博舍

人工智能真的可以接管人类吗我们可能想多了 人工智能未来能否接管战争机器

人工智能真的可以接管人类吗我们可能想多了

人工智能未来会威胁到人类的生存吗?事实可能远远没有这么严重。

人工智能(artificialintelligence,下称“AI”)正在变得越来越常见,我们每天都要使用的智能手机中,大部分都搭载有某种形式的人工智能,比如语音识别。而韩国棋手李世石和谷歌AlphaGo的人机大战在成为人们茶余饭后热议话题之余,也令我们开始以另一种眼光看待人工智能这一技术:人工智能已经超越人类了吗?随着人工智能的继续发展,这个看不见摸不着的电脑程序对人类而言到底是祸是福?它最终会像科幻小说和电影里所描写的那样威胁到人类的生存吗?

日前,美国信息技术和创新基金会发布了一份长达50页的报告,解答了我们对人工智能的种种疑问。在这份名为《人工智能将杀死我们!——有关人工智能未来的五大误解》(It’sgoingtokillus!andothermythsaboutthefutureofartificialintelligence)的报告中,作者罗伯特·阿特金森对当下关于人工智能的5大误解进行了梳理和批驳,并对决策者提出了建议:不仅不能阻碍AI创新,更要积极支持对它的进一步研发和使用。

误解1:AI会使大量工作岗位消失。

事实:和过去涌现的技术一样,AI将会温和地推动生产效率的提升,不会对整体就业岗位数量或失业率产生影响。

许多人认为,AI将会推动生产率爆发式增长,从而以令经济难以承受的速度“消灭”就业岗位,催生一个没有工作的下层阶级,这个阶级将被一个所谓“机器拥有者”的精英阶级所统治。这些并不是什么新鲜的预言——而且和过去一样,仍然是错误的预言。

事实上,AI会让就业岗位消失的观点有两大谬误。首先,这一观点大大高估了AI替代人类的能力。技术或AI取代人类实际上是非常困难的事,美国近年来生产率增速处于历史低位便是一个很好的例子。而用AI来取代大量工作岗位尤为困难,因为从根本上来说,AI只是“狭义AI”,其设计初衷只是为将特定的某一件事做好而已。所以,AI并不会导致就业岗位消失,反而能增加产出、提高质量、推动创新。

其次,即便AI能力出众,还是会有足够的就业机会,因为如果一家公司的工作岗位数量因效率提升而减少了,那么其实工资的成本也下降了。省下来的这笔钱将转变成更低的价格或更高的工资。将有更多资金流入经济,这些钱可以用来创造就业岗位。

误解2:AI会让人类变得愚蠢。

事实:AI将帮助人类做出更明智的决定。

有些人担心,AI将使人类过分依赖机器,并失去我们原本拥有的一些技能——这种情况下,如果机器偶尔出了错,人类夺回控制权的希望也会很渺茫。的确,如果AI能够处理人类惯常处理的日常任务,那么一些技能确实会变得不那么必要,比如说,汽车的出现让大多数人都不再需要学会如何骑马——但事实上,AI也能为我们打开一个技能的新时代。

误解3:AI会令我们毫无隐私可言。

事实:AI不会对隐私有影响,因为大部分信息行为都是受到法律法规约束的。

AI系统有能力、也有需要去收集并分析更多信息,但其对隐私的侵害不会比非AI系统更多,因为后者已经在收集和分析着大量信息。此外,今时今日那些针对数据使用和隐私保护的法律法规也将对AI进行约束。

简言之,这本质上只是一个政策问题,而不是技术问题。如果不想让AI收集特定数据,我们应该敦促决策者制定相应法规。

误解4:AI将催生偏见和滥用。

事实:大部分情况下,AI比人类更少偏见。

机器学习系统比传统软件系统更为复杂,它们会基于经验持续进行调整和改进。一些批评人士认为,这种复杂性将导致“算法偏见”,从而催生政府和企业有意或无意的滥用行为,因为这些组织会拿算法的复杂性当挡箭牌,为种种剥削、歧视或其他不道德和破坏性行为做借口。

