人工智能的价值地图:AI产业增强革命的模式与路径
本文作者:徐思彦,作者为腾讯研究院高级研究员,雷锋网获作者授权同意发布。本文详细地讲述了人工智能产业如何与产业结合,人工智能的能力与局限,人工智能能够带来什么样的经济效益。希望阅读本文的你,有所收获。
以下为正文内容:
人工智能革命正在跨越技术商业化的临界点。截止目前,人工智能已在交通、城市服务、医疗、语音识别等诸多领域开始形成技术开放平台。作为一次划时代意义的技术革命,人工智能带来的商业变革正在渗入到各行各业,传统产业的转型不可避免。
如何应对人工智能时代的转型?人工智能的商业价值地图中,哪些产业将最先享受技术红利?
“智造”并不是一个新词,几年前,我们可以看到数字技术从虚拟世界向实体世界渗透。3D打印、激光切割等一系列数字制造设备的发明让制造变得民主化,所以诞生了创客这个群体,让普通人也可以通过智造来实现想法。而今天,我们都看到“智”的含义又进化了。
人工智能正在全球范围内掀起产业浪潮。从去年开始,腾讯研究院就对人工智能的产业发展有一个持续的跟踪。我今天将从一个更广的维度,不限于制造业来与大家分享关于人工智能如何融合产业,创造万亿实体经济新动能的一些观察。
人工智能认知差距存在:已走入平常生活在另一阵营,包括扎克伯格、李开复、吴恩达等在内的多位人工智能业界和学界人士都表示人工智能对人类的生存威胁尚且遥远。这其中主要的争议就来源于对“人工智能”定义的区别。人工智能学家马斯克等人所述的人工智能,是指可以独立思考并解决问题,具有思维能力的“强人工智能”,目前,科学界和工业界对何时发展出“强人工智能”并无定论。
现在处于全球热议中的“人工智能”,并不完全等同于以往学院派定义的人工智能。你可能没有意识到,我们日常生活中已经用到了许多人工智能技术:早在2011年,苹果就率先将人工智能应用Siri放进了大家的口袋里;拍照、签到时用到的人脸识别技术,智能音箱的语音对话系统,以及我们现在主流的新闻推荐引擎,也都用到了深度学习的算法。
人工智能算法存在于人们的手机和个人电脑里,存在于政府机关、企业的服务器上,存在于共有或者私有的云端之中。虽然我们不一定能够时时刻刻感知到人工智能算法的存在,但人工智能算法已经高度渗透进我们的生活之中。
人工智能的商业潮起:九大领域形成热点人工智能的历史已经有60年的时间,但它作为一个商业化浪潮是最近几年爆发的。与以往几次人工智能浪潮不同,此次的人工智能革命跨越了技术商业化的临界点。
下图为腾讯研究院发布的《中美人工智能产业报告》,人工智能领域的投资金额从2012年起呈现出了非常陡峭的增长趋势,转折点就是深度学习技术的突破。
IT产业经过数十年的发展,在存储、运算和传输能力上都有了几何级的提升,使深度学习最终有了质的飞跃。互联网积累了20年的数据终于有了用武之地——训练数据。机器学习和深度学习的飞速发展直接引领了此次人工智能产业浪潮。
截至目前,美国在融资金额上人工达到了938亿,中国仅次于美国达到了635亿。人工智能产业发展出了九大热点领域,分别是芯片、自然语言处理、语音识别、机器学习应用、计算机视觉、智能机器人、自动驾驶。
另一个明显的趋势是中美科技巨头的集体转型。从互联网到移动互联网的历次转换历程中,把握技术革命带来的商业范式革命是屹立不败的关键。技术革命将带来基础设施、商业模式、行业渠道、竞争规则变化的涟漪效应。
