深度学习—人工智能的第三次热潮
深度学习的历史趋势
迄今为止深度学习已经经历了3次发展浪潮:
20世纪40年代到60年代,深度学习的雏形出现在控制论(cybernetics)中;20世纪80年代到90年代,深度学习表现为联结主义(connectionism);直到2006年,才真正以深度学习之名复兴。初识几个概念自动从数据中学习出特征与橙子类型的各种算法,那么这个模型的样子就是你的规则库。
深度学习处于人工智能的哪个位置认识深度学习一、神经网络的基本单元——神经元用数学模型模拟的人工神经元里面处理的是所有树突的信号源及相关强的计算。计算公式是这样的:s=p1w1+p2w2+p3w3+b
二、神经网络的结构三、深度学习的概念深度神经网络(深度学习)是一种具备至少一个隐层的神经网络,即隐藏层的层数很多。
深度学习与传统方法的区别监督学习深度学习中的监督式学习包括卷积神经网络、循环神经网络等。
非监督学习深度学习中的非监督式学习包括确定型的自编码器方法、基于概率型受限玻尔兹曼机的对比散度方法等。
深度学习常用的方法自编码器卷积神经网络循环神经网络深度学习无监督式方法自编码器自编码器可以作为一种特征降维的方法。当我们使用4个值表示四个类别的时候:用4个值表示4个类别是不紧致的,存在压缩表示的可能性,比如2个值就可以表示这四个不同的数。
深度学习有监督式方法卷积神经网络深度学习有监督方法卷积神经网络深度学习有监督方法—循环神经网循环神经网络的来源是为了刻画一个序列当前的输出与之前信息的关系。从网络结构上,循环神经网络会记忆之前的信息,并利用之前的信息影响后面结点的输出。即:循环神经网络的隐藏层之间的结点是有连接的,隐藏层的输入不仅包括输入层的输出,还包括上一时刻隐藏层的输出。傅园慧说:“在澳洲训练非常辛苦,我已经快死了,简直是生不如死”。从文字上来可能是愤怒的。“鬼知道我经历了什么,我太累了”,虽然文字上是辛苦的,但是人脸表情、语音情绪不是,所以总结起来还是开心的。
介绍强化学、AIphaGo和迁移学习强化学习不学习,看电视—家长训斥、挨打好好学习—奖励棒棒糖
AIphaGo迁移学习深度学习的多种应用场景安防监控智慧城市医疗健康智能家居深度学习在智能运维中的应用方法智能运维的发展过程KPI异常检测算法使用自编码器结合聚类算法对KPI进行快速聚类规律一致的模式抖动剧烈的模式异常的模式运维中常见的KPI数据是一种时间序列数据,它具有数据实例多、维度高的特点。为了降低数据分析工作的开销,提高分析效率,我们希望将海量的时序数据曲线分为若干类别,从而减少需要考察的曲线数目。因此,需要对大规模辅助KPI标注、辅助构建故障传播链。
使用LSTM做KPI趋势预测写在最后近年来,在AIOps领域快速发展的背景下,IT工具、平台能力、解决方案、AI场景及可用数据集的迫切需求在各行业迸发。基于此,云智慧在2021年8月发布了AIOps社区,旨在树起一面开源旗帜,为各行业客户、用户、研究者和开发者们构建活跃的用户及开发者社区,共同贡献及解决行业难题、促进该领域技术发展。
社区先后开源了数据可视化编排平台-FlyFish、运维管理平台OMP、云服务管理平台-摩尔平台、Hours算法等产品。
可视化编排平台-FlyFish:
项目介绍:https://www.cloudwise.ai/flyFish.html
Github地址:https://github.com/CloudWise-OpenSource/FlyFish
Gitee地址:https://gitee.com/CloudWise/fly-fish
行业案例:https://www.bilibili.com/video/BV1z44y1n77Y/
部分大屏案例:
人工智能定义及三次热潮
定义:有关“智能主题的研究与设计”的学问,而“智能主题是指一个可以观察周遭环境并做出行动以达致目标的系统”
深度学习+大数据=人工智能
目前人工智能正处于第三次热潮之中,且三次热潮都是从人机进行棋类比拼掀起,前两次热潮在持续一段时间后都进入了低谷期
