博舍

医学影像智能识别:医疗与AI结合成功案例 人工智能图像识别技术应用案例

医学影像智能识别:医疗与AI结合成功案例

医学影像智能识别:医疗与AI结合成功案例

来源:未知时间:2021-28-29浏览次数:557次

医学影像识别有望成为AI较快落地的领域

“人工智能+医疗”驶入快车道。

“人工智能+医疗”快速发展。医学是一门靠归纳逻辑、经验学习、循证运用的学科,人工智能在这个行业可以发挥重要作用。

同时,我国医疗资源短缺,供给严重不足,人工智能在医疗行业的应用可以提升医生工作效率,变相提升医疗资源的供给。

在政策推动和算法红利的促进下,“人工智能+医疗”快速发展,根据中国数字医疗网统计,2016年中国AI+医疗市场规模达到96.61亿元,增长率为37.9%,中国AI+医疗市场规模在持续增长,2017年超130亿元,增长40.7%,有望在2018年市场规模达到200亿元。

人工智能在医疗行业的各环节均有应用

1.诊前:可用于个体或群体性疾病的预测,并给出健康建议。

2.诊中:人工智能可以辅助诊断、辅助治疗,降低误诊率。

3.诊后:能通过计算机视觉、图像识别和视频分析等渠道保证患者服药的真实性,辅助医生实现患者药物依从性的监督。

4.其他环节:保险机构费用智能控制;人工智能参与到药物研发过程中,可以缩短时间、提高效率。

AI+医疗的各类应用场景:

产业仍处于发展初期,数据整合与共享是驱动行业发展的核心因素。AI+医疗发展的核心在于“算法+有效数据”。

目前产业发展处于第一阶段。在此阶段,弱人工智能算法相对成熟,数据的整合和共享构成行业发展的核心因素。

目前,国内大多数医疗数据存储在医院,一方面,医院内部的临床数据中心建立尚不完善,医院内部数据互联互通程度和共享程度尚低;另一方面,医疗数据涉及病人隐私,共享机制和规范缺乏,导致很多AI+医疗应用由于缺乏数据而止步不前。

随着医疗数据互联互通程度的提升和共享机制的建立,AI+医疗行业发展将加速。

智能影像诊断是“人工智能+医疗”较快落地的应用领域

我们认为,目前已经形成成型产品、在各应用场景实现小范围推广、具备高附加值的AI+医疗应用包括两个:

1.基于医学影像的智能识别;

2.基于电子病历的辅助诊断。后者的典型案例是IBMWatson,目前已经落地WatsonforOncology的肿瘤辅助诊断治疗的AI产品,并在国际上各医院小范围推广。

而基于医学影像的智能识别,全球该领域的创业公司达1000多家,是适合AI技术发挥其所长的医学应用领域。

智能图像诊断算法相对成熟

自2012年深度学习技术被引入图像识别数据集之后,其识别率近年来屡创新高,2015年百度在ImageNet的比赛识别错误率仅为4.58%,高于人类水平。

在各类医学图像识别比赛或活动当中,学校和商业研究团队分别在不同病种上取得了不错成果。

医生资源短缺将促进AI智能影像识别的应用落地

目前我国医学影像数据的年增长率约为30%,而放射科医师数量的年增长率为4.1%,其间的差距是25.9%,放射科医师的数量增长远不及影像数据的增长。

以病理切片为例,据国家卫计委统计,我国病理注册医生在1万人左右,按照每百张床配备1—2名病理医生的标准计算,全国病理科医生缺口可能达3—4万人,目前,全国有近40%的手术未进行病理切片分析。

所以通过AI的方式辅助影像科医师进行诊断将满足市场刚需。

AI读片相对于人工读片具备比较优势

人工读片具备主观性高、重复性低、定量及信息利用度不足、耗时及劳动强度和知识经验的传承困难等问题。而人工智能读片的优势体现在高效率低成本。

随着产品的成熟带动识别率的提升,人工智能读片的精准度也将形成比较优势。

智能影像识别分类多空间大,初期格局分散

智能影像识别市场分类多空间大人工智能方法在医学图像处理中的应用十分广泛,涉及医学图像分割、图像配准、图像融合、图像压缩、图像重建等多个领域。

医疗影像智能识别按照应用领域,可以分为放射类、放疗类、手术类以及病理类:

