博舍

大数据:大数据的实际应用、发展趋势和面临的问题 人工智能的现有发展趋势包括哪些方面的问题

大数据:大数据的实际应用、发展趋势和面临的问题

大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

三、大数据的特点

左:肯尼斯·库克耶右:维克托·迈尔-舍恩伯格

在维克托·迈尔-舍恩伯格(ViktorMayer-Schönberger)及肯尼斯·库克耶(KennethCukier)编写的《大数据时代》中,大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。

大数据5V特点

大数据的5V特点(IBM提出):Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。在此基础上,专家学者们还总结出复杂性(Complexity)、价值(value)。

1.容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;

2.种类(Variety):数据类型的多样性;

3.速度(Velocity):指获得数据的速度;

4.可变性(Variability):妨碍了处理和有效地管理数据的过程;

5.真实性(Veracity):数据的质量;

6.复杂性(Complexity):数据量巨大,来源多渠道;

7.价值(Value):合理运用大数据,以低成本创造高价值。

大数据的计算

四、大数据计算:按照进率1024(2的十次方)计算

大数据需要特殊的技术,以有效地处理大量的容忍经过时间内的数据。适用于大数据的技术,包括大规模并行处理(MPP)数据库、数据挖掘、分布式文件系统、分布式数据库、云计算平台、互联网和可扩展的存储系统。

最小的基本单位是bit,按顺序给出所有单位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。

它们按照进率1024(2的十次方)来计算:

1Byte=8bit

1KB=1,024Bytes=8192bit

1MB=1,024KB=1,048,576Bytes

1GB=1,024MB=1,048,576KB

1TB=1,024GB=1,048,576MB

1PB=1,024TB=1,048,576GB

1EB=1,024PB=1,048,576TB

1ZB=1,024EB=1,048,576PB

1YB=1,024ZB=1,048,576EB

1BB=1,024YB=1,048,576ZB

1NB=1,024BB=1,048,576YB

1DB=1,024NB=1,048,576BB

1Byte=8bit

1KB=1,024Bytes=8192bit

1MB=1,024KB=1,048,576Bytes

1GB=1,024MB=1,048,576KB

1TB=1,024GB=1,048,576MB

1PB=1,024TB=1,048,576GB

1EB=1,024PB=1,048,576TB

1ZB=1,024EB=1,048,576PB

1YB=1,024ZB=1,048,576EB

1BB=1,024YB=1,048,576ZB

1NB=1,024BB=1,048,576YB

1DB=1,024NB=1,048,576BB

1Byte=8bit

1KB=1,024Bytes=8192bit

1MB=1,024KB=1,048,576Bytes

1GB=1,024MB=1,048,576KB

1TB=1,024GB=1,048,576MB

1PB=1,024TB=1,048,576GB

1EB=1,024PB=1,048,576TB

1ZB=1,024EB=1,048,576PB

1YB=1,024ZB=1,048,576EB

1BB=1,024YB=1,048,576ZB

1NB=1,024BB=1,048,576YB

1DB=1,024NB=1,048,576BB

全称:

1Bit(比特)=BinaryDigit

8Bits=1Byte(字节)

1,000Bytes=1Kilobyte

1,000Kilobytes=1Megabyte

1,000Megabytes=1Gigabyte

1,000Gigabytes=1Terabyte

1,000Terabytes=1Petabyte

1,000Petabytes=1Exabyte

1,000Exabytes=1Zettabyte

1,000Zettabytes=1Yottabyte

1,000Yottabytes=1Brontobyte

1,000Brontobytes=1Geopbyte

1Bit(比特)=BinaryDigit

8Bits=1Byte(字节)

1,000Bytes=1Kilobyte

1,000Kilobytes=1Megabyte

1,000Megabytes=1Gigabyte

1,000Gigabytes=1Terabyte

1,000Terabytes=1Petabyte

1,000Petabytes=1Exabyte

1,000Exabytes=1Zettabyte

1,000Zettabytes=1Yottabyte

1,000Yottabytes=1Brontobyte

1,000Brontobytes=1Geopbyte

1Bit(比特)=BinaryDigit

8Bits=1Byte(字节)

1,000Bytes=1Kilobyte

1,000Kilobytes=1Megabyte

1,000Megabytes=1Gigabyte

1,000Gigabytes=1Terabyte

1,000Terabytes=1Petabyte

1,000Petabytes=1Exabyte

1,000Exabytes=1Zettabyte

1,000Zettabytes=1Yottabyte

1,000Yottabytes=1Brontobyte

1,000Brontobytes=1Geopbyte

大数据分析

五、大数据分析

越来越多的应用涉及到大数据,这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以,大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于此,大数据分析方法理论有哪些呢?