关于第三次热潮:
前两次由学术研究主导,这次是现实商业需求主导前两次主要是市场宣传层面,这次是商业模式层面的前两次主要是通过劝说、游说获得投资,这次是企业主动投资前两次更多的是提出问题,这次更多的是解决问题前两次技术还不成熟,计算机计算能力弱,这次无论是在技术上还是在计算能力上都已经有了跨越性的提高随着人工智能技术的提高和应用,会使生活更加便利、丰富
热潮下的冷思考,人工智能即将改变的三大领域
作者:国务院发展研究中心国际技术经济研究所
中国电子学会
智慧芽
编者按:
遥想1969年,ARPANET(由美国国防部高级研究计划局ARPA创建)刚刚成立的时候,还只是美国国防部防止苏联打击的冷战产物。谁曾想在随后的半个世纪,由ARPANET转变而来的Internet竟掀起了如此巨大的波澜。同样地,人工智能技术的潜力大家都有目共睹,但未来人工智能可以用来做什么,将会给人类社会带来多大的变革,也在考验我们的想象力。尽管人工智能技术还处在初级发展阶段,但它现有的能力也足以改变众多领域,尤其是那些有着大量数据却无法有效利用的领域。
本文摘自《人工智能全球格局》,该书得到倪光南、邬贺铨两位院士的共同推荐,得到百度CTO王海峰博士盛赞。到底是一本怎样的书,能同时得到两位院士的推荐?这本书由国务院发展研究中心国际技术经济研究所、中国电子学会、智慧芽共同撰写,是一本通俗易懂的人工智能科普读物,从源头上思考人工智能的本质和发展历程,全面解读各国政府、科技巨头的人工智能布局,理性思考、审慎看待我国的人工智能科技和产业实力,讲述了以科技创新领跑世界的中国故事。
一、人工智能推动基础科学理论突破
实际上,材料、化学、物理等基础科学领域的研究过程中充满了“大数据”,从设计、实验、测试到证明等环节,科学家们都离不开数据的搜集、选择和分析。由于物理、化学或力学规律的存在,这些领域的数据往往都是结构化的、高质量的以及可标注的。人工智能技术(机器学习算法)擅长在海量数据中寻找“隐藏”的因果关系,能够快速处理科研中的结构化数据,因此得到了科研工作者的广泛关注。人工智能在材料、化学、物理等领域的研究上展现出巨大优势,正在引领基础科研的“后现代化”。
以物理领域为例,人工智能的应用给粒子物理、空间物理等研究带来了前所未有的机遇。为寻找希格斯玻色子(上帝粒子),进一步理解物质的微观组成,欧洲核子研究中心(CERN)主导开发了大型强子对撞机(LHC)。LHC是目前世界上最大的粒子加速器,它每秒可产生一百万吉字节(GB)的数据,一小时内积累的数据竟然与Facebook一年的数据量相当。有一些研究人员就想到,利用专用的硬件和软件,通过机器学习技术来实时决定哪些数据需要保存,哪些数据可以丢弃。事实证明,机器学习算法可以至少做出其中70%的决定,能够大大减少人类科学家的工作量。
尽管人工智能商业化发展更容易受关注,但人工智能在基础科研中的应用,却更加激动人心。因为社会生产力的变革,归根结底在于基础科研的进一步突破。我们或许再也回不到有着牛顿、麦克斯韦和爱因斯坦等科学“巨人”的时代。在那个时代,“巨人”们可以凭借着超越时代的智慧,在纸张上书写出简洁优美的定理,或者设计出轰动世界的实验。像这样做出伟大工作的机会或许不多了,在这个时代,更多需要的是通过大量实验数据来获取真理的工作。大到宇宙起源的探索,小到蛋白质分子的折叠,都离不开一批又一批科学家们前赴后继、执着探索。人工智能技术的应用,或许能帮助蓝色星球的科学家们摆脱无穷无尽实验的痛苦,加速重大科学理论的发现,将人类文明提升到新的台阶。
二、人工智能推动社会生产效率快速提升
人工智能无疑是计算机应用的最高目标和终极愿景:彻底将人类从重复机械劳动中解放出来,让人们从事真正符合人类智能水平、充满创造性的工作。在60年的人工智能发展史中,已经诞生了机器翻译、图像识别、语音助手和个性推荐等影响深远的应用,人们的生活在不知不觉中已经发生了巨大变化。未来,人工智能应用场景进一步延伸,是否能够带来社会生产效率的极大提升,引领人类进入新时代?