1.放射类:类似于军队的“情报部门”,通过射线成像了解人体内部的病变情况,形成影像。对该影像智能识别的目的在于标注病灶位置。

2.放疗类:类似于军队的“战斗部门”,在制定放疗方案之前,医生需要通过成像设备对靶区进行定位,从而形成影像。对该影像智能识别的目的在于进行靶区自动勾画,由于放疗需要杀死细胞,病变区域勾勒的越准确越好,对智能影像识别准确率要求高。

3.手术类:对CT等影像通过3D可视化等技术,进行三维重建,帮助医生进行手术前规划,确保手术的精确性。

4.病理类:病理诊断是最终确诊环节,MRI、CT、B超等影像判读的正确与否要参考病理诊断的结果。传统的病历检验是医生在显微镜下直接读取病历涂片,现在数字化病理系统使得AI读片成为可能。

行业内公司目前多涉足于放射类和病理类:

1.放射类影像比较容易获取标注数据进行深度学习,且应用场景多领域广,有较多创业公司涉足;

而病理科医生缺口大(我国病理注册医生在1万人左右,按照每百张床配备1—2名病理医生的标准计算,全国病理科医生缺口可能达3—4万人,目前,全国有近40%的手术未进行病理切片分析),数字化病理系统快速普及,部分创业公司也在病理类影像智能识别发力。

医疗影像服务市场每年规模在千亿级别,假设AI读片在价值链的分配中占到10%,则市场规模在百亿级别。

按照成像设备或类型分,包括X线成像、CT成像、核磁共振、超声成像以及病理切片(基于显微仪)。另外,还包括小众的红外成像、眼底镜成像等。

其中,X线成像每年市场规模合计700亿元,而普通的CT和核磁共振,每年市场规模合计1500亿元。

所有成像类型的市场规模合计在千亿级别。假设AI读片在价值链的分配中占到10%,则市场规模在百亿级别。

2、行业发展初期市场相对分散,未来有望逐步走向集中

行业发展初期市场分散的原因包括几个方面:

1)数据分散:

尽管我国存在第三方影像中心,但绝大多数的医疗影像数据来源于医院。且三级医院拥有绝大多数影像数据,但影像数据不出院是必须守住的红线。所以大量影像数据分散在不同的三级医院系统中。

根据卫计委,2017年6月,全国三级医院数量为2286家。创业公司除了通过公开数据集进行训练,也跟大医院进行合作,签订联合科研的协议,和医院一起训练模型。

数据分散导致一家公司很难同时获取满足产品准确率要求的全部数据,而不同创业企业都有跟熟悉的医院合作进行产品研发的可能。

目前市场上大部分公司的数据来源是2-3家医院,这在数量和质量相对较少。以CT为例,医院在用的各种CT机型有近百种,厂家有7、8家。

在产品化的过程中,如果仅使用几个机型的数据,或者下载公开数据集的数据来训练模型,即使实验室准确率很高,也很难在实际应用中取得很好的效果。

医疗AI公司研发的产品是否可以适应市场上90%的影像设备,是这样的产品进行市场推广的前提。

2)病种分散:

虽然底层代码可以复用,但不同病种需要不同的标注数据训练不同的模型。

例如:谷歌Deepmind跟Moorfields眼科医院合作训练糖尿病视网膜病变识别;IBM跟EyePACS信息共享平台训练青光眼模型;阿里与万里云合作进行肺结节CT影像检测,未来有望扩大到乳腺癌、糖尿病等领域。

虽然行业参与的公司着力选择多发病种进行产品研发,但不同病种不同模型的特点,决定了行业发展初期参与者相对分散的形态。

3.变现场景、商业模式多样化:仅就医疗图像智能识别而言,潜在的变现方式包括:作为单独的软件模块向医疗机构销售、与PACS等系统合成向医疗机构销售;