谷歌最早意识到机器学习的重要性,从2012年开始从搜索业务积累数据。从2012年到2017年短短的5年时间已经渗透到了超过1200个谷歌的服务中。业务发展战略从“移动优先”转为“人工智能优先”。除此以外,美国的FAAMG(Facebook,Amazon,Apple,Microsoft,Google)以及中国的BAT无一例外投入越来越多资源抢占人工智能市场,有的甚至转型成为AI公司。他们纷纷从四方面从基础到全局打造AI生态:
第一,通过建立AI实验室,来建立核心的人才队伍。第二,持续并购来争夺人才和技术。第三,建立开源的生态,占领产业核心。今天,大多数技术进步都不是封闭的创造发明。技术的指数级增长,受益于底层技术的共享。今年,腾讯向外输出了两大AI开源项目ANGEL和NCNN。第四,最好的人工智能服务将可能化为无形,即与云服务结合。工具AI将大幅降低企业使用AI的门槛,越来越多科技巨头选择将自己的服务“云端化”来赋能全行业。正如马化腾所说的未来的企业都是在云端用AI处理大数据。并且在一些领域开始试水消费级人工智能的场景。
认识人工智能的能力与局限
AI要在商业上取得成功,首先要理解人工智能的真实能力。AI的爆发对商业的塑造也许与互联网彻底颠覆传统行业不同,在很大程度上会不动声色地嵌入到商业中。应用场景不再是新奇的概念展示,而是融入现有的生产中,进入垂直领域,创造直接的经济价值。
从认识物理世界到自主决策,目前人工智能已经具备以下几种能力:
感知智能:在语音识别、图像识别领域已经有很深入的应用,赋予了机器“看”和“听”的能力。甚至情感也能被机器理解 ;语音识别和图像识别都有了显著的提升。
理解能力:自然语言理解成为隐形的标配植入到产品中。配合计算机视觉可用于理解图像,来执行基于文本的图像搜索、图像描述生成、图像问答(给定图像和问题,输出答案)等。
数据智能:机器学习、深度学习让机器能够洞察数据的秘密,并且不断自动优化算法,提升数据分析能力。
决策能力:本质是用数据和模型为现有问题提供解决方案。棋类游戏是一种典型的决策能力,人类在完美信息博弈的游戏中已彻底输给机器,只能在不完美信息的德州扑克和麻将中苟延残喘。在更广泛的领域,例如如何自动驾驶汽车,如何将投资收益最大化等丰富的场景都将是决策能力的用武之地。
人工智能的价值地图:产业融合正在加速
与互联网时代一夜颠覆的渠道革命不同,人工智能的带来的商业变革正在不动声色地渗入到各行各业。一大批AI应用的先导者正在将AI能力赋能产业,涉及吃住行、工业医疗等各个领域。下面将用三个例子来说明正在发生的“AI+”产业增强革命。
首先是零售行业。上图是亚马逊推出的无人超市AmazonGo。在亚马逊的蓝图中,顾客从货架上取下货品,无需再经过收银台便可自动完成结算过程。从顾客进店开始,通过人脸识别验证顾客身份,在顾客购物时,通过图像识别和对比技术判断商品种类,自动生成购物订单完成自动结算。
现在,各种形式的无人零售商店在国内也如雨后春笋般兴起。当然,无人收费只是零售智能化的第一步,人工智能不同能力的应用将全面改变现在的零售模式。比如开一家店选址、到底在哪开、开多大、覆盖多少人群、卖多少东西?时装周采购设计师的衣服,买那些今年会畅销?以前这些都靠零售人的经验做决策,但在信息时代,这些都可以用精准的算法做决策。
第二个例子是医疗行业,医疗在任何国家都是最大的行业之一,我们经济发展和科技进步追求的最终目标也是增进健康。
人工智能在医疗行业的应用很广泛。用人工智能来辅助医疗影像诊断大家已经比较熟悉了。我想说的是人工智能对精准医疗的推动。所有遗传密码的信息都是非常非常多的一个大数据,对任何人在他没有得病的时候我们测量他的组学数据,分析组学大数据,那么就可以对他未来健康发展的危险因素做出评估,根据评估进行适当干预,这样的话有些疾病不发展,有些疾病减轻他的程度,提高他的生活质量,这样就把整个医疗健康体系的关口前移,在没有病之前就提出评估与保证。