不道德或不负责任地使用AI的情况确实可能存在,但因为这一点而抵制AI的人忽视了关键的一点:机器学习系统和它的开发者或使用它的组织机构并不是相互独立的。如果某个组织想要系统性地歧视某个特定团体,无需AI也能做到。此外,如果一种算法系统产生了意料之外的歧视,这并不是因为技术本身是带有恶意的,技术仅仅只是遵循了人类的指示,或是收集了可能会反映偏见的真实世界的数据而已。也就是说,大多数情况下,相比人类的决策过程——下意识的或是蓄意的偏见渗透在社会的方方面面,AI的偏见更少。

误解5:智能机器将接管并最终消灭人类。

事实:如果AI能发展到为我们做三明治的程度,我们就太幸运了!

有些人认为,机器将变得超级智能,并最终将胜过人类。这种智能机器将消灭人类的观点夸大了技术进步的速度,特别是在计算机芯片处理能力提升正在趋于放缓,深度学习领域以外AI进展相对较慢的情况下,更是如此。再者,机器智能和人类智能是完全不同的系统,而即便是计算领域果真取得了重大进展,也不太可能制造出拥有人类智力、想象力和适应力水平的机器。退一万步来说,假使真的造出了堪比人类智能水平的机器,这些机器还是受控于人类——因为如果不能保证机器大体上是安全的、它们所带来的好处是大于投入成本的,否则人类是不可能去制造AI机器的。

报告在最后呼吁决策者以乐观积极的心态去迎接AI,而不是害怕它;要认识到,尽管会有一些风险,但“AI本质上是好的”——其实每一种新技术都是如此。如果风险出现,就想办法去解决,而不是去阻碍它的发展。政府应该以理性和冷静的态度看待AI,并就AI的挑战和好处开展坦诚的对话。最后,决策者应当大力支持AI的研发,让AI变得更强大、更高效、更安全、更透明。

简言之,技术进步过去一直都是、将来也还会是人类进步的关键,而AI必将在这一进程中扮演重要角色。

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能的未来:人工智能将如何改变世界

在靠近芝加哥市中心的一栋不起眼的建筑里,MarcGyongyosi和IFM/Onetrack的成员们正在成长及不断壮大。

人工智能有一个基本原则:简单思考。这些词用简单的字体写在一张纸上,贴在他们两层工业厂房楼上的后墙上。然而,他们在这里用人工智能做的事情一点也不简单。

人工智能的未来人工智能正在塑造几乎所有行业的人类未来。其已经是大数据、机器人和物联网等新兴技术的主要驱动力,并将在可预见的未来继续扮演技术创新者的角色。

使用机器学习和计算机视觉来检测和分类各种“安全事件”,这个鞋盒大小的设备并没有看到全部,但也看到了许多。比如司机在操作车辆时的样子、驾驶速度、何处驾驶、周围的人的位置以及其他叉车操作员如何操纵其车辆。IFM的软件会自动检测违反安全规定的行为——例如使用手机——并通知仓库经理,使之立即采取行动。这主要目的是预防事故和提高效率。Gyongyosi声称,仅仅是知道IFM的一个设备正在观看,就已经产生了“巨大的影响”。

Gyongyosi表示:“想想相机,它确实是我们目前可用的最丰富的传感器,且价格非常有趣。如今智能手机、摄像头和图像传感器变得非常便宜,但我们捕捉了很多信息。从一张图像中,可能可以推断出25个信号;但六个月后,我们可以从同一张图像中推断出100或150个信号。唯一的区别是查看图像的软件……每个客户都能从我们引入的每个其他客户中受益,因为我们的系统开始看到和学习更多的流程,并检测出更多重要和相关的东西。”