与CT、X光机等设备合作形成软硬件一体化解决方案向医疗机构销售;通过远程医疗等方式服务基层医疗机构;通过互医疗影像创业公司处于发展初期

根据动脉网,目前国内在该领域的创业公司大概为59家。我们认为,随着行业的发展,市场参与者的数量将首先不断提升,最后由分散走向集中。

随着行业数据整合与共享机制的建立、模型训练的成熟、商业模式的确立,以及部分企业CFDA认证的率先通过,先发企业将逐步建立技术壁垒和商业壁垒,推动市场走向集中。

从产业链上下游看数据与场景等核心商业要素

医疗影像智能诊断不仅需要医疗影像数据,更需要经过专业人员标注过的医疗影像数据。基于此,从事医疗影像智能诊断的厂商通过资源获取已标注的数据的能力极为重要。

医疗影像数据产生于医院和第三方影像中心,短暂存储于医疗设备而长期存储于PACS系统中,而标注医疗影像数据需要与专业的医务人员合作。

影像科医生在日常读片过程中并不会进行病灶标注,这使得这些厂商需要花费较大的成本邀请专业的影像科医生在工作之余进行标注。

与上下游的关系及合作模式、或者产业链一体化,成为医疗影像智能诊断的厂商的核心竞争力之一。

大型医院、基层医院、第三方影像中心均有可能是医学影像智能诊断的上游“脱敏数据资源方”,而各类医疗机构、医疗设备、PACS系统,也有可能是医疗影像智能诊断的下游“产品购买方或合作方”。

从而与上下游的关系以及合作模式成为医疗影像智能诊断的厂商的核心竞争力之一。

1、数据获取:与医疗机构合作有助于打磨产品业内厂商数据获取方式包括跟大医院合作、跟基层医院合作、与科研机构合作、与第三方影像中心合作以及通过云PACS系统间接获取授权脱敏数据。

1)跟大医院合作:我国绝大多数的医疗影像数据来自于三甲医院等大医院。

医疗影像智能诊断AI公司与大医院合作,一方面有利于得到大量的脱敏的数据和行业专家的标注数据,另一方面收获了产品打磨的场景。

在某个病种上具备优势的医院,往往具备一定量的数据资源,打磨出细分领域识别度较高的产品。我们看到,智能影像公司官网上的合作医院被视为彰显自身实力的背书。

2)与基层医院合作:与大医院不同,基层医院的治疗水平,患者数量,数据资源有限,对智能阅片具备强需求。

部分公司通过远程医疗向基层医院提供“帮忙阅片”的服务,从而在医生和患者的允许下获取脱敏影像数据,并通过自己组建的医疗团队,对数据进行标注,在此进出上进行AI模型的训练。代表企业包括:万里云等。

根据万东医疗2016年年报,万里云公司完成10家远程影像诊断中心的建设,成功签约1000家医院用户,实现天均2000名患者的远程阅片诊断,业务范围覆盖全国基层医院、民营医院等。

以及其他自建远程影像诊疗系统,从而拓展人工智能阅片的企业,如锐达影像、汇影医疗等。

3)其他类型的合作:

(1)部分高校处于科研目的具备一定量的脱敏数据,这些数据的获取成本往往不高,部分创业公司选择与高校合作;

(2)随着第三方影像中心的逐步建立,部分AI企业也可选择自建或与其合作,部分第三方影像中心也将业务向智能读片延伸;

(3)PACS系统从院内向云端发展。近年来,区域性PACS云平台的建立成为趋势。云PACS能降低储存成本、实现快速调用传输、支持数据共享与应用开发。

相关企业通过拓展云PACS业务或者与其合作,获取AI+医疗影像行业的参与机会,相关厂商包括:杭州联众、心医国际、海纳医信。

综上,从数据的角度,大医院具备优势科室与一定量的已标注数据,与大医院合作有助于在大医院的优势学科训练出优质产品,但对于小众病种,需要跟很多家医疗机构合作才能训练出好的模型。

而与基层医院进行远程阅片合作的优势在于可以获取源源不断的数据资源,但需要专门的团队对影片进行标准。而随着我国第三方影像中心逐步建立和崛起,与第三方影像中心合作也将成为不错的数据资源获取方式。

2、变现模式与场景:与上下游厂商合作有利于业务拓展

产品在变现之前需要“持证上岗”。人工智能产品在CFDA中没有申报项目录:

1)智能医学影像产品还是作为三类医疗器械向CFDA进行认证申请。

CFDA的审批流程较为复杂,需要首先同国家指定的三甲医院合作进行临床测试,并同做临床试验的每一个病人签订合同,向国家专业机构做检测和报备,最后才能获得CFDA认证,这其中的时间成本、技术水平等因素均构成了“高门槛”。

2)部分软件模块作为PACS系统的智能阅片插件,提供辅助临床的工作,有跳过CFDA认证步骤的可能。

由于行业处于发展初期,变现模式处于探索阶段,我们认为,行业潜在的变现方式包括:

作为单独的软件模块向医疗机构销售、与PACS等系统集成向医疗机构销售;与CT、X光机等设备合作形成软硬件一体化解决方案向医疗机构销售;通过远程医疗等方式服务基层医疗机构;通过互联网医疗等方式直接服务于患者。

目前基本成型的AI+医学影像产品大多正处于医院试用阶段,该领域公司基本没有实现盈利。未来产品通过CFDA检测后,业务模式可进一步向产业链上游和下游进行拓展。

从变现对象看,基层医院因为治疗水平,医疗资源缺乏,付费动力最强;而大医院虽然医疗资源丰富,但由于门诊住院量高,具备通过智能化应用提升工作效率的需求。

在此背景下,基层医院具备按次付费的需求基础,而大医院更容易接受软件服务费作为付费形式。随着第三方影像中心的崛起,将也会对智能影像诊断产生需求。

智能图像处理,让机器视觉及其应用更智能高效

机器视觉(MachineVision)是人工智能领域中发展迅速的一个重要分支,目前正处于不断突破、走向成熟的阶段。一般认为机器视觉“是通过光学装置和非接触传感器自动地接受和处理一个真实场景的图像,通过分析图像获得所需信息或用于控制机器运动的装置”,可以看出智能图像处理技术在机器视觉中占有举足轻重的位置。

 

智能图像处理是指一类基于计算机的自适应于各种应用场合的图像处理和分析技术,本身是一个独立的理论和技术领域,但同时又是机器视觉中的一项十分重要的技术支撑。人工智能、机器视觉和智能图像处理技术之间的关系如图1所示。

图1智能图像处理的支撑作用

 

具有智能图像处理功能的机器视觉,相当于人们在赋予机器智能的同时为机器按上了眼睛,使机器能够“看得见”、“看得准”,可替代甚至胜过人眼做测量和判断,使得机器视觉系统可以实现高分辨率和高速度的控制。而且,机器视觉系统与被检测对象无接触,安全可靠。

 

1.机器视觉技术▲▲▲

 

机器视觉的起源可追溯到20世纪60年代美国学者L.R.罗伯兹对多面体积木世界的图像处理研究,70年代麻省理工学院(MIT)人工智能实验室“机器视觉”课程的开设。到80年代,全球性机器视觉研究热潮开始兴起,出现了一些基于机器视觉的应用系统。90年代以后,随着计算机和半导体技术的飞速发展,机器视觉的理论和应用得到进一步发展。

 

进入21世纪后,机器视觉技术的发展速度更快,已经大规模地应用于多个领域,如智能制造、智能交通、医疗卫生、安防监控等领域。目前,随着人工智能浪潮的兴起,机器视觉技术正处于不断突破、走向成熟的新阶段。

 

在中国,机器视觉的研究和应用开始于20世纪90年代。从跟踪国外品牌产品起步,经过二十多年的努力,国内的机器视觉从无到有,从弱到强,不仅理论研究进展迅速,而且已经出现一些颇具竞争力的公司和产品。估计随着国内对机器视觉研究、开发和推广的不断深入,赶上和超越世界水平已不是遥不可及的事情了。

 

常见机器视觉系统主要可分为两类,一类是基于计算机的,如工控机或PC,另一类是更加紧凑的嵌入式设备。典型的基于工控机的机器视觉系统主要包括:光学系统,摄像机和工控机(包含图像采集、图像处理和分析、控制/通信)等单元,如图2所示。机器视觉系统对核心的图像处理要求算法准确、快捷和稳定,同时还要求系统的实现成本低,升级换代方便。

图2机器视觉系统案例

 

2. 智能图像处理技术▲▲▲

机器视觉的图像处理系统对现场的数字图像信号按照具体的应用要求进行运算和分析,根据获得的处理结果来控制现场设备的动作,其常见功能如下:

 

(1)图像采集

图像采集就是从工作现场获取场景图像的过程,是机器视觉的第一步,采集工具大多为CCD或CMOS照相机或摄像机。照相机采集的是单幅的图像,摄像机可以采集连续的现场图像。就一幅图像而言,它实际上是三维场景在二维图像平面上的投影,图像中某一点的彩色(亮度和色度)是场景中对应点彩色的反映。这就是我们可以用采集图像来替代真实场景的根本依据所在。

 