1、大数据分析的五个基本方面

(1)、预测性分析能力(PredictiveAnalyticCapabilities)

数据挖掘可以让数据分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。

(2)、数据质量和数据管理(DataQualityandMasterDataManagement)

数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。

(3)、可视化分析(AnalyticVisualizations)

不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。

(4)、语义引擎(SemanticEngines)

我们知道由于非结构化数据的多样性等原因,为数据分析带来了新的挑战,我们需要一系列的工具去解析、提取、分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。

(5)、数据挖掘算法(DataMiningAlgorithms)

可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。

假如大数据真的是下一个重要的技术革新的话,我们最好把精力关注在大数据能给我们带来的好处,而不仅仅是挑战。

2、大数据分析我们应该关注哪两个内容呢?

数据建模结构图

(1)、数据建模

数据建模指的是对现实世界各类数据的抽象组织,确定数据库需管辖的范围、数据的组织形式等直至转化成现实的数据库。将经过系统分析后抽象出来的概念模型转化为物理模型后,在visio或erwin等工具建立数据库实体以及各实体之间关系的过程(实体一般是表)。

数据建模是一种用于定义和分析数据的要求和其需要的相应支持的信息系统的过程。因此,数据建模的过程中,涉及到的专业数据建模工作,与企业的利益和用户的信息系统密切相关。一般分为三种类型:

①、使用计算机描述一个系统的行为。

②、使用计算机以数学方法描述物体和它们之间的空间关系。

③、应用程序和数据建模是为应用程序确定、记录和实现数据和进程要求的过程。

KPI指标鱼骨图

(2)、KPI指标

KPI指标是指关键业绩指标,是企业绩效考核的方法之一,其特点是考核指标围绕关键成果领域进行选取,MBA、CEO12篇及EMBA等常见企业管理教育均对关键业绩指标(KPI)的应用及其特点有所介绍。

最常见的关键业绩指标有三种:一是效益类指标,如资产盈利效率、盈利水平等;二是营运类指标,如部门管理费用控制、市场份额等;三是组织类指标,如满意度水平、服务效率等。

(2)数据建模和KPI指标对大数据分析的影响

前者是传统数据仓库下的数据建模,在该数据模型下需要支持上面各种分析方法和分析策略;后者是根据业务目标和业务需求建立的KPI指标体系,对应指标体系的分析模型和分析方法。解决这两个问题可以基本解决大数据分析过程中产生的问题。

3、大数据两大核心:云技术和BI

(1)、云技术

云技术是指在广域网或局域网内将硬件、软件、网络等系列资源统一起来,实现数据的计算、储存、处理和共享的一种托管技术。

云技术关系图

云技术(Cloudtechnology)基于云计算商业模式应用的网络技术、信息技术、整合技术、管理平台技术、应用技术等的总称,可以组成资源池,按需所用,灵活便利。云计算技术将变成重要支撑。技术网络系统的后台服务需要大量的计算、存储资源,如视频网站、图片类网站和更多的门户网站。伴随着物联网行业的高度发展和应用,将来每个物品都有可能存在自己的识别标志,都需要传输到后台系统进行逻辑处理,不同程度级别的数据将会分开处理,各类行业数据皆需要强大的系统后盾支撑,只能通过云计算来实现。

(2)、BI

BI(BusinessIntelligence)即商务智能,它是一套完整的解决方案,用来将企业中现有的数据进行有效的整合,快速准确地提供报表并提出决策依据,帮助企业做出明智的业务经营决策。

BI商业智能解决方案

把商业智能看成一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供数据支持。商业智能产品及解决方案大致可分为数据仓库产品、数据抽取产品、OLAP产品、展示产品、和集成以上几种产品的针对某个应用的整体解决方案等。

(3)、云技术和BI的关系

通过云技术和BI商业智能相结合,从而达到相辅相成互补的作用,离开云技术大数据没有根基和落地可能,离开BI和价值,大数据又将变化为舍本逐末,丢弃关键目标。简单总结就是大数据目标驱动是BI,大数据实施落地式云技术。所以说明大数据两大核心为云技术和BI。