人工智能的演变IFM只是这个不断发展的领域中无数人工智能创新者之一。例如,IBM发明者在2021年获得的9130项专利中,有2300项与人工智能有关。Tesla创始人兼科技巨头ElonMusk向非营利研究公司OpenAI捐赠了1000万美元,以资助正在进行的研究。

在始于“知识工程”的进化时期,又以零星休眠为标志的几十年后,技术发展到基于模型和算法的机器学习,并越来越关注感知、推理和归纳。现在,人工智能以前所未有的方式重新占据了舞台的中心,而且短时间内它不会让出“聚光灯”。

为什么人工智能很重要?人工智能很重要,因为其是计算机学习的基础。通过人工智能,计算机能够利用大量数据,并利用其学习到的“智能”在人类所需时间的一小部分内做出最佳决策和发现。

人工智能将改变哪些行业?现代人工智能——更具体地说,是“狭义人工智能”。其使用数据训练过的模型执行目标函数,通常属于深度学习或机器学习的类别——几乎没有一个主要行业还没有受到影响。在过去的几年里尤是如此,由于物联网的强大连接、联网设备的激增以及更快的计算机处理速度,使得数据收集和分析大大增加。

一些行业正处于人工智能之旅的起点,其他行业则是经验丰富的旅行者。两者都有很长的路要走。无论如何,人工智能于当今生活的影响是不容忽视的。

交通: 虽然完善它们可能需要一些时间,但总有一天自动驾驶汽车会载着我们从一个地方到另一个地方。制造业: 人工智能驱动的机器人与人类一起工作,执行有限范围的任务,如组装和堆放,预测分析传感器,以保持设备的平稳运行。医疗保健: 在人工智能相对新兴的医疗保健领域,疾病诊断更加迅速和准确,药物发现加速和简化,虚拟护理助理监控患者,大数据分析有助于创造更个性化的患者体验。教育: 在人工智能的帮助下,教科书被数字化,早期的虚拟导师帮助人类导师,面部分析测量学生的情绪,以帮助确定谁在挣扎或无聊,并更好地根据个人需求定制体验。媒体: 新闻业也在利用人工智能,并将继续从中受益。Bloomberg使用Cyborg技术帮助快速理解复杂的财务报告。AssociatedPress利用AutomatedInsights的自然语言能力,每年制作3700篇盈利报道,几乎是过去的4倍。客服服务:  最后但并非最不重要的一点是,Google正在研发一种人工智能助手,其可以像人一样打电话预约,如预约附近的美发沙龙等等。除了单词,系统还能理解情景语境和细微差别。但这些进步——以及许多其他进步——只是开始。未来还会有更多。

客户关系管理公司4Degrees的首席技术官兼联合创始人DavidVandegrift表示:“我认为,任何对智能软件的能力在某些时刻达到极限的假设都是错误的。”

随着公司每年在人工智能产品和服务上花费数十亿美元,像Google,Apple,Microsoft和Amazon等科技巨头花费数十亿美元来创造这些产品和服务,大学将人工智能作为其课程中更重要的一部分,以及U.S.Department升级其人工智能游戏,必然会有大事发生。其中一些发展正朝着完全实现的方向发展;有些仅仅是理论上的,且可能会一直如此。所有这些都是破坏性的,或好或坏,目前还看不到衰退的迹象。

Google前负责人、百度首席科学家AndrewNg在接受ZDNet采访时表示:“很多行业都会经历这样一种模式:冬天、冬天,然后是永恒的春天。我们可能正处于人工智能的永恒春天。”

人工智能对社会的影响人工智能将如何改变工作在西北大学的一次演讲中,人工智能专家Kai-FuLee 倡导了人工智能技术及其即将到来的影响,同时也指出了人工智能的副作用和局限性。对于前者,其警告道:

“90%的底层人口,尤其是收入或教育水平处于世界底层的50%人口,将因失业而受到严重伤害……一个简单的问题,‘程序是如何工作的呢?’这就是人工智能取代工作的可能性,因为人工智能可以在日常任务中学会自我优化。且数量越多,工作就越客观,如把东西分到垃圾桶、洗碗、摘水果和接听客服电话——这些都是重复性和例行性的脚本任务。在5年、10年或15年内,它们将被人工智能取代。”