第三个例子来自制造业。波士顿有家著名的机器人公司叫RethinkRobotics,顾名思义就是重新思考机器人。这个公司开发了一款名为Baxter的智能协作机器人。这个机器人的特点是和人的交互不再是机械的。Baxter 采用顺应式手臂并具有力度探测功能,能够适应变化的环境,可“感知”异常现象并引导部件就位。你只要挪动它的手臂就能进行训练,完成特定的任务。其次,对于制造业来说人工智能不仅仅意味着完成某项工任务的机器人,也是未来制造业智能工厂、智能供应链等相互支撑的智能制造体系。通过人工智能实现设计过程、制造过程和制造装备的智能化。
人工智能的经济影响人工智能在经济层面的影响,主要有三个方面:
第一,生产效率的提升。人工智能创造了一种虚拟的劳动力,能够解决需要适应性和敏捷性的复杂任务。
第二,交易成本的下降。互联网的平台模式通过降低信息不对称,降低了交易成本。随着机器学习的引入,可以实现更精准的服务匹配,进一步优化资源的分配。
第三,人工智能将带来数据产业的蓬勃。机器学习需要数据的“喂养”,海量的数据需求催生了多种类型的数据交易模式。数据的需求会产生很多数据经纪商,有B2B模式,C2B模式,B2B2C模式等,促进数据在个人、企业及产业链层面流通。数据的来源不单单来自于用户,也来自于政府公开数据、商业渠道、博客等公共资源等。
转型之路:五要素坚实人工智能基础人工智能将一切变化都带入了超高速发展的轨道。创新科技公司已集体转型,传统行业又改如何应对即将到来的人工智能时代?实现人工智能的转型,需要从几个方面并行:
数据、算法和算力是我们常说的人工智能的“三驾马车”,是人工智能得以应用的基础。
第一是数据,我们对数据的认识不应该停留在统计,改进产品或者作为决策的支持依据。而应该看到它导致机器智能的产生。但首先,数据是有条件的。垂直行业的数据,高质量的数据。在国家层面,也有许多数据开放计划。
第二是算法,人工智能的人才仍然是很稀缺的。高校和企业的人才流动越来越频繁。但同时,企业通过开放生态,降低开发门槛。可以让更多中小企业享受AI能力。
第三是算力,现在的人工智能系统通过成百上千个GPU来提升算力,使深度学习能够走向生产环境。但随着数据的爆发式增长,现有算力将无法匹配。
除了这三驾马车,从实验室到行业应用,在人工智能的应用过程中还需要加入两个元素:
■ 首先是场景。理解场景是人工智能应用的核心。人工智能必须落到精准的场景,才能实现实在的价值。理解人工智能能力可落地的场景及对应的流程,将AI纳入决策流程。
■ 其次是人机回环,即human-in-the-loop。“人机回圈”的第一层含义是人工智能应用中需要用户,即人的反馈来强化模型。更进一步,机器学习是一种尝试创建允许通过让专家与机器的一系列交互参与到机器学习的训练中的系统工作。机器学习通常由工程师训练数据,而不是某个领域的专家。“人机回圈”的核心是构建模型的想法不仅来自数据,而且来自于人们怎样看待数据。专家会成为垂直领域的AI顾问,把关模型的正确性。
人工智能并不是静态的东西,训练出来的模型要用到某个业务场景里,业务场景里产生新的数据,这些数据进一步提升人工智能模型的能力,再用到场景中,形成一个闭环和迭代。
总结本轮人工智能浪潮是基于深度学习的发展,将快速渗透到数据密集行业。
人工智能目前从感知智能、理解智能、数据智能和决策智能四方面发挥在各行各业的能力。
人工智能成为新的生产要素,人机协同将成为普遍趋势。