为了探索这一问题,曾在谷歌和百度担任高管的吴恩达于2017年成立了一家立足于解决AI转型问题的公司Landing.ai。吴恩达通过一篇文章和一段视频在个人社交网站上宣布了该公司的成立,并表示希望人工智能能够改变人类的衣食住行等方方面面的生活,让人们从重复性劳动的精神苦役中解脱。Landing的中文含义是“落地”,这家公司的目标是帮助传统企业用算法来降低成本、提升质量管理水平、消除供应链瓶颈等等。截至目前,Landing.ai已经选择了两个落地领域,分别是制造业和农业。
Landing.ai官网页面
Landing.ai最先与制造业巨头富士康达合作。Landing.ai尝试利用自动视觉检测、监督式学习和预测等技术,帮助富士康向智能制造、人工智能和大数据迈进,提升制造过程中AI应用的层次。吴恩达认为,人工智能对制造业带来的影响将如同当初发明电力般强大,人工智能技术很适合解决目前制造业面临的一些挑战,如质量和产出不稳定、生产线设计弹性不够、产能管理跟不上以及生产成本不断上涨等。目前,工业互联网、智能制造和工业4.0等概念已经深入人心,传统企业都在向智能化、数据化转型,但生产过程中获取的大量数据如何应用又成了新的问题。Landing.ai与富士康的合作,或许将给传统制造的从业者带来新的启示。
当然,制造业的核心竞争力还在于制造业本身,比如车床的精度、热处理炉的温度控制能力等等,农业的核心竞争力也在于农业本身,比如育种技术、转基因技术等等。人工智能技术的主要价值在于提升决策能力,进一步提升生产效率,以及降低人的重复性劳动等方面,这就是人工智能为什么可以“赋能”各个行业的原因。
三、人工智能将有效改善人类的生存空间
自第一次工业革命以来,人类活动对自然界造成的影响越来越大,日益增长的资源需求使得土地利用情况产生巨大变化,污染愈发严重,生物多样性锐减,人类的生存空间变得越来越恶劣。进入人工智能时代后,怎样更好地利用大数据和机器学习等前沿技术,为环保和绿色产业赋能,成为了政府、科学家、公众以及企业的关注焦点。
在能源利用方面,谷歌旗下的DeepMind无疑走在了最前面。2016年开始,DeepMind将人工智能工具引入到谷歌数据中心,帮助这家科技巨头节省能源开支。DeepMind利用神经网络的识别模式系统来预测电量的变化,并采用人工智能技术操控计算机服务器和相关散热系统,成功帮助谷歌节省了40%的能源,将谷歌整体能效提升了15%。2018年后,DeepMind更是将“触手”伸向了清洁能源领域。我们都知道,风力发电因为有较大的波动性和不可预测性,因而难以并入电网,无法有效利用。DeepMind利用天气预报、气象观测等数据训练神经网络模型,可以提供36小时后的风力预测,从而让农场的风力发电变得能够预测。一旦风力发电可以预测,电厂就能有充裕的时间启动需要较长时间才能上线的发电手段,与风力互补。如此一来,风电并网难的问题就可轻松解决。
DeepMind预测的风力发电量和实际发电量对比
一直以来,人们寄希望于未来的科学技术进步能够解决当下的自然环境问题,而人工智能技术的出现点燃了这一希望。一旦人工智能技术可以加速基础科学理论的突破,实现生产效率的大幅提升,有效改善人类的生存空间,一切发展与自然环境的问题也就迎刃而解。
四、总结
站在2019年看人工智能,不免感到几丝寒意。人工智能算法没有明显突破,鲁棒性差、算法黑箱等问题依然突出,部分商业化落地也不及预期,一些专家学者开始担心人工智能将迎来新的“寒冬”。
但若站在未来回顾人工智能,当前所有的担忧将仅仅是一个个小插曲。即便是目前,人工智能技术的潜力也远远未终结。人工智能即将带来的变革,仍将会超乎大部分人的想象。近年来,许多行业都已切实感受到人工智能带来的颠覆,包括金融、制造、教育、医疗和交通等等。但人工智能的价值维度还有很多,加速基础科学研究、提升社会生产效率和改善人类生存空间也只是其中的几个方面,我们不妨先提升一下自己的想象力。人工智能将为人类带来怎样的变革,让我们拭目以待吧!