在拥有超过100,000台机器人的在线巨头和人工智能巨头Amazon的仓库中,拣货和包装的功能仍然由人类来完成,但这种情况将会改变。

Lee的观点最近得到了Infosys总裁MohitJoshi的回应,其告诉《纽约时报》:“人们都希望取得巨大的成就。早些时候,他们在减少劳动力方面有5%到10%的增量目标。现在他们觉得,‘为什么我们不能用我们仅有的1%的人来做这件事呢?’”

更为乐观的是,Lee强调,当今的人工智能在两个方面都是无用的:它没有创造力,也没有同理心或爱的能力。相反,它是“放大人类创造力的工具”。那解决方案呢?那些从事重复性或例行工作的人必须学习新的技能,以免被淘汰。Amazon甚至向其员工提供资金来培训其他公司的工作。

UniversityofIllinoisatUrbana-Champaign计算机科学教授兼主任KlaraNahrstedt表示:“人工智能要在许多领域取得成功的绝对先决条件之一是,我们要在教育方面投入大量资金,对人们进行新工作的再培训。”

Klara担心这种情况不会广泛或经常发生。IFM的Gyongyosi甚至更具体。

“人们需要像学习一门新语言一样学习编程,”Gyongyosi表示:“他们需要尽早这样做,因为这真的是未来的趋势。在未来,如果不懂编码,就不懂编程,这只会变得更加困难。”

”虽然许多因科技而被迫失业的人会找到新的工作,但这不会在一夜之间发生。就像美国在工业革命期间从农业经济过渡到工业经济一样,这在很大程度上导致了大萧条,人们最终重新站起来。然而,短期影响是巨大的。”Vandegrift表示:“在工作消失和新工作出现之间的过渡,并不一定像人们想象的那样轻松。”

MikeMendelson,是NVIDIA的一名学习者体验设计师,是与Nahrstedt不同的教育者。他与那些希望更多地了解人工智能,并将其应用于业务的开发人员一起工作。

其表示:“如果他们了解这项技术的能力,并且非常了解该领域,他们就会开始建立联系,并认为,‘也许这是一个AI问题。’这种情况比‘我有一个想解决的具体问题’更常见。

不久的将来的人工智能在Mendelson看来,一些最有趣的人工智能研究和实验将在不久的将来产生影响,这将发生在两个领域:“强化”学习,其处理奖励和惩罚,而不是标记数据;以及生成对抗网络(简称GAN),其允许计算机算法创建而不是仅仅通过使两个网络相互对抗来进行评估。前者的典型代表是GoogleDeepMind的AlphaGoZero的围棋能力为例,后者则以原始图像或音频生成为例,该生成基于对名人或特定类型音乐等特定主题的学习。

在更大的范围内,人工智能有望对可持续性、气候变化和环境问题产生重大影响。理想情况下,通过使用精密传感器,城市将变得不那么拥挤、污染更少,总体上更宜居。

Nahrstedt表示:“一旦预测了某件事,就可制定某些政策和规则。”例如,安装在汽车上的传感器可以发送有关交通状况的数据,可以预测潜在的问题,并优化汽车的流量。其认为,这还没有以任何方式完善。还处于起步阶段。但多年以后,它将发挥非常重要的作用。

人工智能会统治世界吗?人工智能预计将对几乎所有可以想象到的行业产生持久的影响——因为预计60%的企业将受到人工智能的影响。我们已经在智能设备、汽车、医疗保健系统和最受欢迎的应用程序中看到了人工智能。在可预见的未来,我们将继续看到其影响更深入地渗透到许多其他行业。

人工智能和隐私风险当然,人工智能对大数据的依赖已经在很大程度上影响了隐私。看看CambridgeAnalytica对Facebook的恶作剧或Amazon对Alexa的窃听,这是众多科技失控的例子中的两个。批评人士认为,如果没有适当的法规和自我施加的限制,情况会变得更糟。2015年,Apple首席执行官TimCook嘲笑竞争对手Google和Facebook贪婪的数据挖掘。

