有个叫「声学模型」的东西,里面存了一大堆参数,通过这些参数,就可以知道帧和状态对应的概率。获取这一大堆参数的方法叫做「训练」,需要使用巨大数量的语音数据,训练的方法比较繁琐,这里不讲。

但这样做有一个问题:每一帧都会得到一个状态号,最后整个语音就会得到一堆乱七八糟的状态号,相邻两帧间的状态号基本都不相同。假设语音有1000帧,每帧对应1个状态,每3个状态组合成一个音素,那么大概会组合成300个音素,但这段语音其实根本没有这么多音素。如果真这么做,得到的状态号可能根本无法组合成音素。实际上,相邻帧的状态应该大多数都是相同的才合理,因为每帧很短。

解决这个问题的常用方法就是使用隐马尔可夫模型(HiddenMarkovModel,HMM)。这东西听起来好像很高深的样子,实际上用起来很简单:

第一步,构建一个状态网络。第二步,从状态网络中寻找与声音最匹配的路径。

这样就把结果限制在预先设定的网络中,避免了刚才说到的问题,当然也带来一个局限,比如你设定的网络里只包含了「今天晴天」和「今天下雨」两个句子的状态路径,那么不管说些什么,识别出的结果必然是这两个句子中的一句。

那如果想识别任意文本呢?把这个网络搭得足够大,包含任意文本的路径就可以了。但这个网络越大,想要达到比较好的识别准确率就越难。所以要根据实际任务的需求,合理选择网络大小和结构。

搭建状态网络,是由单词级网络展开成音素网络,再展开成状态网络。语音识别过程其实就是在状态网络中搜索一条最佳路径,语音对应这条路径的概率最大,这称之为「解码」。路径搜索的算法是一种动态规划剪枝的算法,称之为Viterbi算法,用于寻找全局最优路径。

这里所说的累积概率,由三部分构成,分别是:

观察概率:每帧和每个状态对应的概率转移概率:每个状态转移到自身或转移到下个状态的概率语言概率:根据语言统计规律得到的概率

其中,前两种概率从声学模型中获取,最后一种概率从语言模型中获取。语言模型是使用大量的文本训练出来的,可以利用某门语言本身的统计规律来帮助提升识别正确率。语言模型很重要,如果不使用语言模型,当状态网络较大时,识别出的结果基本是一团乱麻。

这样基本上语音识别过程就完成了。

以上介绍的是传统的基于HMM的语音识别。事实上,HMM的内涵绝不是上面所说的「无非是个状态网络」那么简单。以上的文字只是想让大家容易理解,并不追求严谨。

spooling技术的工作原理是什么?

语音是人类自然文明的交互方式。计算机发明之后,让机器能够“听懂”人类的语言,理解语言中的内在含义,并能做出正确的回答就成为了人们追求的目标。我们都希望像科幻电影中那些智能先进的机器人助手一样,在与人进行语音交流时,让它听明白你在说什么。语音识别技术将人类这一曾经的梦想变成了现实。语音识别就好比“机器的听觉系统”,该技术让机器通过识别和理解,把语音信号转变为相应的文本或命令。

语音识别技术,也被称为自动语音识别AutomaTIcSpeechRecogniTIon,(ASR),其目标是将人类的语音中的词汇内容转换为计算机可读的输入,例如按键、二进制编码或者字符序列。语音识别就好比“机器的听觉系统”,它让机器通过识别和理解,把语音信号转变为相应的文本或命令。语音识别技术技术原理与工作流程概述

语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术。语音识别技术技术原理与工作流程概述

语音识别是一门涉及面很广的交叉学科,它与声学、语音学、语言学、信息理论、模式识别理论以及神经生物学等学科都有非常密切的关系。语音识别技术正逐步成为计算机信息处理技术中的关键技术。语音识别技术技术原理与工作流程概述

语音识别技术的发展

语音识别技术的研究*早开始于20世纪50年代,1952年贝尔实验室研发出了10个孤立数字的识别系统。从20世纪60年代时开始,美国卡耐基梅隆大学的Reddy等开展了连续语音识别的研究,但是这段时间发展很缓慢。1969年贝尔实验室的PierceJ甚至在一封公开信中将语音识别比作近几年不可能实现的事情。

20世纪80年代时开始,以隐马尔可夫模型(hiddenMarkovmodel,HMM)方法为代表的基于统计模型方法逐渐在语音识别研究中占据了主导地位。HMM模型能够很好地描述语音信号的短时平稳特性,并且将声学、语言学、句法等知识集成到统一框架中。此后,HMM的研究和应用逐渐成为了主流。例如,单个“非特定人连续语音识别系统”是当时还在卡耐基梅隆大学读书的李开复研发的SPHINX系统,其核心框架就是GMM-HMM框架,其中GMM(Gaussianmixturemodel,高斯混合模型)用来对语音的观察概率进行建模,HMM则对语音的时序进行建模。

20世纪80年代后期,深度神经网络(deepneuralnetwork,DNN)的前身——人工神经网络(artificialneuralnetwork,ANN)也成为了语音识别研究的一个方向。但这种浅层神经网络在语音识别任务上的效果一般,表现并不如GMM-HMM模型。

20世纪90年代时开始,语音识别掀起了这次研究和产业应用的小高潮,主要得益于基于GMM-HMM声学模型的区分性训练准则和模型自适应方法的提出。这时期剑桥发布的HTK开源工具包大幅度降低了语音识别研究的门槛。此后将近10年的时间里,语音识别的研究进展一直比较有限,基于GMM-HMM框架的语音识别系统整体效果还远远达不到实用化水平,语音识别的研究和应用陷入了瓶颈。

2006年Hinton]提出使用受限波尔兹曼机(restrictedBoltzmannmachine,RBM)对神经网络的节点做初始化,即深度置信网络(deepbeliefnetwork,DBN)。DBN解决了深度神经网络训练过程中容易陷入局部zui优的问题,自此深度学习的大潮正式拉开。

2009年,Hinton和他的学生MohamedD将DBN应用在语音识别声学建模中,并且在TIMIT这样的小词汇量连续语音识别数据库上获得成功。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