刷脸泛滥,人工智能需要处理伦理道德问题的能力吗
0分享至在2021年全国两会期间,有关人工智能的建议一再被来自科技界的代表提及。显然,人工智能系统已经为社会带来了巨大好处,并且有潜力发挥更大的作用。
正如波特兰州立大学计算机科学教授梅拉妮·米歇尔在《AI3.0:思考人类的指南》一书中所说的那样,当下的人工智能技术对你可能一直在使用的许多服务都起到了核心作用,有些甚至你都没有意识到,如语音转录、GPS导航和出行规划、垃圾邮件过滤、语言翻译、信用卡欺诈警报、书籍和音乐推荐、计算机病毒防护以及建筑物能源利用优化等。
但在人工智能为我们的生活带来各种便利之余,人们也难免产生担忧和质疑:让人工智能来接管那些枯燥无聊、令人疲倦、有辱人格或者极其危险又工资低廉的工作真的能够造福社会吗?人工智能的研究与开发应在多大程度上受到监管?又应该由谁来监管?人们倾向于应该针对人工智能领域制定监管和道德规范,但尚未达成普遍共识的地方在于:是应该立即将重点放在能够解释人工智能系统推理过程的算法方面,还是关于数据的隐私方面,或是人工智能系统对恶意攻击的鲁棒性(指在异常和危险情况下系统生存的能力)方面,又或是关于人工智能系统的偏见以及关于超级智能潜在的风险方面?
电影《机器人与弗兰克》(2012)剧照。
对于即将到来的人工智能时代,人们的态度截然不同:有人认为人工智能实际上能够消除全球贫困,大规模减少疾病,并为地球上绝大多数人提供更好的教育。有人则对未来有一种相当悲观的预测:大批的工作被自动化技术接管导致的人类失业;由于人工智能监视而造成的对公民的隐私和权利的侵犯;不道德的自动化武器;由不透明和不可信的计算机程序做出的未经审查的决策;种族和性别偏见被放大;大众媒体被操纵;网络犯罪增多等。
那么,我们到底如何才能创造出一个真正能靠自己进行学习的人工智能系统——一个更值得信赖的系统,一个和人类一样,可以对其所面临的情况进行推理并对未来进行规划的系统呢?
以下内容经出版社授权节选自《AI3.0:思考人类的指南》,标题为摘编者所取。
原文作者丨[美]梅拉妮·米歇尔
摘编丨安也
《AI3.0:思考人类的指南》,[美]梅拉妮·米歇尔著,王飞跃、李玉珂、王晓、张慧译,湛庐文化丨四川科学技术出版社,2021年2月。
在考虑人工智能在我们社会中的作用时,我们很容易把注意力集中在不利的一面,但是,要知道,人工智能系统已经为社会带来了巨大好处,并且它们有潜力发挥更大的作用。当下的人工智能技术对你可能一直在使用的许多服务都起到了核心作用,有些甚至你都没有意识到,如语音转录、GPS导航和出行规划、垃圾邮件过滤、语言翻译、信用卡欺诈警报、书籍和音乐推荐、计算机病毒防护以及建筑物能源利用优化等。
如果你是摄影师、电影制作人、艺术家或音乐家,你可能正在使用人工智能系统来协助开展创作,例如用以帮助摄影师编辑照片、协助作曲家编曲的计算机程序。如果你是学生,你可能会从适合你自己学习风格的“智能教学系统”中受益。如果你是科学家,你很有可能已经使用了许多可用的人工智能工具中的一种来帮助你分析数据。
如果你是视力存在障碍的人,你可能会使用智能手机的计算机视觉应用程序来阅读手写的或印刷的文字,例如标牌、餐馆菜单或钞票上的文字。如果你是听力受损人士,如今你可以在YouTube上看到非常精准的字幕,在某些情况下,你甚至可以在一次演讲中获得实时的语音转录。这些只是当前人工智能工具正在改善人们生活的几个例子,许多其他的人工智能技术仍处于研究阶段,但也正渐渐成为主流。
电影《机器人与弗兰克》(2012)剧照。