人工智能的应用转型需要满足数据、算法、算力、场景、反馈五个元素才能奠定行业应用的基础。
目前,人工智能对实体行业的渗透还处于萌芽期。人工智能被寄予了成为下一代产业革命驱动力的厚望。而释放人工智能的能量,形成产业革命的动能,需要寻找契合人工智能技术特点,并找到优于其他技术的实体经济适用领域,让人工智能真正解决行业痛点,实现系统层面的收益。从长久来看,人工智能的定位绝不仅仅是解决狭窄的、特定领域的简单应用,而是真正像人类一样能够同时解决不同领域、不同类型的问题,进行判断和决策。这也是我们通常所说的“通用人工智能”。发展人工智能的终极目的并不是取代人类,而是通过人工智能将人类从繁重的重复工作中解放出来,实现对人类整体更有价值的目标。这个未来也许还有些遥远,但通往未来的道路上,新商业和新经济将会是革命性技术附赠的礼物,无限可能的未来等待我们一起描绘。
(雷锋网注:雷锋网获作者授权发布,文章内容不代表雷锋网观点)
雷峰网版权文章,未经授权禁止转载。详情见转载须知。
人工智能的未来趋势将会走向哪里
人工智能已经在不知不觉间悄然而至,等我们发现的时候,它已经渗透到了我们的生活中,甚至影响着整个世界。人工智能的未来有无限种可能,它的未来也在改变着人类的未来。
如果互联网改变了信息基础设施,那么移动互联网就改变了资源的配置方式。互联网就像是末梢神经一样深入了人类生活的方方面面,不仅产生了科学家朝思暮想的大量数据,而且催生出了云计算方法,汇总了千万台服务器的计算能力,令计算能力有了飞速的提高。
之前科学家发明的“机器学习”方法在互联网领域大显神通,从根据用户的兴趣自动推荐阅读、购物信息,到更准确的语音识别、网络翻译,互联网变得越来越智能化。人工智能正在筹备一场堪比技术革命的大变革。
在面对这样的变革时,有很多科技领军人物都在讨论它有可能带来哪些潜在的风险,与此同时,也有不少业界人士质疑它兑现奇迹的能力。于是,在舆论领域有两种声音萦绕在我们耳畔:一种是只要人工智能陷入发展的低谷,就又会听到“这只不过是换了种套路的创新泡沫而已”;另一种是只要人工智能达到发展的高峰,就会听到“人类将被机器统治”的担忧。
在面对这样一个快速发展的新技术时,一定是见仁见智的。但是我深信不疑的是,我们既不能低估它的长期影响力,也不能高估它的短期作用力。
从纵向发展的角度来说,人工智能通常被分为三个阶段:第一个阶段是弱人工智能,第二个阶段是强人工智能,第三个阶段是超人工智能。但是事实上,目前不论多先进的AI技术,都属于第一阶段,只能做到在某个领域跟人差不多,但是不能超越人类。
人工智能究竟扮演什么角色?有很多人认为,在未来发展中,人工智能是必将争夺的无限宝藏。但是对于普通的用户来说,关心的并不是宝藏,他们关心的是在AI领域的创新和发展,是否能把不计其数的智慧机器与数十亿互联互通的智慧大脑结合在一起,帮助我们了解、改变这个世界,从而给生活带来越来越多的便利与快捷。
如今的机器人与科幻小说中些的那些“无处不在”的机器人也许还有很大的差距,AI并不是只有机器人这一种形态,实际上,它在就已经开始用各种各样的方式渗透进我们的生活。以工业机器人为主力的“智能化生产”和“无人工厂”已经成为了“工业化4.0”的标志。
类人型的机器人在商场或者店铺里充当服务员与销售员的现象已经比比皆是,无人驾驶的汽车正在道路上测试行驶,甚至有几乎以假乱真的美女机器人在百货公司充当前台。从最普遍的语音助手,到最具争议的机器人和无人驾驶汽车,每一次的演变都激发着人类对于未来科技的热血沸腾,也许科技离我们越来越近了。