如果相机是模拟信号输出,需要将模拟图像信号数字化后送给计算机(包括嵌入式系统)处理。现在大部分相机都可直接输出数字图像信号,可以免除模数转换这一步骤。不仅如此,现在相机的数字输出接口也是标准化的,如USB、VGA、1394、HDMI、WiFi、BlueTooth接口等,可以直接送入计算机进行处理,以免除在图像输出和计算机之间加接一块图像采集卡的麻烦。后续的图像处理工作往往是由计算机或嵌入式系统以软件的方式进行。

 

(2)图像预处理

对于采集到的数字化的现场图像,由于受到设备和环境因素的影响,往往会受到不同程度的干扰,如噪声、几何形变、彩色失调等,都会妨碍接下来的处理环节。为此,必须对采集图像进行预处理。常见的预处理包括噪声消除、几何校正、直方图均衡等处理。

通常使用时域或频域滤波的方法来去除图像中的噪声;采用几何变换的办法来校正图像的几何失真;采用直方图均衡、同态滤波等方法来减轻图像的彩色偏离。总之,通过这一系列的图像预处理技术,对采集图像进行“加工”,为体机器视觉应用提供“更好”、“更有用”的图像。

 

(3)图像分割

图像分割就是按照应用要求,把图像分成各具特征的区域,从中提取出感兴趣目标。在图像中常见的特征有灰度、彩色、纹理、边缘、角点等。例如,对汽车装配流水线图像进行分割,分成背景区域和工件区域,提供给后续处理单元对工件安装部分的处理。

 

图像分割多年来一直是图像处理中的难题,至今已有种类繁多的分割算法,但是效果往往并不理想。近来,人们利用基于神经网络的深度学习方法进行图像分割,其性能胜过传统算法。

 

(4)目标识别和分类

在制造或安防等行业,机器视觉都离不开对输入图像的目标进行识别和分类处理,以便在此基础上完成后续的判断和操作。识别和分类技术有很多相同的地方,常常在目标识别完成后,目标的类别也就明确了。近来的图像识别技术正在跨越传统方法,形成以神经网络为主流的智能化图像识别方法,如卷积神经网络(CNN)、回归神经网络(RNN)等一类性能优越的方法。

 

(5)目标定位和测量

在智能制造中,最常见的工作就是对目标工件进行安装,但是在安装前往往需要先对目标进行定位,安装后还需对目标进行测量。安装和测量都需要保持较高的精度和速度,如毫米级精度(甚至更小),毫秒级速度。这种高精度、高速度的定位和测量,倚靠通常的机械或人工的方法是难以办到的。在机器视觉中,采用图像处理的办法,对安装现场图像进行处理,按照目标和图像之间的复杂映射关系进行处理,从而快速精准地完成定位和测量任务。

 

(6)目标检测和跟踪

图像处理中的运动目标检测和跟踪,就是实时检测摄像机捕获的场景图像中是否有运动目标,并预测它下一步的运动方向和趋势,即跟踪。并及时将这些运动数据提交给后续的分析和控制处理,形成相应的控制动作。图像采集一般使用单个摄像机,如果需要也可以使用两个摄像机,模仿人的双目视觉而获得场景的立体信息,这样更加有利于目标检测和跟踪处理。

3. 机器视觉的应用▲▲▲

如图3所示,机器视觉应用广泛,如安防、制造、教育、出版、医疗、交通、军事领域等。在这些机器数额的应用中,智能图像处理都是不可或缺的,这里仅简要介绍其中几个方面的应用。

图3常见机器视觉应用场合

 

(1)智能制造

为了实现中国智能制造2025这一宏伟目标,离不开机器视觉。例如,在智能图像处理一直处于领先地位的广东迅通科技股份有限公司(以下简称“迅通科技”)针对这一需求开发出了机器视觉分析仪平台,见图4。其中,迅通科技为某知名汽车厂商装配流水线开发的车门限位器自动定位、检测和识别的系统,见图5。该系统通过智能图像识别方式,自动检测型号是否正确,定位是否准确,完全代替了人工操作,检测准确率达到100%。此前,每个工位需要4个工人用眼睛来检查、定位16种型号限位器,员工不仅很容易疲劳,还时常出现差错。

(2)教育考试

考试试卷时常发现因排版或印刷错误影响学生考试,利用智能图像处理技术,机器自动对印刷后的试卷和原版试卷进行比对,发现不一致之处,会自动提示并报警,完全替代之前只能通过人工对试卷进行校验。

 