在不久的将来,人工智能相关应用可能会在医疗保健领域得到广泛普及。我们将看到人工智能系统帮助医生诊断疾病并提出治疗建议、研发新的药物、监控家中老年人的健康和安全。科学建模和数据分析也将越来越依赖人工智能工具,例如,改善气候变化、人口增长和人口结构、生态和食品科学以及在22世纪我们的社会即将面临的其他重大问题的模型。对于DeepMind的联合创始人戴米斯·哈萨比斯来说,人工智能最重要的潜在好处是:
我们可能不得不清醒地认识到,由于这些问题可能太过复杂,即便由地球上最聪明的人来努力解决这些问题,单独的人类个体和科学家在有生之年都很难有足够的时间来取得足够的创新和进步……我的信念是,我们需要一些帮助,而我认为人工智能就是这一问题的解决方案。
我们都曾听说过,人工智能将会接手那些人类所讨厌的工作,如那些枯燥无聊、令人疲倦、有辱人格或者极其危险又工资低廉的工作。如果这种情况真的发生了,那将会真正有利于增加人类社会福祉。随后我将讨论这个问题的另一面:人工智能夺走了太多人类的工作。尽管还有许多工作超出了机器人目前的能力,但机器人已经被广泛地用于琐碎和重复的工厂任务了,随着人工智能的发展,越来越多的这类工作可能会被自动化的机器人取代。未来人工智能应用的具体实例包括:自动驾驶卡车和出租车,用于收割水果、扑灭大火、扫除地雷和清理环境等。除此之外,机器人可能会在太空探索中发挥出比目前更大的作用。
让人工智能来接管这些工作真的能够造福社会吗?我们可以回顾一下科技的发展历史,来从中得到一些启发。以下是人类曾经从事过但在很久以前就已经实现自动化了的一些工作的示例:洗衣工、人力车夫、电梯操作员和计算员。大多数人会认同:在以上这些例子中,使用机器代替人类做这些工作,确实让生活变得更美好了。有人可能会争辩说,如今的人工智能只是简单地延续了人类的进步路线,将那些必要的但却没人想做的工作逐渐实现自动化,从而改善人类的生活。
01
人工智能大权衡:
我们是该拥抱,还是谨慎?
吴恩达曾乐观地宣称:“人工智能是新‘电能’。”他进一步解释道:“正如100年前电能几乎改变了所有行业一样,今天我真的很难想到有哪个行业在未来几年内是不会被人工智能改变的。”有一个很有吸引力的类比:很快人工智能就会如电能一样,尽管看不到,但对电子设备来说却非常必要。电能与人工智能的一个主要的区别在于,电能在被广泛商业化之前就已经被充分认识,我们非常了解电能的功用,而对于如今许多人工智能系统的情况,我们却没有足够的认识。
电影《机器人与弗兰克》(2012)剧照。
这将带来所谓的人工智能大权衡(greatAItrade-off)。我们是应该拥抱人工智能系统,利用其能力来改善我们的生活,甚至帮助拯救生命,并且允许这些系统被更加广泛地使用呢,还是考虑当下人工智能存在难以预见的错误、易受偏见影响、易被黑客攻击以及缺少透明度等特点,应该更谨慎地使用人工智能来制定决策?对不同的人工智能应用,人类需要在多大程度上参与其中?为充分信任人工智能并使其自主工作,我们应该对人工智能系统提出哪些要求?尽管人工智能应用的部署越来越多,并且以之为基础的未来应用(如自动驾驶汽车)刚诞生就得到了吹捧,但这些问题仍在激烈讨论中。
皮尤研究中心(PewResearchCenter)的一项研究表明:人们在这些问题上普遍缺乏共识。2018年,皮尤的分析师征集了近千名相关人士的意见,其中包括技术先驱、创新者、研发人员、商业和政策领袖及活动家等,并要求他们回答如下问题:
你是否会认为,到2030年,先进的人工智能和相关技术系统很有可能会增强人类能力并为人类赋能?也就是说,那时,大多数人在大多数时候会比今天生活得更好?还是说,先进的人工智能和相关技术系统很有可能会削减人类的自治权和代理权,使得那时大多数人的状况并不会比当前更好呢?