传统的BI分析通过大量的ETL数据抽取和集中化,形成一个完整的数据仓库,而基于大数据的BI分析,可能并没有一个集中化的数据仓库,或者将数据仓库本身也是分布式的了,BI分析的基本方法和思路并没有变化,但是落地到执行的数据存储和数据处理方法却发生了大变化。

六、大数据的实际应用

说起大数据的实际应用,我们举一些我们知道的例子,这样更贴近我们的生活,也可以让我们更容易理解大数据,也能更好的感受大数据的魅力。

1.梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。

2.Tipp24AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。

3.沃尔玛的搜索。这家零售业寡头为其网站Walmart.com自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。

4.快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。

5.Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。

6.PredPolInc.预测犯罪机率。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。

7.TescoPLC(特易购)提高运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。

8.AmericanExpress(美国运通AmEx)实现商业智能。以往,AmEx只能实现事后诸葛式的报告和滞后的预测。“传统的BI已经无法满足业务发展的需要。”Laney认为。于是,AmEx开始构建真正能够预测忠诚度的模型,基于历史交易数据,用115个变量来进行分析预测。该公司表示,对于澳大利亚将于之后四个月中流失的客户,已经能够识别出其中的24%。

大数据发展趋势

七、大数据发展7大趋势

所以,在政府的明确方向引导,专家学者的共同推动下,现在大数据呈现7大趋势:

1、趋势一:数据的资源化

何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机,这样才能保证立足于商场不败之地。

2、趋势二:与云计算的深度结合

大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。

3、趋势三:科学理论的突破

随着大数据的快速发展,就像计算机和互联网一样,大数据很有可能是新一轮的技术革命。随之兴起的数据挖掘、机器学习和人工智能等相关技术,可能会改变数据世界里的很多算法和基础理论,实现科学技术上的突破。

4、趋势四:数据科学和数据联盟的成立

未来,数据科学将成为一门专门的学科,被越来越多的人所认知。各大高校将设立专门的数据科学类专业,也会催生一批与之相关的新的就业岗位。与此同时,基于数据这个基础平台,也将建立起跨领域的数据共享平台,之后,数据共享将扩展到企业层面,并且成为未来产业的核心一环。

5、趋势五:数据管理成为核心竞争力

数据管理成为核心竞争力,直接影响财务表现。当“数据资产是企业核心资产”的概念深入人心之后,企业对于数据管理便有了更清晰的界定,将数据管理作为企业核心竞争力,持续发展,战略性规划与运用数据资产,成为企业数据管理的核心。数据资产管理效率与主营业务收入增长率、销售收入增长率显著正相关;此外,对于具有互联网思维的企业而言,数据资产竞争力所占比重为36.8%,数据资产的管理效果将直接影响企业的财务表现。

6、趋势六:数据质量是BI(商业智能)成功的关键

采用自助式商业智能工具进行大数据处理的企业将会脱颖而出。其中要面临的一个挑战是,很多数据源会带来大量低质量数据。想要成功,企业需要理解原始数据与数据分析之间的差距,从而消除低质量数据并通过BI获得更佳决策。

7、趋势七:数据生态系统复合化程度加强

大数据的世界不只是一个单一的、巨大的计算机网络,而是一个由大量活动构件与多元参与者元素所构成的生态系统,终端设备提供商、基础设施提供商、网络服务提供商、网络接入服务提供商、数据服务使能者、数据服务提供商、触点服务、数据服务零售商等等一系列的参与者共同构建的生态系统。而今,这样一套数据生态系统的基本雏形已然形成,接下来的发展将趋向于系统内部角色的细分,也就是市场的细分;系统机制的调整,也就是商业模式的创新;系统结构的调整,也就是竞争环境的调整等等,从而使得数据生态系统复合化程度逐渐增强。

大数据面临的问题

八、大数据发展过程中面临哪些问题?

一个事物的发展,往往伴随着表扬和批评,那么大数据又存在哪些问题,值得我们注意呢?

