博舍

深度学习的背景 人工智能教育的背景简介

深度学习的背景

一、背景1.浅层学习

1980年代末期,用于人工神经网络的反向传播算法(也叫BackPropagation算法或者BP算法)的发明,给机器学习带来了希望,掀起了基于统计模型的机器学习热潮。这个热潮一直持续到今天。人们发现,利用BP算法可以让一个人工神经网络模型从大量训练样本中学习出统计规律,从而对未知事件做预测。这种基于统计的机器学习方法比起过去基于人工规则的系统,在很多方面显示出优越性。这个时候的人工神经网络,虽然也被称作多层感知机(Multi-layerPerceptron),但实际上是一种只含有一层隐层节点的浅层模型。90年代,各种各样的浅层机器学习模型相继被提出,比如支撑向量机(SVM,SupportVectorMachines)、Boosting、最大熵方法(例如LR,LogisticRegression)等。这些模型的结构基本上可以看成带有一层隐层节点(如SVM、Boosting),或没有隐层节点(如LR)。这些模型在无论是理论分析还是应用都获得了巨大的成功。相比较之下,由于理论分析的难度,加上训练方法需要很多经验和技巧,所以这个时期浅层人工神经网络反而相对较为沉寂。2000年以来互联网的高速发展,对大数据的智能化分析和预测提出了巨大需求,浅层学习模型在互联网应用上获得了巨大成功。最成功的应用包括搜索广告系统(比如Google的AdWords、百度的凤巢系统)的广告点击率CTR预估、网页搜索排序(例如Yahoo!和微软的搜索引擎)、垃圾邮件过滤系统、基于内容的推荐系统等。但早期由于深度神经网络学习主要面临以下问题࿰

人工智能时代学校教育的现状及发展趋势

(二)积极开展教师人工智能教育培训

教师作为学生培养者、人工智能教育实践者,提升自身人工智能素养是实现教育现代化的重要保障。针对当前教师对人工智能教育认识分化,人工智能教育利用不合理情况,学校与教育主管部门应定期对教师进行相关教育培训。第一,深入调查研究了解当前教师关于人工智能教育认识程度、使用熟练度、存在具体问题及相关建议,由此制定具有针对性的培训内容。第二,针对调查结果结合不同地区实际教育发展需要,制定人工智能专项教育培训计划,达到教师正确认识并熟练运用目的。第三,邀请人工智能专家、教育专家、资深教师进行培训课程研发。使培训课程贴近生活、贴近课堂、贴近学生,做到为教育服务。第四,为保证培训效果,将人工智能教学技能作为教师综合考核标准之一,督促、激励教师向数字化教师转型,带动教育事业走向现代化。

(三)合理为学生制定个性化学习方案

人工智能教育使教师对学生学习过程具有深入了解,可以针对不同层次学生制定个性化学习方案。传统课堂教师无法兼顾学生学习差异,授课内容只能以班级大多数学生水平为参照,导致优等生得不到突破,后进生理解困难,难以真正达到因材施教。在人工智能教育帮助下,通过自适应学习程序、游戏和软件等系统响应学生的需求,全过程搜集学生的学习数据,通过分析数据,最后向学生推荐个性化的学习方案。课前,教师通过数据反馈结合学生学习需要制定本节课教学计划。课中,依据学生课堂表现,教师可以有针对性的对学生薄弱环节,进行深入讲解加深学生印象。课后,分层次布置作业,在确保夯实基础知识前提下,适当拔高作业难度,既能巩固知识,又能减少学生学习挫败感调动学习积极性。人工智能教育把传统课堂的优势与数字化教学的便利相结合,实现线上教育与线下教育的混合式教学,达到个性化教学目的。

(四)考核体系实现素质评价精准化

当前以知识为核心的考试制度,虽然提高了升学率,但是制约了教育创新发展,不利于学生综合素质提升。随着人工智能数据采集方式的不断完善,充分利用大数据智能分析对学生的学习过程、学习行为、学习水平等进行分析,基于学生的个性特点精准建立学习者的动机、能力、爱好、水平、体能、心智水平等要素构成的学习方案,具备大数据智能过程性评价的新制度将从根本上优化当前的以知识为核心的考试制度,以学习者动态发展学业水平为基础的适应性双向匹配与选择制度将被建立,从而实现素质评价精准化,提升学生学习的积极性与主动性。

三、人工智能对未来教育影响

(一)促进学生深度学习

理想的学习效果是让学生认识到学习意义,从而全身心投入到未知领域的学习中,达到深度学习目的,人工智能教育利用技术优势实现学生深度学习。首先,真实地学。真实是深度学习发生的基础,在课堂中减少虚假学习行为,聚焦学生内心世界,了解学生学习困境,进行针对性教学,从而促进学生深度学习。其次,充分使用工具。人工智能为教育提供丰富多样的学习工具,学生结合自身学习特点,合理选择学习工具,提高学习效率促进深度学习。最后,整体地学。关于深度学习,我们应走出碎片化学习误区,利用人工智能辅助学习工具,把知识与生活相联系与学生学习过程体验相结合形成整体教学。人工智能时代深度学习不仅是大脑参与的思维层面的学习,更是人机协同的系统化学习。