受访者分为了两派:63%的人认为2030年人工智能的进步将使人类的状况变得更好,而37%的人则不这么认为。有人认为人工智能实际上能够消除全球贫困,大规模减少疾病,并为地球上绝大多数人提供更好的教育。有人则对未来有一种相当悲观的预测:大批的工作被自动化技术接管导致的人类失业;由于人工智能监视而造成的对公民的隐私和权利的侵犯;不道德的自动化武器;由不透明和不可信的计算机程序做出的未经审查的决策;种族和性别偏见被放大;大众媒体被操纵;网络犯罪增多等。一位受访者将未来的世界描述为:“真实,但与人类无关。”
机器智能引发了一系列棘手的伦理道德问题,与人工智能和大数据伦理相关的讨论已经可以写满好几本书了。为了说明这些问题的复杂性,我将对一个在当前已经引起人们大量关注的案例展开深入探讨:人脸识别。
02
谁来监管?人脸识别的伦理困境
电影《我,机器人》(2004)剧照。
人脸识别是使用文字来标注图像或视频中的人脸的任务。例如,Facebook将人脸识别算法应用到上传至其网站的每张照片上,尝试检测照片中的人脸并将其与已知的用户(至少是那些未禁用此项功能的用户)进行匹配。如果你在Facebook的平台上,并且某人发布了一张包含你的脸的照片,系统可能会询问你,是否要在照片中标记自己。Facebook人脸识别算法的准确性令人惊叹,但同时也令人害怕。不出所料,这种准确性源自对深度卷积神经网络的使用。该软件不仅可以对图像中位于中心位置的正脸进行人脸识别,而且可以对人群中的某一个人的脸进行识别。
人脸识别技术有许多潜在的好处,比如,帮助人们从照片集中检索图像;使视力受损的用户能够识别他们所遇到的人;通过扫描照片和视频中的人脸定位失踪儿童或逃犯,以及检测身份盗用等。我们也很容易想得到会有许多人认为这种应用程序具有侵犯性或威胁性。例如,亚马逊向警方推销了它的人脸识别系统(使用了一个奇怪的听起来像是反乌托邦式的名称“Rekognition”),该系统可以将安保相机拍摄的视频与一个已知罪犯或嫌疑人的数据库进行比对,但许多人为该系统可能造成的隐私侵犯问题感到担忧。
隐私问题是人脸识别技术应用中一个显而易见的问题。即便我不使用Facebook或任何其他具有人脸识别功能的社交媒体平台,我的照片也可能会在未经我允许的情况下被标记并随后在网上被自动识别,想一想提供收费人脸识别服务的FaceFirst公司。据《新科学家》(NewScientist)杂志报道:“FaceFirst正在面向零售商推出一套系统,据称这套系统可以通过识别每次购物的高价值客户来进行促销,而当多次被投诉的顾客进入任何一家门店时,该系统就会发出警报。”还有许多其他公司提供类似的服务。
失去隐私并不是唯一的风险,人们对于人脸识别还有一个更大的担忧,那就是可靠性:人脸识别系统会犯错。如果你的脸被错误匹配,你可能会被禁止进入一家商店、搭乘一架航班,或被错误地指控为一名罪犯。
更重要的是,目前的人脸识别系统已经被证明对有色人种进行识别时明显比对白人的识别错误率更高。强烈反对使用人脸识别技术来对公民权利进行执法的美国公民自由联盟,用535名国会议员的照片对亚马逊人脸识别产品Rekognition系统进行了测试(使用其默认设置),将这些议员的照片与因刑事指控而被捕的人员数据库进行了比较,他们发现,该系统错误地将535名国会议员中的28人与犯罪数据库中的人员匹配上了。在非洲裔美国人议员中,照片的识别错误率更是高达21%(非洲裔美国人只占美国国会议员的9%)。
美国公民自由联盟的测试和其他研究结果显示出了人脸识别系统的不可靠性和偏见的附加后果,因此,许多高科技公司宣布他们反对将人脸识别用于执法和监管。举例来说,人脸识别公司Kairos的首席执行官布莱恩·布拉肯(BrianBrackeen)就在一篇广为流传的文章中写道:
用于对嫌疑人身份进行识别的人脸识别技术,对有色人种造成了负面的影响。这是一个不容否认的事实……我和我的公司已经开始相信,将商业人脸识别系统应用在任何形式的执法或政府监管中都是错误的,它为道德败坏者的明知故犯打开了大门……我们应该追求一个未授权政府对公民进行分类、跟踪和控制的世界。
在微软公司网站上的一篇博客文章中,其总裁兼首席法律顾问布拉德·史密斯(BradSmith)呼吁国会规范人脸识别系统的使用:
人脸识别技术引发了一些与保障隐私和言论自由等基本人权有关的核心问题,这些问题增加了制造这些产品的科技公司的责任。我们认为,更加周密的政府监管,以及围绕其可接受的用途制定规范是必需的,而这将需要公共部门和私人机构共同采取行动。
谷歌紧随其后,宣布其不会通过人工智能云平台提供通用的人脸识别服务,直到他们能够确保这一技术的使用符合谷歌的原则和价值观,并能够避免滥用和有害的后果。这些公司的反应令人欣慰,但这又带来了另一个令人困扰的问题:人工智能的研究与开发应在多大程度上受到监管?又应该由谁来监管?
03
人工智能可以自我监管吗?