Cook在2015年的一次演讲中表示:“他们在尽可能地了解关于你的一切,并试图将其变现。我们认为这是错误的。”

随后,在比利时布鲁塞尔的一次谈话中,Cook阐述了其的担忧。

“通过收集大量个人资料来推进人工智能是懒惰,而不是效率,”Cook表示“人工智能要想真正聪明,就必须尊重人类的价值观,包括隐私。如果我们在这方面做错了,危险将是深远的。”

很多人都同意了这一观点。2018年,总部位于英国的人权和隐私组织Article19和PrivacyInternational发表了一篇论文,对人工智能的焦虑仅限于其日常功能,而不是像机器人霸主出现那样的灾难性变化。

“如果负责任地实施,人工智能可以造福社会,”作者写道:“然而,与大多数新兴技术一样,商业和国家使用确实有可能对人权造成不利影响。”

作者承认,收集的大量数据可用于尝试以良性方式预测未来行为,比如垃圾邮件过滤器和推荐引擎。但也存在真正的威胁,即其会对个人隐私和免受歧视的权利产生负面影响。

为人工智能的未来做准备人工智能的可能性2018年底,国际知名人工智能专家StuartRussell在WestminsterAbbey发表讲话时,开玩笑(或不开玩笑)地表示,其与记者达成了正式协议,除非他们同意不把‘Terminator’机器人放在文章中,否则不会与之交谈。其的俏皮话揭示了对好莱坞描绘遥远未来人工智能的明显蔑视,后者倾向于过度紧张和世界末日。Russell所说的“人类级别的AI”,也被称为通用人工智能,长期以来一直是幻想的素材。但其在短时间内实现或根本实现的可能性非常小。

Russell解释道:“在我们达到类似人类水平的人工智能之前,还有许多重大突破需要实现。”

Russell还指出,人工智能目前还不能完全理解语言。这表明了目前人类和人工智能之间的明显区别:人类可以翻译机器语言并理解它,而人工智能无法翻译人类语言。然而,如果人工智能能够理解我们的语言,那么人工智能系统就能够阅读和理解所有的文字。

“一旦我们拥有了这种能力,便可查询人类所有的知识,其将能够综合、整合和回答人类从未回答过的问题,”Russell补充道:“因为其没有阅读,也没有能力把历史上一直分离的事物之间的点放在一起,并连接起来。”

这给我们提供了很多值得思考的东西。在这个问题上,模拟人脑是极其困难的,这也是AGI的未来仍然处于假设状态的另一个原因。长期任职于密歇根大学工程和计算机科学教授的JohnLaird在该领域进行了几十年的研究。

“我们的目标一直是试图构建我们所谓的认知架构,我们认为这是智能系统与生俱来的,”Laird谈到主要受人类心理学启发的工作时,“例如,我们知道的一件事是,人类大脑并不仅仅是一组同质的神经元。这是一个由不同组件组成的真实结构,其中一些与如何在这个世界上做事的知识有关。”

这就是所谓的程序记忆。还有一种是基于一般事实的知识,即语义记忆;以及,另一种是关于先前经历(或个人事实)的知识,称为情景记忆。Laird实验室的一个项目涉及使用自然语言指令教机器人一些简单的游戏,比如下棋和智力游戏。这些指令通常包括对目标的描述、法律措施的纲要和失败的情况。机器人将这些指令内化,并使用它们来计划自己的行动。然而,和以往一样,突破总是需要时间——比Laird和其同事们预想的慢。

“每次我们取得进步,”Laird表示:“我们也会对其的难度有新的认识。”

AGI是人类的威胁吗?许多人工智能领域的领军人物都认同,甚至有些人更夸张,一种噩梦般的场景,其中包括所谓的“奇点”,即超级智能机器接管人类,通过奴役或消灭人类接管并永久改变人类的存在。