特斯拉CEO伊隆·马斯克曾表示:“借助人工智能,我们将召唤出恶魔。你们都知道这样的故事,有人拿着五芒星和圣水,并肯定他能控制住恶魔,但实际上不行。”但是我们能够从侧面看出,其实马斯克也对AI的强大的坚信不疑。
这就是互联网巨头纷纷加入AI是我原因,除了战略原因,更多的是因为AI的发展速度要比我们认为的快得多,而且开始渐渐地渗入到各行各业以及人们的日常生活中。
人工智能的未来将会走向哪里?有些人担心,当超人工智能到来的时候,机器会不会控制人类?其实,人工智能永远不能达到超人工智能,很可能连强人工智能都到达不了。将来,机器可以无限的接近人类的能力,但是却永远无法超越人类的能力。
但是,因为计算机在某些方面确实是比人类强太多了,所以只是无限接近人类的能力就能够产生足够大的颠覆性。例如计算机的记忆能力,百度搜索能够记忆上千亿页的网页,而且每一个字都能够记住,这是任何一个人都无法做到的。
又例如它的运算能力,哪怕是写诗,把你的名字输入在手机百度的“为你写诗”,按下Enter键,还没等你反应过来,诗就已经做出来了。就算是再厉害人,也不可能达到这种速度。但是在创造性和情感等诸多方面,机器是无法与人类相比的。
最主要的是,在技术和人的关系上,前几次的技术革命与智能革命是有着本质上的区别的。前三次的技术革命,都是人类自己去学习和创造世界,但是因为有了深度学习,所以人工智能革命是人与机器共同学习和创新世界的。
在前三次的技术革命时代中,人要去学习和适应机器,但是在人工智能时代,是机器主动学习和适应人类的。在刚刚进入蒸汽时代和电气时代的时候,有很多人是害怕新的机器的,除了工作机会发生了巨大的改变之外,人不得不去适应机器和流水线。
然而,这次的人工智能革命,是机器主动学习和适应人类,“机器学习”的本质之一,就是从人类的大量的行为数据中寻找到规律,然后根据认同的人的不同的兴趣和特点,来提供不同的服务。
将来,人与机器、人与工具之间的沟通可能是完全基于自然语言的。你不用去学习如何使用工具,例如如何调节空气净化器,如何打开电视会议系统。你只要说话它就能得听懂。
人工智能的使用方式不是像过去的机器那样让人感到难受,而是会让人们生活的更好。人工智能的应用是推动人类进步的因素,它会极大的提高工作效率。
虽然智能革命的过程会轰轰烈烈,但是它的成果将会像一条平缓宽广的河流。AI领域的权威人士认为,将来的智能流会像如今的电流一样平静的围绕着我们,彻底改变人类政治、经济、社会和生活的状态。未来的我们,会无所察觉的享用着人工智能。
本文转载自ATYUN人工智能信息平台,原文链接:人工智能的未来将会走向哪里?
更多推荐每个无线网络战略所需的六大AI要素
深度学习图像识别项目(中):Keras和卷积神经网络(CNN)
苹果公司继续开源活动:在GitHub上发布了FoundationDB
COSSIM小组新突破:为网络物理系统提供支持的开源模拟器
Berkeley用TDM策略制定计划,实现骑行任务
欢迎关注ATYUN官方公众号,商务合作及内容投稿请联系邮箱:bd@atyun.com
2018年AI的根枝已经触及到各行各业 可以说是枝繁叶茂
这是一个寒冬,整个资本市场遇冷,但是AI领域依旧火热。“不会有‘人工智能寒冬’,因为AI已经渗透到你的生活中了,在之前的寒冬中,AI还不是你生活的一部分,但现在,它是了。”“深度学习之父”GeoffreyHinton讲到。
从2016年AlphaGo横空出世,人工智能浪潮席卷全球到2017年被称为“AI元年”,人工智能遍地开花。如今,2018年转眼走入尾声,这一年,没有“寒冬”的人工智能又有何发展变化呢?