考虑到人工智能技术的风险,包括我在内的许多人工智能从业者,都赞成人工智能技术应该受到某种监管,但是监管不应该仅仅掌握在人工智能研究人员和相关公司的手里。围绕人工智能的问题,比如可信度、可解释性、偏见、易受攻击性和使用过程中出现的道德问题,与技术问题一样,都是牵涉社会和政治方面的问题。于是,围绕这些问题的讨论有必要接纳持有不同观点和具有不同背景的人们。简单地将监管的职责交给人工智能从业者,就像将其完全交给政府机构一样,都是不明智的。
有一个案例可以体现制定此类法规所面临的复杂性,欧盟议会在2018年颁布了一项关于人工智能的法规,有些人称之为“解释权”。这项法规要求,在“自动决策制定”的情况下,任何一个影响欧盟公民的决策都需要提供其中所涉及的与逻辑有关的有意义信息,并且这些信息需要使用清晰明了的语言,以简洁、透明、易懂和易于访问的形式来沟通和传达,这打开了有关解释问题的闸门。什么叫“有意义”或“与逻辑有关”的信息?这一法规是否禁止在制定对公民有所影响的决策时使用难以解释的深度学习方法?例如在贷款和人脸识别等方面。这种不确定性无疑将确保政策制定者和律师在很长一段时间内仍有取酬就业的机会。
表现主义科幻默片电影《大都会》(1927)》剧照。
我认为对人工智能的监管应该参照其他领域的技术监管,尤其是那些在生物和医学领域的技术,例如基因工程。在这些领域,像质量保证、技术的风险和收益分析这样的监管是通过政府机构、公司、非营利性组织和大学之间的合作而产生的。此外,现在已经建立了生物伦理学和医学伦理学领域,这些领域对技术的研发和应用方面的决策具有相当大的影响。人工智能领域的研究及其应用非常需要深思熟虑的考量和一定的道德基础。
这个基础已经开始形成。在美国,各州政府正在研究制定相关法规,例如用于人脸识别或自动驾驶汽车的法规。更重要的是,创建人工智能系统的大学和公司也需要进行自我监管。
许多非营利性的智库已经出现,并填补了这一空缺,这些智库通常由担忧人工智能的富有的科技公司企业家资助。这些组织,如“人类未来研究所”(FutureofHumanityInstitute)、“未来生命研究所”(FutureofLifeInstitute)和“存在风险研究中心”(CentrefortheStudyofExistentialRisk)经常举办研讨会、赞助研究,以及就人工智能的安全与道德问题这一主题编著教育材料,并给出一些政策建议。一个名为“人工智能合作伙伴关系”(PartnershiponAI)的伞状组织一直在努力将这类团体聚集在一起,打造一个讨论人工智能及其对人类和社会的影响的开放平台。
电影《她》(2013)剧照。
目前存在的一个障碍是:该领域在制定监管和道德规范的优先事项方面,尚未达成普遍共识。是应该立即将重点放在能够解释人工智能系统推理过程的算法方面,还是关于数据的隐私方面,或是人工智能系统对恶意攻击的鲁棒性方面,又或是关于人工智能系统的偏见以及关于超级智能潜在的风险方面?我个人的观点是,人们对超级智能可能带来的风险给予了太多关注,而对于深度学习缺乏可靠性和透明性,及其易受攻击性的关注则远远不够。
04
需要把处理伦理道德问题的能力,
赋予机器吗?
到目前为止,我的讨论集中于人类如何使用人工智能的道德问题,但是还有一个重要的问题:机器本身是否能够拥有自己的道德意识,并且足够完备以使它们能够独立做出道德决策而无须人类监管?如果我们要给予人脸识别系统、无人驾驶汽车、老年护理机器人甚至机器人士兵决策自主权,难道我们不需要把人类所拥有的处理伦理道德问题的能力赋予这些机器吗?
自从人们开始思考人工智能,就开始了关于“机器道德”问题的思考。也许,关于机器道德的最著名的讨论来自艾萨克·阿西莫夫(IsaacAsimov)的科幻小说,他在小说中提出了著名的“机器人三定律”:
第一定律:机器人不得伤害人类个体,或者对人类个体将遭受的危险袖手旁观;
第二定律:机器人必须服从人类给予它的命令,当该命令与第一定律冲突时例外;
第三定律:机器人在不违反第一、第二定律的情况下,要尽可能地保护自己。
这些定律已非常知名,但实际上,阿西莫夫提出机器人三定律的目的是证明这套定律会不可避免地失败。阿西莫夫在1942年首次提出这些定律时讲述了一个名为“逃跑”的故事:如果一个机器人遵循第二定律向危险物质移动,这时第三定律将会生效,机器人随即远离该物质;此时第二定律又重新开始生效。于是,机器人将被困在一个无尽的循环中,最终对机器人的人类主人造成了灾难性的后果。阿西莫夫的故事通常集中讨论把伦理规则编程置入机器人后可能引发的意外后果。阿西莫夫是有先见之明的:正如我们所看到的,不完整的规则和意外所引发的问题已经妨碍了所有基于规则的人工智能方法,道德推理也不例外。
科幻小说家亚瑟·克拉克(ArthurC.Clarke)在其1968年出版的《2001:太空漫游》中描写了一个类似的情节。人工智能计算机HAL被编程为始终对人类保持诚实,但同时又要对人类宇航员隐瞒他们的太空任务的真实目的。与阿西莫夫的笨拙的机器人不同,HAL饱受这种认知失调的心理痛苦的折磨:“他意识到隐瞒真相与保持忠诚之间的这种冲突正在慢慢地破坏他的心智。”结果是,这种计算机“神经症”使HAL变成了一名杀手。
电影《2001:太空漫游》(1968)剧照。
影射到现实生活中的机器道德,数学家诺伯特·维纳早在1960年就指出:“我们最好非常确信,给机器置入的目标正是我们真正想要的目标。”维纳的评论捕捉到了人工智能中所谓的价值一致性问题:人工智能程序员面临的挑战是,如何确保人工智能系统的价值观与人类保持一致。可是,人类的价值观又是什么?假设存在社会共享的普世价值有任何意义吗?