1、问题一:数据真实性存在质疑。

在这个数据能够快速变现的时代,因为巨大利益的诱惑,数据的真实性通常要打一个“?”,官员要政绩、学界要成果、商界要名利。注水性数据导致硬数据软化。基尼系数、博主粉丝量、复兴指数,为何一直在被质疑?因为越来越多的软件购买信息,弄虚作假,使得大数据也是真假难辨。数据背后的细节,数据源的真实、全面性以及处理过程中的科学性,是大数据走向权威和信任的重要评断标准。

2、问题二:数据样本具有代表性,数据信息不全面。

大家都知道“井底之蛙”的故事吧,这则寓言故事告诉我们看世界的角度不同,眼界也不同。就好像微博不能代表网友的全部意见,而网友更不能代表社会的心声。所以我们在收集数据的时候,因为渠道的不同,往往数据信息也具有这个网站独特的代表性,导致信息不够全面,这样导致大数据分析出来的结果也不是准确的。

3、问题三:数据信息存在相关性误差。

举一个不恰当的例子,一个城市的网页点击率越高,说明这个城市网络形象越好。这显然是不准确的,虽然,数据统计表明网页点击数量和城市网络形象存在某种联系,但负面事件带来的网页量大爆发也是不可忽略的,所以这个结论的科学性大打折扣。利用大数据,基于一定算法和模型对变量元素进行相关性分析,在要素构成简单的情景中可以,在复杂系统中,仅有相关性解释还不够,易走偏。相关性要真正体现在数据之间、数据与真实事件影射的现象之间、真实事件的客观联系上。所以数据信息存在相关性误差。

4、问题四:大数据故事化,不能最终解决问题。

房价已然居高不下,所以一个开发商规划一个房地产项目时,要建立数据中心,圈地造楼,利用大数据哗众取宠。又比如做科研项目时,往往讲究另辟蹊径,思路新颖,借用大数据大张旗鼓,如果大数据脱离实际化,营造一个概念化、故事化,这就使得大数据背离工具化、服务化和实用化的初衷,不能最终解决问题,只不过是一场华丽的泡沫秀,转瞬即逝,应避免大数据故事化。

5、问题五:数据泄露泛滥,采取安全措施尤为重要。

未来几年数据泄露事件的增长率也许会达到100%,除非数据在其源头就能够得到安全保障。可以说,在未来,每个财富500强企业都会面临数据攻击,无论他们是否已经做好安全防范。而所有企业,无论规模大小,都需要重新审视今天的安全定义。在财富500强企业中,超过50%将会设置首席信息安全官这一职位。企业需要从新的角度来确保自身以及客户数据,所有数据在创建之初便需要获得安全保障,而并非在数据保存的最后一个环节,仅仅加强后者的安全措施已被证明于事无补。

6、问题六:大数据存在侵犯隐私隐患,应立法保护隐私。

大数据是由无数个小数据组合而来,这些小数据细分到每个人的身上,既能了解他的行为喜好,也能评估他接下来的行为意识,所以保护大数据的安全隐私是非常有必要的,必要的时候,还可以进行立法,明确数据隐私边界。

大数据的意义

八、发展大数据的意义

2015年9月18日贵州省启动我国首个大数据综合试验区的建设工作,力争通过3至5年的努力,将贵州大数据综合试验区建设成为全国数据汇聚应用新高地、综合治理示范区、产业发展聚集区、创业创新首选地、政策创新先行区。正因如此,贵阳大数据交易平台的建立,可以有效打破大数据信息交流阻碍,汇聚海量高价值数据,挖掘数据价值的最大化。围绕这一目标,贵州省将重点构建“三大体系”,重点打造“七大平台”,实施“十大工程”。

大数据交易平台,让信息不再是一座座“孤岛”。众多业内人士认为,尽管当前大数据存储和挖掘技术已经逐步成熟,但数据孤岛的大量存在,制约了数据的流通和变现。在大数据时代要实现商业价值变现,需要实时对接数据市场的多样化需求,而平台化运营成为满足这一产业需求的必要条件。唯有将数据进行合理定价,出现数据交易市场、交易指数,才能真正带动大数据产业的繁荣。大数据实现交易,将打破行业信息壁垒,优化提高生产效率,深度推进产业创新。这正是大数据交易平台最核心的价值和意义所在。

同时为了把握住这一新兴领域带来的新机遇,企业需要不断跟踪研究大数据,不断提升对大数据的认知和理解,坚持技术创新与应用创新的协同共进,加快经济社会各个领域的大数据开发与利用,推动国家、行业、企业、个人对于大数据的应用需求和应用水平进入新的发展阶段,引领一个全新的大数据时代。