政策支持:AI+产业融合成未来重点
2018年3月5日,***总理在《2018年国务院政府工作报告》指出,加强新一代人工智能研发应用;在医疗、养老、教育、文化、体育等多领域推进“互联网+”;发展智能产业,拓展智能生活。
这已经不是人工智能第一次进入《政府工作报告》,在2017年的政府工作报告中总理就提到“一方面要加快培育新材料、人工智能、集成电路、生物制药、第五代移动通信等新兴产业,另一方面要应用大数据、云计算、物联网等技术加快改造提升传统产业,把发展智能制造作为主攻方向。”
连续两年的政府工作报告提到人工智能,可以看出在人工智能已成为引领科技发展的重要驱动力的当今环境下,政府把人工智能上升到国家意志的决心。
不仅如此,从2017年开始,政策的重点已经从人工智能技术转向技术和产业的融合,特别是2017年7月国务院印发的《新一代人工智能发展规划》明确指出要“加快人工智能深度应用”。
此外,从2018年两会的发言也不难看出,人工智能+产业的融合将是未来的重点,包括科技部、工信部、民政部等官方部门和百度、腾讯、联想等民间代表,均提出了人工智能+产业、人工智能+医疗等等。
ALLinAI:多领域、多样化的发展
在国家政策的支持下,对于人工智能,各行各业都在翘首以盼,表面看似风平浪静,实则暗潮涌动。不论是互联网巨头、传统行业巨头亦或是AI技术公司,这一年在人才、技术和资金方面都得到了充分的整合,并且也都有了更进一步的进展。
先从互联网公司说起,2018年2月15日的央视春晚上,百度阿波罗(Apollo)无人车在荧幕上高调亮相。由它引领的上百辆车队在港珠澳大桥上穿行而过,并完成了8字交叉跑的高难度动作,为全国的观众带来了一场极具视觉震撼的黑科技表演。随后,在11月的第五届世界互联网大会上,百度总裁张亚勤在现场发布了Apollo自动驾驶开放平台,百度将自动驾驶打造成了自己人工智能发展路线上的一张名片。
阿里在AI上也一直在前进,在9月19日举办的2018云栖大会上,杭州“城市大脑”2.0正式发布。从2016年“城市大脑”发布到现在,经过两年多的试点,“城市大脑”2.0有了更多的突破:它已覆盖杭州主城区、余杭区、萧山区共420平方公里,相当于65个西湖大小。
腾讯在今年也发布国内首个AI辅诊开放平台,辅助医生提升对常见疾病的诊断准确率和效率,并为医生提供智能问诊、参考诊断、治疗方案参考等辅助决策服务。目前,在腾讯觅影的官网上已经设置有AI辅诊开放平台的连接入口和联系方式。腾讯觅影下的AI辅诊引擎功能即将走向各大医院,腾讯正在把自己在AI+医疗上的研究成果,慢慢惠及众人。
京东在人工智能上的研究,也取得了不错的突破,今年618促销活动,京东派出了无人车运送快递,并且在第二天京东方面宣布,京东的第一架重型无人机正式下线。11月15日,京东获得了中国民航西北管理局颁发的无人机经营许可证,中国的无人机商用在物流领域迈出了第一步,京东的智慧物流体系也迈出了关键的一步。
当然,除了互联网企业之外,在AI领域,三大运营商也没有停止行动,一直在追赶时代的脚步。今年以来,中国电信在企业管理中积极使用人工智能,取得了诸多成果。中国电信智能客服机器人小知,结合神经网络的深度学习、语音识别、自然语言的处理、上下文场景交互等核心技术,以人机交互方式面向用户提供7×24小时的智能应答服务,月服务量已经超过了4000万次。
在应用上面,中国电信积极布局智能家居产业。中国电信与智能终端厂商开展了全面合作合作,引入了智能音箱、智能互联、智能主网、智能手机、智能网关、智能机顶盒等,形成了智慧家庭的产品群,为用户提供了家庭智能化的一揽子解决方案。
同样的,中国移动也在积极布局人工智能,如正在布局下一代智慧网络编排管理系统,以打造下一代网络新型智慧大脑,实现对云化网络的智能编排、调度、控制、运营等。