欢迎来到道德哲学的101课,我们将从每个道德哲学系学生最喜欢的思想实验——电车难题开始。假设你正在沿着一组轨道驾驶一辆加速行驶的有轨电车,就在正前方,你看到有5名工人站在轨道中间,你踩刹车却发现它们不起作用。幸运的是,有一条通向右边的轨道支线,你可以把电车开到支线上,以免撞到那5名工人,但不幸的是,在支线轨道中间也站着1名工人。这时候,你面临一个两难的选择:如果你什么都不做,电车就会直接撞到5名工人身上;如果你把电车开向右边,电车就会撞死1名工人。从道德上讲,你应该怎么做?
电车难题一直是20世纪大学道德课的一节主要内容。多数人认为,从道德上来说更可取的做法是:司机把电车开到支线上,杀死1名工人,救下另外5名工人。
后来,哲学家们发现:对本质上相同的困境选取一个不同的框架,就会导致人们给出相反的答案。事实证明,人类在关于道德困境的推理中,对困境的呈现方式是非常敏感的。最近,电车难题又作为媒体对自动驾驶汽车的报道的一部分而出现了。如何对一辆自动驾驶汽车进行编程使其能够处理这些问题,已经成为人工智能伦理讨论的一个中心议题。许多人工智能伦理思想家指出:电车问题本身,即驾驶员只有两个可怕的选择,是一个高度人为设计的场景,而在现实世界中,驾驶员永远不会遇到这样的场景;但是,电车问题已经成为我们应该如何为自动驾驶汽车编程,以让它们自己做出符合道德的决策这一问题的象征。
电影《巨人:福宾计划》(1976)剧照。
2016年,3位研究人员在数百人中进行了调研,给定类似电车问题的自动驾驶汽车可能面临的场景,并询问他们对不同行为的道德观念。最终,76%的参与者回答,自动驾驶汽车牺牲1名乘客比杀死10名行人,从道德上来说更可取。可是,当被问及是否会购买这样一辆被编程为会为了救下更多行人而选择牺牲其乘客的汽车时,绝大多数参与调查者的回答是否定的。
研究人员称:“我们发现在6项亚马逊土耳其机器人参与的研究中,参与者认同这种效益主义的自动驾驶汽车,即牺牲乘客以获取更大利益的自动驾驶汽车,并希望其他人会购买它们,但他们自己更愿意乘坐那些不惜一切代价保护乘客的自动驾驶汽车。”心理学家乔书亚·格林(JoshuaGreene)在他对这项研究的评论中指出:“在将我们的价值观置入机器之前,我们必须弄清楚如何让我们的价值观清晰且一致。”这似乎比我们想象的要更难。
一些人工智能伦理研究人员建议我们放弃直接对机器的道德规则进行编程的尝试,让机器通过观察人类的行为自行学习符合道德的价值观;然而,这种自学方法也存在我在上一章中所介绍的机器学习会面临的所有问题。
在我看来,在赋予计算机“道德智能”方面的进展不能与其他类型智能的进展分开,真正的挑战是创造出能够真正理解它们所面临的场景的机器。正如阿西莫夫的故事所阐明的:除非机器人能够理解不同场景下伤害的内涵,否则它无法可靠地执行避免伤害人类的命令。对道德进行推理要求人们认识到原因和结果的关系,想象可能的不同未来,了解其他人的信念和目标,并预测一个人处在各种情况下会采取的各种行动的可能结果。换句话说,可信任的道德理性的一个先决条件是通用的常识,而这,正如我们所见,即使在当今最好的人工智能系统中也是缺失的。
到目前为止,我们已经看到,在庞大的数据集上训练的DNN如何在特定任务上与人类的视觉能力相媲美;我们也看到了这些网络的一些弱点,包括它们对大量人类标记数据的依赖,以及它们以非人类的方式失败的倾向。我们如何才能创造出一个真正能靠自己进行学习的人工智能系统——一个更值得信赖的系统,一个和人类一样,可以对其所面临的情况进行推理并对未来进行规划的系统?