返回搜狐,查看更多

人工智能人才培养现状、问题及发展方向

7月26日,中国科协青少年科技中心、中国青少年科技辅导员协会和山东省科学技术协会共同主办的2021年中国人工智能普及教育发展论坛在山东烟台举行。论坛主题为“智能时代智创未来”,中国科学院大学人工智能学院副院长肖俊,浙江大学计算机学院教授、教育部义务教育信息科技课标组专家翁恺,山东大学软件学院副院长许信顺围绕人工智能人才培养现状、问题及如何做好人工智能人才培养等话题进行了分享和交流。小编整理专家们的干货观点,为你呈现:

2021年中国人工智能普及教育发展论坛会议现场

人工智能人才培养历史及现状

01

国内外人工智能人才培养链条初步形成

基于研究的高端人工智能人才培养已经发展了近半个世纪,肖俊梳理了国内外人工智能人才培养发展过程中有影响力的十件大事。

1958年,麦卡锡在麻省理工大学组建全球第一个人工智能实验室,开始人工智能研究和人才培养。1962年他在斯坦福组建了世界上第二个人工智能实验室。时至今日,上述两个实验室和卡内基梅隆大学的人工智能实验室排名全球前三。

2017年5月,中国科学院大学成立国内首个全面人工智能人才培养学院,随后,清华大学、北京大学、中国人民大学、南京大学等相继成立了人工智能学院和研究院。

2017年,中国《新一代人工智能发展规划》出台,明确提出要加快培养聚集人工智能高端人才,包括“人工智能+X”复合专业培养、学科交叉和产学研合作,同时实施全民智能教育项目,中小学阶段设置人工智能相关课程。

2018年4月,中国教育部印发《高等学校人工智能创新行动计划》,提出要加强理论研究,引导高校从增量知识和存量调整方面加大人工智能人才培养力度。教育部印发文件还指出,为构建人工智能多层次教育体系,中小学阶段也将引入人工智能普及教育。同时鼓励支持高校相关教学、科研资源开放,建立面向青少年和社会公众的人工智能科普公共服务平台,积极参与科普工作。

2018年5月,卡内基梅隆大学(CMU)开设全美第一个人工智能本科专业。同年,中国35所高校申请并获批招收人工智能本科专业学生,2019年之后逐渐变多,教育部也新增高职(专科)人工智能专业,2020年起开始执行。人工智能本科、专科和研究生层次的人才培养开始正式招生。

2018年来,中小学人工智能普及教育引发广泛关注。相关专业机构成立、面向中小学的教材陆续出版。2018年4月14日,中国青少年科技辅导员协会成立人工智能普及教育专业委员会;2019年5月26日中国人工智能学会成立了中小学工作委员会。如陈玉琨、汤晓鸥编写的《人工智能基础(高中版)》等。

2019年,中国人社部相关通知发布人工智能工程技术人员成为“新”的职业工种并组织专家和相关企业起草人工智能职业的相关标准和规范。

2019年3月22日,首届中国人工智能教育大会召开;2019年5月16-18日,国际人工智能与教育大会在北京召开,时任中国教育部部长陈宝生出席。

2019年9月22日,北京大学、清华大学等9所高校及清华大学出版社成立中国人工智能教育联席会,围绕全面提高人工智能人才培养这一核心,共同研讨人工智能人才培养的理念、方法和机制,抓好人工智能专业内涵建设,构建和完善“多主体协同育人长效机制”,培养高水平人工智能人才。

2020年1月21日,教育部、国家发展改革委和财政部印发的《关于“双一流”建设高校促进学科融合加快人工智能领域研究生培养的若干意见》出台,2020年人工智能专业研究生大幅扩招。

从上述这十件事情可以看出:尽管国内人工智能教育开始时间不长,但已受到学校、企业和政府等多方的高度重视;我国已逐步开启学位教育与职业培训协同发展的多元化人工智能人才培养模式;我国已经初步形成覆盖中小学、专科、本科、研究生等各个层次的人工智能人才培养链条,但仅仅是“初步形成”,和高等教育相比,中小学、专科和本科教育仍需再深入研究。