中国联通方面则利用AI不断地推进网络优化,提升整个运营的效率和客户的体验,在客户服务方面,与百度、阿里等在人工智能方面深度合作,加速建设全业务、全媒体、全云化的新一代智能客户能力建设。
此外,在人们都比较关注的手机方面,AI技术也得到了很好的应用。人脸识别、语音助手、智能识图、AI美颜、智慧识屏、随行翻译……2018年以来,手机行业搭载AI技术的新卖点层出不穷。其中,人脸解锁和语音助手成为2018年中国手机用户最常使用的AI功能。三星S9+、小米8、vivoZ3、华为Mate20Pro、OPPOFindX、魅族16th、荣耀V10等旗舰均搭载了最新的人脸识别技术。
与此同时,各家的语音助手纷纷上线如三星的Bixby、小米的小爱同学、vivo的Jovi,荣耀的YOYO、OPPO的小欧、华为的小E。
这一年,人工智能的发展,可能没有达到行业预期,但整体而言,AI的根枝已经触及到各行各业,可以说是枝繁叶茂。
人工智能应用于各行各业,重新定义我们生活的世界
这是一个大数据的时代,这是一个人工智能的时代。人工智能时代的标志不是一个应用的出现,或一个算法的改进,或一场比赛的胜利,而是人工智能应用于各行各业,重新定义我们生活的世界。
这也是一个指数级增长的时代。过去几十年,信息技术的进步相当程度上归功于芯片上晶体管数目的指数级增加,以及由此带来的计算力的极大提升。这就是所谓的摩尔定律。今天,大数据时代产生的数据正在呈指数级增加,包括消费者数据与企业数据。今天的数据,大约 80% 是企业数据。在指数级增长的时代,我们可能会高估技术的短期效应,而低估技术的长期效应。历史的经验告诉我们,技术的影响力可能会远远的超过我们的想象。
无所不在的人工智能
伴随着大数据时代的到来,人工智能在过去十年取得了巨大的进步。但今天的人工智能,更多的是狭窄的完成单一任务的人工智能,如人脸识别、语音识别。能够解决各类问题的通用人工智能离我们还有太遥远的距离。从实际应用角度来看,在可预见的未来,我们会看到人工智能从狭窄 (NarrowAI) 走向宽广 (BroadAI),从完成单一任务到完成多个任务,从解决一个领域的特定问题到解决一个领域甚至跨领域的多个问题。
未来的人工智能,我们会看到不断增强的学习推理能力。如何从小样本小数据中学习变得非常重要。面向消费者的人工智能,积累了大量数据。比如图像识别,我们可以用大量数据训练一个模型。而面向企业的人工智能,对于特定的任务,往往没有大量的数据可用。多模态学习将会变得越来越普遍。比如人工智能剪辑电影,需要根据图像、声音,语言来理解视频的涵义。未来的人工智能,需要能够解释结果,即不但给出建议,还能解释为什么给出这样的建议。就像医生给出诊疗意见的同时,还需要解释依据在哪里。
未来几年,人工智能会从云向边缘端扩展,变得无所不在。比如可穿戴设备、物联网终端设备。很多场合我们需要实时的信息处理,如自动驾驶的汽车、为病人服务的医疗设备。也有很多场合由于信息安全的考量或网络带宽的限制,信息无法传输到云端而必须在边缘端处理。实现边缘智能 (EdgeIntelligence),往往需要低功耗的智能设备。我们会看到米粒般大小的智能设备,集计算、存储与网络功能于一体。人工智能从云向边缘端的移动,将人工智能与物联网结合起来,使得我们可以对物理世界进行更好的理解、管理与优化。
企业人工智能与行业创新
我们会看到更多人工智能在垂直领域的行业创新。比如医疗,金融,工业制造。今天的人工智能,更多的是面向消费者的人工智能 (ConsumerAI)。未来几年,我们会看到企业人工智能 (EnterpriseAI) 的兴起与发展。人工智能的成功需要商业成功,而人工智能的商业成功需要人工智能在行业应用的成功。