已故的理论物理学家StephenHawking有一个著名的假设:如果人工智能本身开始设计比人类程序员更好的人工智能,结果可能是“机器的智能超过我们,超过蜗牛。”ElonMusk相信并警告称,AGI是人类生存的最大威胁。其表示,实现这一目标的努力就像“召唤恶魔”。甚至担心,他的朋友、Google的联合创始人LarryPage可能会无意中引导一些“邪恶”的东西出现,尽管他的初衷是好的。比如,“一支能够毁灭人类的人工智能增强型机器人舰队”。即使是IFM的Gyongyosi,在人工智能预测方面也不是危言耸听,其也没有排除任何可能性。其表示,在某一时刻,人类将不再需要训练系统;他们会自己学习和发展。

“我不认为我们目前在这些领域使用的方法会导致机器决定杀死我们,”Gyongyosi表示:“我认为,也许5年或10年后,我将不得不重新评估这一说法,因为我们将有不同的方法和方式来处理这些事情。

虽然杀人机器很可能仍然是小说的素材,但许多人相信它们将以各种方式取代人类。

牛津大学人类未来研究所公布了一项人工智能调查的结果。标题为“人工智能何时能超越人类表现?来自人工智能专家的证据”,其中包含了352名机器学习研究人员对未来几年人工智能发展的估计。

这个群体中有很多乐观主义者。受访者的中位数表示,到2026年,机器将能够撰写学校论文;到2027年,自动驾驶卡车将不再需要司机;到2031年,人工智能在零售领域的表现将超过人类;到2049年,人工智能可能会成为下一个StephenKing;到2053年,可能会成为下一个CharlieTeo。最令人震惊的是:到2137年,所有人类工作都将实现自动化。但是人类自身呢?毫无疑问,喝着机器人端来的雨伞饮料。

NorthwesternUniversity教授、MasterofScienceinAnalytics项目的创始主任DiegoKlabjan认为自己是AGI的怀疑论者。

其解释道:“目前,计算机只能处理1万多个单词。所以,有几百万个神经元。但是人类的大脑有数十亿个神经元,它们以一种非常有趣和复杂的方式连接在一起,而目前最先进的技术只是按照非常简单的模式进行简单的连接。因此,在现有的硬件和软件技术下,从几百万个神经元到数十亿个神经元,我不认为会发生这种情况。”

我们将如何使用AGI?Klabjan也不太相信极端的场景——比如,凶残机器人把地球变成了一个阴燃的地狱。其更关心的是机器——比如战争机器人——被邪恶的人类灌输错误的“动机”。麻省理工学院物理学教授、人工智能首席研究员MaxTegmark在2018年的TED演讲中表示过:“人工智能真正的威胁不是恶意,就像愚蠢的好莱坞电影里那样,而是能力——人工智能实现的目标与我们的目标并不一致。”这也是Laird的看法。

Laird表示:“我绝对看不到某些东西醒来并决定要接管世界的情况。我认为这是科幻小说里的情节,而不是未来的结局。”

Laird最担心的并不是邪恶的人工智能本身,而是“邪恶的人类将人工智能作为一种虚假的力量倍增器”,用于银行抢劫和信用卡诈骗等许多犯罪行为。因此,虽然其经常对进步的速度感到沮丧,但人工智能的缓慢燃烧实际上可能是一种祝福。

Laird表示:“了解我们正在创造什么,以及我们将如何将其融入社会,可能正是我们所需要的。”

但没有人知道确切的答案。

Russell在威斯敏斯特的演讲中表示过:“有几项重大突破必须实现,而且可能很快就会实现。”其引用了1917年英国物理学家ErnestRutherford提出的核裂变(原子分裂)的快速转变效应,并补充道,“很难预测这些概念上的突破何时会发生。”