本文经授权摘编自《AI3.0:思考人类的指南》。作者:[美]梅拉妮·米歇尔;摘编:安也;编辑:西西;导语部分校对:刘军。欢迎转发至朋友圈。
特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。
Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.
/阅读下一篇/返回网易首页下载网易新闻客户端人工智能伦理学的一知半解
读MBA时候的授业导师是周教授,周教授有一门颇受学生们欢迎的课程是“企业伦理学”。时隔多年,课本的内容已经还给了学校,但周老师课上的一些话还隐约记得。
伦理学是关于道德问题的科学,是将道德思想观点的系统化和理论化。解决的基本问题只有一个,就是道德和利益的关系问题。对这一基本问题的答案决定着各种道德体系的原则,也决定着各种道德活动的评判标准。
由人组成的组织在进行经营活动时,在本质上始终存在着伦理问题。所以,企业伦理是企业经营本身的伦理。
AI伦理的提出在国内,明确提出AI伦理原则的人可能是百度的创始人李彦宏。2018年5月26日,他在贵阳大数据博览会上指出,所有的AI产品、技术都要有大家共同遵循的理念和规则:
AI的最高原则是安全可控;AI的创新愿景是促进人类更加平等地获得技术能力;AI存在的价值是教人学习,让人成长,而不是取代人、超越人;AI的终极理想是为人类带来更多的自由和可能。
同样是2018年,微软发表了《未来计算》(TheFutureComputed)一书,其中提出了开发人工智能的六大原则:公平、可靠和安全、隐私和保障、包容、透明、责任。
首先是公平性,是指不同区域的人、不同等级的人在AI面前是平等的,不应该有人被歧视。
第二是可靠性和安全性,指的是人工智能使用起来是安全、可靠、不作恶的。
第三是隐私和保障,因为涉及到数据,所以总是会引起个人隐私和数据安全方面的问题。
第四是必须考虑到包容性的道德原则,要考虑到世界上各种功能障碍的人群。
第五是透明度。在过去,人工智能领域突飞猛进最重要的一个技术就是深度学习,深度学习模型的准确度是几乎所有机器学习模型中最高的,但在这里存在一个是否透明的问题。透明度和准确度无法兼得,只能在二者权衡取舍,如果准确度更高,可能要牺牲一定的透明度。
第六是问责。问责制是一个非常有争议的话题,涉及到一个法律或者立法的问题。如果是机器代替人来进行决策、采取行动出现了不好的结果,到底是谁来负责?不能让机器或者人工智能系统当替罪羊,人必须是承担责任的。
实际上,大约在1950年,科幻作家阿西莫夫就提出了 “机器人三定律”:
第一,不伤害定律:机器人不得伤害人类,也不得见人受到伤害而袖手旁观。
第二,服从定律:机器人必须服从人的命令,但不得违反第一定律。
第三,自保定律:机器人必须保护自己,但不得违反一、二定律。
这三条定律在制造机器人的伊始便被嵌入其大脑,永远无法消除。
这些都涉及了一定的伦理问题,都还都是些概要性原则,较完善地提出AI伦理与价值的可能是阿西洛马人工智能原则了。
阿西洛马人工智能原则2017年1月初举行的“BeneficialAI”会议,在此基础上建立起来的“阿西洛马人工智能原则”,名称来自此次会议的地点——美国加州的阿西洛马(Asilomar)市,旨在确保AI为人类利益服务。
西洛马人工智能原则的第6至18条,指出了人工智能的伦理和价值:
6)安全性:人工智能系统在它们整个运行过程中应该是安全和可靠的,而且其可应用性的和可行性应当接受验证。
7)故障透明性:如果一个人工智能系统造成了损害,那么造成损害的原因要能被确定。
8)司法透明性:任何自动系统参与的司法判决都应提供令人满意的司法解释以被相关领域的专家接受。
9)责任:高级人工智能系统的设计者和建造者,是人工智能使用、误用和行为所产生的道德影响的参与者,有责任和机会去塑造那些道德影响。
10)价值归属:高度自主的人工智能系统的设计,应该确保它们的目标和行为在整个运行中与人类的价值观相一致。
11)人类价值观:人工智能系统应该被设计和操作,以使其和人类尊严、权力、自由和文化多样性的理想相一致。
12)个人隐私:在给予人工智能系统以分析和使用数据的能力时,人们应该拥有权力去访问、管理和控制他们产生的数据。
13)自由和隐私:人工智能在个人数据上的应用不能充许无理由地剥夺人们真实的或人们能感受到的自由。
14)分享利益:人工智能科技应该惠及和服务尽可能多的人。