(二)促进学生跨学科学习

单科学习让学生有完整系统的学科知识,但其局限性无法满足新时代对学生综合能力提出的要求,新时代跨学科学习是未来创造者的必修课。这种学习方式打破不同学科、领域之间的知识隔阂,在帮助学生解决复杂问题的同时拓宽认识边界,培育学生的发散思维和创新能力。人工智能时代跨学科学习,不再局限于学校学科之间的跨越学习,而是提倡学生学习社会各个学科领域的重要知识,并用此指导实践。进行跨学科学习应使用交流合作的学习方式,在学习过程中取长补短,融百家之所长,实现知识的流动、转换和创新,在理性的学术争论中,帮助学生完善知识,提升学生创新水平。

(三)促进学生思维方式转变

人工智能教育颠覆了不同个体的学习过程和学习方式,促进学生思维方式转变。在应试教育背景下,学生常用死记硬背的学习方式,不考虑知识的来源、用处与其他知识的关联,缺乏在实际生活中运用。针对这一问题,人工智能用庞大数据库和丰富实践案例,来引导学生思维方式从零维上升到一维。线性思维强调不同事物之间彼此关联和相互连接,利于学生用所学知识连接现实解决困境。建立不同知识点的因果联系,有助于提高学生创造力、展现个性。人工智能作为人类学习辅助工具,极大地优化了学生的思维方式,加速素质教育实现。

四、结语

人工智能技术发展使学校教育得到优化,为人类社会发展带来动力和创新契机,我们应从理性的角度出发,合理利用技术推动教育进步,提升教育质量,真正发挥教育立德树人作用。在进行教育体系建设时,始终坚持教育的初心和使命,坚持科学精神、创新精神、实践精神,发展具有中国特色的新时代智能教育。

参考文献:

[1]梁迎丽,刘陈.人工智能教育应用的现状分析、典型特征与发展趋势[J].中国电化教育,201(8  03):24-30.

[2]吴晓如,王政.人工智能教育应用的发展趋势与实践案例[J].现代教育技,201(8  02):5-11.

[3]余胜泉.人工智能教师的未来角色[J].开放教育研究,201(8  01):16-28.

[4]张剑平,张家华.我国人工智能课程实施的问题与对策[J].中国电化教育,200(8  10):95-98.

人工智能的发展与未来

随着人工智能(artificialintelligent,AI)技术的不断发展,各种AI产品已经逐步进入了我们的生活。

现如今,各种AI产品已经逐步进入了我们的生活|Pixabay

19世纪,作为人工智能和计算机学科的鼻祖,数学家查尔斯·巴贝奇(CharlesBabbage)与艾达·洛夫莱斯(AdaLovelace)尝试着用连杆、进位齿轮和打孔卡片制造人类最早的可编程数学计算机,来模拟人类的数理逻辑运算能力。

20世纪初期,随着西班牙神经科学家拉蒙-卡哈尔(RamónyCajal)使用高尔基染色法对大脑切片进行显微观察,人类终于清晰地意识到,我们几乎全部思维活动的基础,都是大脑中那些伸出细长神经纤维、彼此连接成一张巨大信息网络的特殊神经细胞——神经元。

至此,尽管智能的具体运作方式还依然是个深不见底的迷宫,但搭建这个迷宫的砖瓦本身,对于人类来说已经不再神秘。

智能,是一种特殊的物质构造形式。

就像文字既可以用徽墨写在宣纸上,也可以用凿子刻在石碑上,智能,也未必需要拘泥于载体。随着神经科学的启迪和数学上的进步,20世纪的计算机科学先驱们意识到,巴贝奇和艾达试图用机械去再现人类智能的思路,在原理上是完全可行的。因此,以艾伦·图灵(AlanTuring)为代表的新一代学者开始思考,是否可以用二战后新兴的电子计算机作为载体,构建出“人工智能”呢?