02

我国人工智能人才缺口大

人工智能人才紧缺是我国人工智能发展面临的主要困境。肖俊以2017年《全球AI领域人才报告》为依据,将当前中美人工智能人才数量做了一个对比。截至2017年一季度,全球人工智能领域专业技术人才数量超过190万,美国超过85万,排在第一位,而中国超过5万,全球第七,不足美国的6%。从人工智能人才从业时间的角度分析,中国高层次AI人才极其稀缺且从业时间短,美国从业十年以上的人才比我国高一倍。从年龄分布角度来看,我国也处于明显的弱势,整体而言28-37岁是AI主力军,但是在中国48岁以上的资深AI人才比较少,年轻人比较多一些。而48岁以上美国占到16.5%,中国只有3.7%。

随着诸多行业转向人工智能领域,该领域的人才需求量十分巨大。传统IT企业全面向人工智能转型,纷纷抢占智能产业制高点,如谷歌、IBM等。诸多非IT企业也开始布局人工智能产业,这与人工智能逐渐深入各行各业迫使它们不得不向该方向做转型有关,比如碧桂园就不惜重金招人工智能博士帮企业布局新发展。很多学物理化学材料专业的学生也开始学人工智能技术,希望可以通过学科交叉做出一些新的东西。据TalentSeer和AI人才社区Robin.ly联合发布的数据显示,2016-2019年,全球人工智能人才需求年均增长达74%,而我国工业和信息化部人才交流中心数据显示,当前我国人工智能产业内,有效人才缺口达30万。可见,人工智能的人才培养已是刻不容缓。

人工智能高等教育人才培养

面临的问题及解决思路

01

追求短平快,学科建设、各方协作不足

肖俊认为我国目前的人工智能高等教育主要存在三方面的问题。一是学科建设不健全。人工智能非一级学科,国内现在有几个专业都在做人工智能人才培养,包括智能科学与技术、数据科学和大数据、机器人工程等,没有明确规定人工智能人才必须在哪个系统或者哪个学院培养,导致培养体系不健全,目前每所高校的方案都不一样。二是要警惕“短平快”导向偏差。现在人人都来跨专业学人工智能,简单学一些深度学习算法和Python编程等基本能力就出去找工作。这种浅层次学习和人才培养其实不一定需要由高校承担。高校的人才培养需要贯彻落实“百年树人”思想,不能追求短平快。三是产学研协作不足。人才培养定位和目标不明确、校企供需对接不够、学校招生需求与就业脱节。

02

做好人才培养的精确分类

肖俊认为,人才培养需要执行“三个面向”方针,即面向世界科技前沿,面向国家重大需求和面向国民经济主战场,对人才做好分类培养。针对人工智能人才培养定位和目标不明确、校企供需对接不够、学校招生需求与就业脱节等问题,首先应面向不同需求做好精确分类,比如学术和职业教育层面就应区分开。研究生层面应设立创新型人才培养与技术应用型人才培养互补,专业化培育与定制型培育相结合的培养体系。职业教育层面,要充分发挥高职高专的职业教育优势,尤其是要与新公布的人工智能新职业工种和标准做好衔接。此外,人工智能教育培训市场目前也存在一定的泡沫,社会化培训也需要进一步规范,培养人才的初衷不能变。面向成人的教育,可以以技能培训为目标,并与职业资格考试结合。许信顺将高等教育人工智能人才培养划分为三个层次:一是研究人才培养,主要做核心算法、核心理念创新的工作,还有产业研发等;二是应用型人才培养,主要是把人工智能算法和具体产业相结合落地,使用现有人工智能工具,根据场景解决具体问题,做规模化、产业化;三是人工智能人才基础素养培养。

03

注重学科交叉、数理人文基础教育

“学科交叉”是肖俊谈人工智能高等人才培养的第一个关键词。针对人工智能培养体系不健全等问题,他认为首先应加快人工智能一级学科论证,充分考虑和重视人工智能的学科交叉性,考虑在2020年新增的“交叉学科”门类下进行设置;第二,应制定规范的人工智能人才培养方案,明确招生目标,合理设置招生专业和课程,充分体现人工智能与计算机科学、控制科学的异同;第三,应区分相关教材和专著,目前是专著多,教材少,应打造真正适合教学、学生使用的人工智能系列教材。针对“短平快”问题,现阶段人工智能方向的研究生应将模式识别、计算机视觉作为首选方向,像一些基础性、交叉性方向比如(脑)科学、生物信息学是很好的,但很多学生不一定很感兴趣,他们大多喜欢刷数据集,做应用,调参数,短平快的出成果。当然,出现这一现象也有老师的一部分责任,很多教师的目标在于出“成果”,这个目标本无可厚非,但不应该是人才培养的全部。事实上,不管是人工智能人才培养还是其它学科的人才培养,既然是人才培养,就一定要遵循自身规律,要注重周期性、流畅和质量。