但无论何时,如果他们做了,他都会强调准备的重要性。这意味着开始或继续讨论AGI的道德使用,以及是否应该对其进行监管。这意味着要努力消除数据偏差,这对算法有破坏作用,目前是人工智能的一大缺陷。这意味着要努力发明和增强能够控制技术的安全措施。也意味着我们要谦卑地意识到,我们能做到并不意味着我们应该做到。

“大多数AGI的研究人员预计将在几十年内实现AGI,如果我们毫无准备地撞上它,这可能是人类历史上最大的错误。它可能导致残酷的全球独裁,带来前所未有的不平等、监视、痛苦,甚至可能导致人类灭绝,”Tegmark在TED演讲中这样表示:“但如果我们谨慎行事,最终可能会进入一个美好的未来,每个人都过得更好——穷人变富有,富人更富有,每个人都健康,都可以自由地实现自己的梦想。”

"智能+"时代,人工智能如何颠覆未来战争

    原标题:人工智能:如何颠覆未来战争

    当前,世界正处于智能革命的前夜,人类社会正从“互联网+”时代迈入“智能+”时代。近年来,在大数据、新型算法和超级计算的推动下,人工智能正在改变乃至颠覆所触及的每一个行业,战争亦不例外。从水下潜航器到无人机集群,从预测性维修软件到智能决策助手,人工智能正以前所未有的广度与深度影响着战争的不同领域,推动着新一轮军事变革,战争形态和面貌正悄然被改变。

    庙算为先,战争设计日趋精细

    《孙子兵法》曰:“夫未战而庙算胜者,得算多也;未战而庙算不胜者,得算少也。”纵观人类战争史,“多算胜,少算不胜”是亘古不变的定理。

    未来战争对“庙算”的依赖度有增无减,人工智能至少可以从两方面增强战争预判的有效性:

    一是更加精确地计算并预测战争结果。在先进算法和超算能力的支撑下,人工智能系统的计算和预测结果比人脑更加准确。二是借助兵棋系统能更加有效地检验和优化作战方案。例如,融入人工智能的兵棋系统能够和人开展人机对抗,有助于人们发现问题、查找弱项。特别是将深度学习等算法引入兵棋系统后,智能系统的行为将变得深邃多变,有助于突破人类的既定思维,增强兵棋推演的对抗性和真实性,达到优化方案的目的。此外,还可利用智能兵棋系统开展机机对抗,提高推演的效率。

    2015年2月,美国国防部出台了《兵棋推演与创新》备忘录,提出要将机器学习引入兵棋推演。目前,兰德公司、雷神公司已经开始这方面的尝试。一旦将研发成熟的智能软件应用于兵棋推演,不仅能提高优化方案和预测战局的水平,还能更精确地预测战争涉及的兵力规模、弹药消耗、持续时间和保障需求等,显著提升对战争设计的能力。

    速度制胜,作战节奏空前加快

    在信息时代,战争遵循“快吃慢”制胜法则,海湾战争以来的几场战争中,美军之所以能够屡战屡胜,其关键在于始终做到了“棋快一招”。

    如今,人工智能的反应速度已经完全“碾压”人脑。2016年,在一次模拟空战中,美国辛辛那提大学研发的“阿尔法”智能软件操控F-15战机,击败了由人驾驶的F-22战机,其原因就在于该智能软件的反应速度是人类大脑反应速度的250倍!今年10月,美国密苏里大学地理空间情报中心公布了一份研究成果显示,该中心基于深度学习技术开发了一种算法模型,能够在42分钟内搜索并识别出某国东南沿海地区近9万平方千米内的导弹发射场,速度比人类分析师快85倍,准确率达到专家级影像分析师水平。

    正因如此,近年来,美、俄等军队将目光投向了人工智能,意图利用人工智能的速度优势,缩短己方在战场上的决策周期,牢牢掌握行动优势。今年7月,俄罗斯武器制造商卡拉什尼科夫公司宣称,已研制出基于人工神经网络的全自动战斗模块,能做到发现即摧毁。另外,美军则在研发自动化数据分析工具、自动目标识别软件、机载智能决策助手、数字化空中作战规划员等智能工具,意图在决策周期各个环节上减轻情报和作战人员的负担,提高决策效率。而在今年11月,美国国防部算法战项目负责人呼吁:今后美军采购的任何武器系统都应融入人工智能。