谈到人工智能,我们往往会谈到数据、算法与计算。实际上,人工智能用于行业创新,应用场景的选择非常关键。你问一个马车夫,他永远不会告诉你他需要一辆汽车。需求与应用场景的确定不容易。这里涉及到信息技术与行业知识的结合。人工智能专家不具备深刻的行业知识,而行业专家又不完全理解人工智能今天发展到什么程度,未来几年可能会取得什么样的进展。二者结合在合适的时间点选择合适的切入点,就变得非常重要。今天的人工智能技术还不能解决我们面临的全部问题。对于今天技术不能完全解决的问题,可以由人与机器协作共同完成,而不须一步到位。人机同行,共同完成人类或机器单独不能完成的任务。
人工智能应用在行业中会带来两类改变,一是借助机器提高效率;二是提供基于知识的专家助手帮助我们更好的决策。前者人工智能取代部分人力,后者人工智能赋能人类专家,增强人类的能力。我们会看到人工智能技术用于制造业,如视频分析用来做产品缺陷检测与质量控制。我们会看到人工智能医生。根据医学指南,与临床数据中学到的知识,为人类医生提供实时的诊疗建议。我们会看到人工智能律师,引用相关的法律文献,发现相关案例,向人类律师呈现最有价值的法律信息。
今天的人工智能,需要大数据训练模型,用于训练的数据需要标识,费时费力。未来的人工智能,我们可以基于已构建的相关领域的模型,再辅以新的数据快速学习,构建新的模型。打个比方,相当于当我们需要完成一项工程时,我们会招聘有相关经验的工程师,再加以适当的培训,而不会去找一个毫无经验的初学者。针对行业领域,我们需要预先构建哪些模型,如何构建,都是接下来需要关注解决的问题。
人工智能时代,信息安全面临全新的挑战。一方面,人工智能技术本身可能被用来考验与攻击信息系统的安全。另一方面,人工智能可能因为学习了有瑕疵的数据或被恶意更改的数据,而产生了安全的隐患,或伦理的缺陷。如何确保数据的安全,如何验证人工智能模型的安全与合乎伦理,是我们未来需要妥善应对的问题。
未来的计算能力
人工智能需要强大的计算能力。随着摩尔定律逐渐趋于物理极限,未来几年,我们期待新的技术突破能为我们带来新的希望。先谈一下类脑计算 (BrainInspiredComputing)。传统计算机系统,长于逻辑运算,不擅长模式识别与形象思维。构建模仿人脑的类脑计算机芯片,我们今天可以以极低的功耗,模拟 100 万个神经元、2 亿5 千万个神经突触。未来几年,我们会看到类脑计算机的进一步发展与应用。
接下来谈一下模拟计算 (AnalogComputing)。传统计算机系统,数据在存储器与计算单元之间移动,耗费时间并增加能耗。运用存储设备的物理特性,存储器内能够进行一些特定的运算,以达到同时进行计算与存储的目的。例如,利用相变存储器进行模拟计算。这种模拟计算虽然没有数字计算精确,但对于很多不要求绝对精度的人工智能问题,可以极大地降低能耗并提高运算速度。
谈到计算的未来,我们必须提到量子计算。在过去十年,我们在量子计算上取得了令人振奋的突破,让我们对这项可能根本改变计算的技术充满了期待与遐想。对合适的问题,超级计算机几十万年才能完成的工作,量子计算机可能不到一秒钟即可完成。我们今天已经可以构建 50 量子位的量子计算机原型。量子计算机的实际应用与商业化,可能比我们想象的快许多。
人工智能时代是一个供给端创新带来巨变的时代。展望未来几年,人工智能时代的技术创新涵盖四个方面,即人工智能核心技术、新的计算能力、人工智能与区块链与物联网的结合,以及人工智能与行业的结合。
人工智能将影响到每一个行业、每一家企业,让我们重新思考我们的定位,重新思考我们的核心竞争力。这是一个让我们向往与憧憬的未来,这是一个让我们兴奋与期待的未来,这也是一个让我们不安与担忧的未来。正如计算机科学的奠基人图灵所说:我们只能看清前方很近的距离,但我们能看到那里有太多的事需要去完成。
博士,IBM全球副总裁,IBM大中华区首席技术官,IBM中国研究院院长。主要研究领域包括计算机系统、计算机软硬件协同设计、及与人工智能有关的技术创新。沈博士领导团队长期致力于面向未来的技术创新与商业拓展,涵盖人工智能核心技术,云计算平台与基础架构,区块链技术与应用,物联网技术与应用,以及人工智能在医疗、金融、环境等领域的行业创新与商业应用。