“数理人文基础”是肖俊提出的第二个关键词。在论坛中,他介绍了卡内基梅隆大学(CMU)开设的人工智能本科专业的课程设置。它的课程很有特点,数学与统计学核心课程占6门,人文与艺术占7门,反而像计算机科学和人工智能这类核心课程加一起才8门。可见其非常重视培养学生的数理基础和人文艺术等交叉学科的整体素养的培养。这也是现在我国很多大学所做的通识教育,比如中国科学院大学的本科,前三个学期主要在学数理基础。因此,通过国外的做法可以看到,人工智能高等教育应重视对学生数理基础和人文知识素养的培养,为交叉学科做好准备。因为数学是人工智能核心算法的基础,而人文、伦理是人工智能涉及的重要方面。

04

政府、学校、企业协同

作为一个对硬件和软件要求较高的学科,在人工智能人才培养过程中联合政府、学校和企业之力实现资源共建共享是十分必要的,这也是目前很多学校在探索的路径。

许信顺提出,研究型人才的主要培养主体在高校和研究所。高校主要做规模化课程体系,而科研院所拥有非常先进的设备和优质的研究环境。除了前述两个主体外,还离不开政府和企业。政府方面,在国内能否培养哪个专业人才是需要教育部批准的,另外还需要做资金投入,需要政府拨款,与此同时政府还通过典型的项目投资来推动相关人才的培养工作。企业方面,前些年许多企业经常表示大学培养出来的人才与实际需求相脱钩,为此国家也非常重视这方面的问题,比如推动产教融合的人才培养模式。在人才培养过程中,企业可以提供相关研究环境包括数据,从而深入参与到人才培养过程中。尤其,对于应用型人才培养,更应该推动高校和企业的联合培养,高校有系统化的课程体系,企业有非常完善和成熟的应用场景,二者可以做深度结合。

肖俊也提出,校企协作是提高人工智能人才培养效率重要途径。企业、研究机构和高校有最先进的技术、设备和体验场所可以向社会开放,如中国科学院的研究所每年都有公众开放日,年年预约总是瞬间就满了,这说明社会需求量很大。如果相关企业高校都可以做这种开放日让公众去体验,那么可以在很大程度上解决这个问题。还有如百度、华为、阿里等企业,它们都有体验中心可以对学生开放,在这方面国外企业开始的很早,而国内比较晚。

中小学人工智能普及教育

面临的问题及解决思路

01

基础教育师资短缺,课程、平台不完善

人工智能普及教育要进入中小学,目前面临了三个难题。第一是没有形成成套系统的课程体系。许信顺建议,应该把人工智能基本概念、算法程序设计、机器学习、计算机视觉、人机交互等知识在整个素养培养过程当中进行融入。除了课程体系外,师资力量短缺的问题更是制约发展的瓶颈。依靠现有各个中小学的师资,把所有课程体系内容都讲通有一定难度,在济南很多学校达不到,师资配备不可能把所有课程串起来。第三,教学平台不完善。据许信顺了解,目前济南市拥有比较完善平台的学校只有一所,大部分学校现有的教学平台难以支撑实施所有的人工智能课程模块。现在很多学校有一个思路就是做高校企业的联合培养,通过资源整合来加快人才的培养进程。

02

人工智能普及教育应是一种素质教育

翁恺在论坛发言中特别强调,基础教育阶段的人工智能教育首先应是一种素质教育,即所有学生都应该在基础教育阶段学习,从小学到大学需要有连贯的规划和设计。其次是非技能性,基础教育学科的课程都是基本原理,而不是技能,既不期望学生学了语文可以成为小说家,也不期望学生学了物理可以成为机械工程师;理解人工智能的核心价值和基础理念比掌握具体可见的人工智能技术、手段更重要。

翁恺简单介绍了教育部新一轮的义务教育阶段信息科技课程标准修订的大致情况。课程的核心素养包括信息意识、计算思维、数字化学习以及信息社会责任等,课程目标是让学生具备应用信息科技解决问题的能力,养成合作与探究的习惯,自觉践行信息社会责任,为成为信息社会的合格公民打下数字化基础。