    可以预见,今后随着越来越多的智能化武器系统投入战场,战场上的作战反应时间将越来越短,交战行动将空前激烈,并最终超出人类的理解和应对能力。

    自主对抗,作战模式引发变革

    20世纪以来,侦测技术的发展和信息化浪潮下感知技术的进步,推动了“传感器-射手-武器平台”这一人机协作式作战链诞生。

    随着人工智能技术的发展,能够自动识别、锁定和打击目标的智能化武器系统逐渐出现,并能代替人类执行简单的决策命令。如美军的舰载“宙斯盾”系统、以军的“铁穹”系统、俄军的“竞技场”主动防护系统、法军的“鲨鱼”系统,等等。不过,这些系统的智能化水平目前还不高,自主交战模式通常是最后选项。

    未来,随着传感技术、新型算法、大数据技术等智能化技术群的进步,武器系统的自主行动能力将大幅提升,武器系统自主对抗的情况将越来越普遍。而在特定作战领域,如网络空间和电磁频谱领域,人类只能依托智能化武器系统进行自主对抗。与此同时,随着高超音速武器和集群作战的出现,战争将进入“秒杀”和“群架”时代,利用智能系统自主迎战几乎是唯一出路。

    未来,随着智能化武器系统的自主对抗成为新常态,作战模式将逐渐从“人在回路中”向“人在回路上”转变。新模式的主要特征可概括为“指挥之中、控制之外”,即在多数情况下,人类战士扮演监督员的角色,负责在开战前输入目标特征和设定交战规则,观察战场交战情况等。需要指出的是,在新模式下人依然是最终决策者,人类战士将根据需要自主进出作战链,采取必要的干预措施。新模式的最大优势是可以使人类战士从纷繁复杂的决策中解放出来,聚焦于主要决策和关键任务。如何确保人类能够随时接管控制权,将是今后一段时期内,人机协同技术发展面临的最大挑战。

    集群作战,让消耗战重焕生机

    在冷兵器和机械化战争时代,消耗战是基本作战方式,“多吃少”是战场制胜的基本法则。

    上世纪70年代以来,随着隐形技术、卫星定位系统、精确制导武器的登场,“多吃少”的战争法则被彻底打破。近年来,随着传感技术、仿生技术、微型化技术和人工智能技术取得长足发展,集群式作战构想再次受到各国军队的重视。所谓集群作战,是指集中部署成百上千个智能化武器,从多个方向对目标实施攻击。与传统作战方式相比,集群作战具备四大优势:

    一是单个平台小型化,战场生存能力大幅提升;二是去中心化,个体的损失不影响整体功能;三是成本低廉,数量庞大,作战效费比成倍提高;四是可实施饱和攻击,瘫痪敌防御体系。不难看出,集群作战能够达成“数量即质量”的效果,因此,被认为是智能时代的消耗战。

    美军将集群作战视为战争游戏规则的改变者,认为集群作战尤其适合应对反介入/区域拒止威胁。当前,美国国防部同时瞄准水下、水面和空中,推进多个集群研发项目,力求具备多维空间集群作战能力。此外,美军各军种正竞相开发集群作战概念,如海军陆战队设想让无人作战集群充当登陆先锋,执行战场感知、排雷除障等任务,为陆战队员抢滩上陆创造条件。

    从水下“狼群”到地面“蚁群”再到空中“蜂群”,集群作战将在未来智能化战场上大行其道。“人海战术”将改头换面重新登场,消耗战的天平将向具备集群作战能力的一方极度倾斜。未来可能出现这一场景:一边是遮天蔽日、蜂拥而至的智能机器,另一边是惊慌失措、形单影只的人类战士……(陈航辉)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