图灵在1950年的论文《计算机器与智能(ComputingMachineryandIntelligence)》中,做了一个巧妙的“实验”,用以说明如何检验“人工智能”。

英国数学家,计算机学家图灵

这个“实验”也就是后来所说的“图灵测试(Turingtest)”:一名人类测试者将通过键盘和显示屏这样不会直接暴露身份的方式,同时与一名人类和一台计算机进行“网聊”,当人类测试者中有七成都无法正确判断交谈的两个“人”孰真孰假时,就认为这个计算机已经达到了“人工智能”的标准。

虽然,图灵测试只是一个启发性的思想实验,而非可以具体执行的判断方法,但他却通过这个假设,阐明了“智能”判断的模糊性与主观性。而他的判断手段,则与当时心理学界崛起的斯纳金的“行为主义”不谋而合。简而言之,基于唯物主义的一元论思维,图灵和斯金纳都认为,智能——甚至所有思维活动,都只是一套信息处理系统对外部刺激做出反应的运算模式。因此,对于其他旁观者来说,只要两套系统在面对同样的输入时都能够输出一样的反馈,就可以认为他们是“同类”。

1956年,人工智能正式成为了一个科学上的概念,而后涌现了很多新的研究目标与方向。比如说,就像人们在走迷宫遇到死胡同时会原路返回寻找新的路线类似,工程师为了使得人工智能达成某种目标,编写出了一种可以进行回溯的算法,即“搜索式推理”。

而工程师为了能用人类语言与计算机进行“交流”,又构建出了“语义网”。由此第一个会说英语的聊天机器人ELIZA诞生了,不过ELIZA仅仅只能按照固定套路进行作答。

而在20世纪60年代后期,有学者指出人工智能应该简化自己的模型,让人工智能更好的学习一些基本原则。在这一思潮的影响下,人工智能开始了新一轮的发展,麻省理工学院开发了一种早期的自然语言理解计算机程序,名为SHRDLU。工程师对SHRDLU的程序积木世界进行了极大的简化,里面所有物体和位置的集合可以用大约50个单词进行描述。模型极简化的成果,就是其内部语言组合数量少,程序基本能够完全理解用户的指令意义。在外部表现上,就是用户可以与装载了SHRDLU程序的电脑进行简单的对话,并可以用语言指令查询、移动程序中的虚拟积木。SHRDLU一度被认为是人工智能的成功范例,但当工程师试图将这个系统用来处理现实生活中的一些问题时,却惨遭滑铁卢。

而这之后,人工智能的发展也与图灵的想象有所不同。

现实中的人工智能发展,并未在模仿人类的“通用人工智能(也称强人工智能)”上集中太多资源。相反,人工智能研究自正式诞生起,就专注于让计算机通过“机器学习”来自我优化算法,最后形成可以高效率解决特定问题的“专家系统”。由于这些人工智能只会在限定好的狭窄领域中发挥作用,不具备、也不追求全面复杂的认知能力,因此也被称为“弱人工智能”。

但是无论如何,这些可以高效率解决特定问题的人工智能,在解放劳动力,推动现代工厂、组织智能化管理上都起到了关键作用。而随着大数据、云计算以及其他先进技术的发展,人工智能正在朝着更加多远,更加开放的方向发展。随着系统收集的数据量增加,AI算法的完善,以及相关芯片处理能力的提升,人工智能的应用也将逐渐从特定的碎片场景转变为更加深度、更加多元的应用场景。

人工智能让芯片的处理能力得以提升|Pixabay

从小的方面来看,人工智能其实已经渐渐渗透进了我们生活的方方面面。比如喊一声就能回应你的智能语音系统,例如siri,小爱同学;再比如在超市付款时使用的人脸识别;抑或穿梭在餐厅抑或酒店的智能送餐机器人,这些其实都是人工智能的应用实例。而从大的方面来看,人工智能在制造、交通、能源及互联网行业的应用正在逐步加深,推动了数字经济生态链的构建与发展。

虽然脑科学与人工智能之间仍然存在巨大的鸿沟,通用人工智能仍然像个科幻梦,但就像萧伯纳所说的那样“科学始终是不公道的,如果它不提出十个问题,也永远无法解决一个问题。”科学总是在曲折中前进,而我们只要保持在不断探索中,虽无法预测是否能达到既定的目的地,但途中终归会有收获。

参考文献

[1]王永庆.人工智能原理与方法[M].西安交通大学出版社,1998.

[2]Russell,StuartJ.ArtificialIntelligence:AModernApproach[J].人民邮电出版社,2002.

[3]GabbayDM,HoggerCJ,RobinsonJA,etal.Handbookoflogicinartificialintelligenceandlogicprogramming.Vol.1:Logicalfoundations.,1995.

[4]胡宝洁,赵忠文,曾峦,张永继.图灵机和图灵测试[J].电脑知识与技术:学术版,2006(8):2.

[5]赵楠,缐珊珊.人工智能应用现状及关键技术研究[J].中国电子科学研究院学报,2017,12(6):3.

[6]GeneserethMR,NilssonNJ.LogicalFoundationofArtificialIntelligence[J].brainbroadresearchinartificialintelligence&neuroscience,1987

作者:张雨晨

编辑:韩越扬

[责编:赵宇豪]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