为什么要提“信息科技”而非“信息技术”呢?翁恺表示,之所以这样提,是为了使课程更具科学性。课程的科学性既体现在知识内容上,也体现在教和学的方法上,如何设计教学手段让学生自己探究来得到这些知识,这才是更重要的。教育不仅仅是使学生习得谋生的方法,正如浙江大学老校长竺可桢曾说,教育更需要有科学的方法来分析,公正的态度来计划和果断的决心来执行,而这些都应该是小学时代养成和学习的,这就是教育当中科学的体现。

03

培养孩子对机器的亲切感

生活在信息时代的孩子们,是互联网的原住民,对于非物质世界的认识,他们比以往任何一代都要深刻。因此,人工智能作为一门理解非物质世界的基础学科,需要把握好核心和出发点。在翁恺看来,人工智能教育最重要的是培养和机器打交道的能力,最原始的出发点就是让孩子喜欢计算机,培养他们对机器的亲切感,见到机器不陌生不害怕,习惯用机器解决问题。就像农民的孩子看到锄头是亲切的,医生的孩子看到听诊器是亲切的,我们的孩子看到机器应该是亲切的。在这样一个基础之上理解什么是虚拟,什么是现实,理解技术的边界和能力。

(来源:“全国青少年人工智能科普活动”微信公众号)

中国青少年科技辅导员协会

提醒广大科技辅导员

戴口罩勤洗手少集会

不给病毒可乘之机!

原标题:《人工智能人才培养现状、问题及发展方向》

科技前沿|人工智能 (AI) 的发展和未来

原创科普青岛科普青岛收录于合集#科技前沿183个

人工智能(AI)的发展和未来

人工智能(AI)的发展

人工智能(AI)的历史可以追溯到古希腊,数学家和发明家阿奇塔斯首先探索了创造智能机器的概念。然而,现代人工智能研究领域是在1956年达特茅斯学院的一次会议上创立的,当时一群计算机科学家和数学家讨论了构建“思维机器”的可能性。

在人工智能研究的早期,重点是开发能够执行通常需要人类智能才能完成的任务的计算机程序,例如下棋和解决数学问题。这些领域的早期成功有助于将人工智能确立为一门科学学科,并促成了1950年代后期第一家人工智能公司SRIInternational的创建。

在1960年代和70年代,人工智能研究主要集中在“符号人工智能”上,它试图构建能够对符号进行逻辑推理并操纵它们来解决问题的系统。然而,符号人工智能的局限性很快就显现出来,研究人员开始探索构建智能系统的其他方法。

人工智能历史上最重大的突破之一是“机器学习”的发展,这是一套允许计算机从数据中学习的算法。这一突破为过去几十年人工智能领域的许多突破奠定了基础,包括深度学习的发展,这导致了计算机视觉、自然语言处理和其他领域的重大进步。

今天,人工智能是计算机科学中发展最快的领域之一,其应用可以在自动驾驶汽车、语音识别和推荐系统等领域看到。随着人工智能的不断发展,它有可能彻底改变我们生活的许多方面,并解决人类面临的一些最大挑战。

人工智能(AI)的未来

人工智能(AI)的未来既令人兴奋又充满不确定性。一方面,人工智能有可能极大地改善我们生活的许多方面,并解决人类面临的一些最大挑战,例如气候变化、疾病和贫困。另一方面,也有人担心人工智能的伦理、法律和社会影响,例如工作岗位流失、隐私以及人工智能被用于恶意目的的可能性。

未来人工智能最大的增长领域之一可能是“自动化”领域,人工智能将用于自动化目前由人类执行的任务。这有可能大大提高效率,并让人类工人腾出时间来专注于更具创造性和更有成就感的任务。

人工智能的另一个增长领域可能是“增强智能”领域,人工智能被用来增强人类的决策和解决问题的能力。这有可能大大改善世界各地人们的生活质量,让他们能够更快、更准确地访问信息和做出决策。

然而,人工智能的未来也将取决于我们如何解决这项技术的伦理、法律和社会影响。这将需要计算机科学家、伦理学家、政策制定者和公众之间的密切合作,以确保人工智能的好处得到广泛传播,并将潜在风险降至最低。

总体而言,人工智能的未来很可能取决于技术进步、社会发展和人类选择之间复杂的相互作用。在这个领域工作是一个激动人心的时刻,未来几十年肯定会充满AI的许多激动人心的发展和突破。

原标题:《科技前沿|人工智能(AI)的发展和未来》

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