15)共同繁荣:由人工智能创造的经济繁荣应该被广泛地分享,惠及全人类。
16)人类控制:人类应该来选择如何和决定是否让人工智能系统去完成人类选择的目标。
17)非颠覆:高级人工智能被授予的权力应该尊重和改进健康的社会所依赖的社会和公民秩序,而不是颠覆。
18)人工智能军备竞赛:致命的自动化武器的装备竞赛应该被避免。
共有23条准则,旨在确保人类在新技术出现时能顺利规避其潜在的风险,其突出核心成员有StephenHawking和ElonMusk。这个组织专注于由新技术和问题构成的潜在威胁,如人工智能、生物技术、核武器和气候变化等。
AI伦理学?实际上,很多伦理问题连人类自身都没有解决,由人类定义的伦理逻辑是否存在漏洞呢?微不足道的漏洞,在人工智能发展到一定程度后却可能成为压倒整个伦理系统的稻草。
对于功利主义者而言,“以人类为中心”将是发展人工智能的重要伦理依据:必要的领域应该限制机器的智能超过人类的智能,即使将来某一天超过了,掌握权还要在人类的手中。但是这种“物我两分”的价值观,本质上是一种“主奴思想”。在人工智能可能超过人类的语境下,可能并不是最好的解决方案。倘若人类真的要在人工智能这条路上走下去,将伦理的判断完全掌握在人类手中或是全权交给“更智慧”的人工智能都是不可行的;将人类自身与人工智能放到统一的维度去审视,方能产生一个相较而言最为完善的人工智能伦理关系。
另外,妥善处理人工智能与人类之间可能产生的情感与羁绊,也是人工智能伦理研究的重要一环。
在国外,MIT媒体实验室(MITMediaLab)和哈佛大学伯克曼克莱恩互联网及社会研究中心(BerkmanKleinCenter)共同成为了“人工智能伦理和监管基金”的管理机构,用于解决人工智能所带来的人文及道德问题。
现在,人工智能技术在我们生活的各个方面都变得越来越有用。它们存在于我们的智能手机、社交网络、家庭智能音箱、私人交通工具ーー只要你能想到的,就有人工智能在某处工作。就像任何新兴的技术一样,需要充分利用这些AI技术;同时确保人工智能在道德和收益上有益于所有人。
人工智能伦理学可能会发展成一门学科,可能要解决以下的一些问题:
人性:机器如何影响人们的行为和互动?不平等:人们如何分配机器创造的财富?失业:人们在没有工作后会发生什么?安全:人们如何保护AI不受敌人侵扰?......在建立AI体系时需要考虑的一些伦理要点现在,可能需要企业和政府介入并帮助解决这些问题,确定指导行业内的AI伦理原则,最终帮助确保AI技术的安全性和可持续性,能够发挥AI的潜力。
在建立AI伦理和AI经济时需要考虑的五个要点——
1:引入人工智能的公司治理和道德框架对于支持AI伦理的人工智能经济而言,第一步是制定关键原则,以维护该技术的道德使用。企业应起草或修订企业政策,纳入新技术的道德使用立场,概述其业务模式所特有的问责措施。公司还需在组织的各个层面建立明确的期望,使AI伦理成为整个公司讨论中的一部分,从董事会会议和员工绩效评估,到非正式管理和员工签到。
在政府层面,官员应该注意监管机构在指导实施AI伦理方面的作用。决策者应直接与行业专家合作,熟悉人工智能的技术构成、潜在的安全风险和现实世界的应用程序,然后再启动正式的调研方案。
2:揭开人工智能的神秘面纱和关于其责任的问题为了揭开人工智能的神秘面纱和围绕问责制,企业应该首先承认实施该技术的任何潜在风险,并制定在部署之前和使用之后进行AI测试的战略。在制定这些策略时,公司应该与外部专家一起探讨人工智能的问责制如何适用于特定的企业目标和客户需求。
政府官员应该认识到在采取措施促进问责制和允许人工智能创新之间的动态平衡。找到这种平衡将有助于保持技术及其用户的诚实和透明度,因为新政策仍然在制定之中。
3:建立人们对企业人工智能的信任作为一个企业,在使用人工智能时,必须尽可能保持透明。在向利益相关者介绍这一想法时,企业必须分享技术的预期目的以及认为在他们的组织中采用这一想法的重要原因。商业领袖需要通过制定培训和认证方案,明确界定使用人工智能的标准,并应公开说明为界定这些最佳实践而采取的措施,特别是为检验技术缺陷而采取的任何步骤。
政府可以通过寻找机会,让公众参与正在进行的讨论,解决民众关注的问题,并介绍今后的考虑因素,从而建立对企业AI的信任。此外,通过政府来提高民众的认识,政府可以努力减少公众对于在工作和日常生活中使用AI的某些抑制。