(3)出版印刷

和教育考试类似,专业出版印刷厂由于印刷的图书、报纸杂志,以及承接来自企业产品包装和宣传资料的种类多,数量大,排版和印刷中经常出错。为此,需安排不少专业人员进行校对,耗费大量的资金和时间。通过利用智能图像处理技术进行自动校对,既提高了校对准确度,又缩短了校对时间,降低了印刷成本,缩短了出版物的交付周期。

 

(4)安防监控

这是当前备受机器视觉关注的一个领域。机器视觉打破了传统视频监控系统的限制,增加了系统的智能,使得智能视频分析得以逐步实现。以公共场所的视频监控为例,通过运用机器视觉技术,可以实现对可疑人物的自动检测、人脸识别、实时跟踪,必要时还可以实现多摄像机接连跟踪,同时发出告警,存储现场信息。

 

(5)智能交通

机器视觉在交通领域有着广泛的应用。例如,在高速公路上及卡口处,对来往车辆进行车型、牌照等识别,甚至对行驶车辆的违规行为进行识别。在汽车上对驾驶员面部图像进行分析,判断驾驶员是否处于疲劳驾驶状态。再如,无人驾驶汽车借助于机器视觉技术,使用摄像头、激光/毫米波/超声波雷达、GPS等感知道路环境信息,自动规划和控制车辆的安全行驶。

 

有数据显示,2016年全球机器视觉系统的市场规模约46亿美元,2017年约50亿美元,预计2018年达到55亿美元,年增长率为10%左右。中国机器视觉市场的增长是从2010年开始的,2017年市场规模约68亿元,预计到2020年或达780亿元,市场增长率将超过100%。

4. 技术瓶颈及今后的发展▲▲▲

在机器视觉的智能图像处理技术的发展中,还存在不少技术瓶颈,如:

1)稳定性:某种处理方法往往在研究和开发中表现良好,但在复杂多变的应用环境中,却不时地出现问题。例如人脸识别系统,在目标配合时识别率可高达95%以上,但在实际监控环境下,识别率就会大大下降。

2)实时性:如果图像的采集速度、处理速度较慢,再加上新近引入的深度学习类算法,加大了系统实时处理的难度,跟不上机器运行和控制的节奏。

3)准确性:机器视觉系统要求图像识别和测量的准确性接近100%,任何微小的误差都有可能带来不可预测的后果。例如目标定位的误差会使装配出来的设备不符合要求。

4)系统能力:目前的嵌入式图像处理系统,存在芯片的计算能力不足,存储空间有限等问题,常常不能满足运算量较大的图像处理运算,如神经网络的迭代运算,大规模矩阵运算等。

 

今后机器视觉中智能图像处理的发展主要体现在以下几个方面:

1)算法:传统算法继续不断有所突破,新一波人工智能浪潮带来不少新的性能优良的图像处理算法,如深度学习(DL),卷积神经网络(CNN),生成对抗网络(GAN),等等。

2)实时性:出现更多结构新颖、资源充足、运算快速的硬件平台支撑,例如基于多CPU、多GPU的并行处理结构的计算机,海量存储单元等。

3)嵌入式:新的高速的信号处理器阵列,超大规模FPGA芯片。

4)融合处理:从单图像传感器发展到多传感器(多视点)的融合处理,可更加充分地获取现场信息。还可融合多类传感器,如图像传感器、声音传感器、温度传感器等共同完对现场目标定位、识别和测量。

 

总之,无论是“中国制造2025”还是“工业4.0”都离不开人工智能,离不开计算机视觉,而智能图像处理是机器视觉的核心技术,随着图像处理水平的不断提高,一定会有力地推动机器视觉的迅速发展。

 

深圳辰视智能科技有限公司是一家集机器视觉、工业智能化于一体的高新技术企业,是由一支中国科学院机器视觉技术研究的精英团队在深圳创立。

辰视智能拥有基于深度学习的三维视觉引导、机器人运动控制、视觉检测、三维建模等方面的核心技术,并研发了机器人三维视觉引导系统、机器人二维视觉引导系统、三维检测系统、产品外观检测系统等可根据客户需求定制化的智能产品。以高效·低成本·模块化的方式为自动化集成商、自动化设备厂商、机器人厂家提供机器视觉的相关解决方案。

辰视智能致力于技术的不断研究、创新、突破,为合作伙伴提供世界领先的机器视觉产品及技术。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