4:将人工智能引入劳动力队伍为了鼓励将人工智能纳入劳动力队伍,企业应投资于对自动化技术相互作用的工作人员进行再培训。为了最大限度地利用这种培训,公司可以给人力资源部门提供未来技能需求所需的数据,这样他们就能准确地知道什么样的工具可以武装当前和未来的员工队伍,从而取得成功。
5:需要为年轻学生制定数字教育方案最后,企业和政府都应该支持针对年轻学生的AI教育项目,帮助确保下一代人能够运用人工智能,理解更广泛的伦理问题。在一个理想的世界里,学生完成教育后,预测围绕人工智能技术的使用的道德框架和原则,他们将理解问责制,并反过来期望公司具有透明度。只要企业、政府和行业参与者共同努力,为AI伦理奠定适当的基础,这一切就可以实现。
AI伦理学,可能还处于一知半解的状态里,都在路上。
参考资料:
周卫中.企业社会责任的五大认识误区[J].企业管理(5):102-104.王景峰,周卫中,WANGJing-feng,etal.伪社会责任的界定与形式转化研究[J].技术经济与管理研究,2015(7):57-61.HowEnterprisesCanHelpBuildEthicalAIStrategiesBy:ChrisPreimesberger,eWEEK|October08,2018MichaelIrving,陈亮.阿西洛马23原则使AI更安全和道德[J].机器人产业,13(2):14-17.阿西洛马人工智能原则——马斯克、戴米斯·哈萨比斯等确认的23个原则,将使AI更安全和道德[J].智能机器人(1):28-29.张雪娇.阿西莫夫对机器人世界的伦理凝视[D].华中师范大学,2015.杜静,黄荣怀,李政璇,etal.智能教育时代下人工智能伦理的内涵与建构原则[J].电化教育研究,2019(7).人工智能语言与伦理2023章节测试答案
B、约翰•塞尔
C、马文•明斯基
D、艾伦•图灵
我的答案:A
2、【单选题】日语具有强烈的()。
A、第三人称性
B、第二人称性
C、客体性
D、第一人称性
我的答案:D
3、【单选题】深度学习归根结底是一个()。
A、推理机制
B、映射机制
C、识别机制
D、模拟机制
我的答案:B
4、【判断题】深度学习能够很好地处理语境性的信息。()
我的答案:X
5、【判断题】深度学习无法从客观数据达到主观体验。()
我的答案:√
8.4主流人工智能的自然语言处理技术为何处理不了具身性?
1、【单选题】()是非常接近欧陆现象学运动的语言学流派。
A、结构主义语言学
B、转化-生成语言学
C、历史比较语言学
D、认知语言学
我的答案:D
2、【单选题】现有的主流人工智能对自然语言的处理是基于()视角的。
A、第二人称
B、第三人称
C、第一人称
D、对象
我的答案:B
3、【多选题】下列哪些哲学家是从人类真实接受到的现象学体验出发来理解人类生活的方方面面?()
A、胡塞尔
B、萨特
C、海德格尔
D、梅洛•庞蒂
我的答案:ACD
4、【判断题】计算机永远无法处理日语所具有的暧昧性。()
我的答案:X
5、【判断题】认知语言学是对我们进行语言处理的认知图式进行精确的把握。()
我的答案:√
9.1机器人伦理学概述
1、【单选题】阿西莫夫三定律出自()。
A、《曙光中的机器人》
B、《我,机器人》
C、《机器人与帝国》
D、《机器与伦理》
我的答案:B
2、【多选题】人工智能伦理学包括()。
A、机器伦理学
B、机器发明者的伦理学
C、编程伦理学
D、机器人伦理学
我的答案:AD
3、【判断题】伦理道德规范编程的语义内容本身需要具身性加以奠基。()
我的答案:√
4、【判断题】机器伦理学是指造人工智能的主体自身的道德。()
我的答案:√
9.2从伦理学的“具身性”说起
1、【单选题】金谷武洋认为日本人是用虫子的视角看待世界的,这是一种()解释。
A、现象学
B、认知科学
C、认知哲学
D、生物学
我的答案:A
2、【单选题】认知语言学认为“意义”的核心观点在于()。
A、区域化
B、行动化
C、范畴化
D、理论化
我的答案:C
3、【多选题】下列与“汉密尔顿理论”相关的是()
A、利他行为是由于基因相似
B、道德德生物学起源很可能就是与“通过亲属的生存而完成家族基因的备份”这一隐蔽的生物学目的相关的。
C、在假定甲、乙两个生物学个体之间具有一定的遗传相似性的前提下,只要这种相似性与“乙从甲获得的好处“之间乘积能够抵消“甲自身因帮助乙而遭受到的损失”,那么,使得互助行为得以可能的那些基因就会在种群中传播。