人工智能应用三大发展阶段,对应数据需求各有差异
人工智能应用三大发展阶段,对应数据需求各有差异。研发、训练和落地是企业应用人工智能算法必须要经历的三个阶段,由于不同发展阶段算法所处的状态不同,所以不同发展阶段对AI数据的要求也有着差异化表现,但每个阶段都需要大量的数据支撑。
云测数据认为,未来,高精度数据将成人工智能训练阶段追逐热点,具备主要需求方稳定的特点,存量市场将稳步增长;而随着人工智能对长尾场景的数据需求进一步扩大,3-5年内,场景化数据将拥有更广阔的增量空间,成为行业加速发展的新引擎;同时,底层技术+服务能力”将愈发重要直至成为核心竞争点,人工智能更需要能提供一体化数据解决方案的服务商。
一、“数据的精准度”将成为行业追逐热点和重要突破项
在算法训练阶段,需要通过更高质量的数据对已有算法的准确率、鲁棒性等能力进行优化。
从产品终端体验来看,在人工智能概念热度和巨大的市场前景背后,国内消费者对AI应用的期待值大幅提升,但AI应用却出现同质化严重等问题。当前,人工智能算法模型经过多年的打磨,基本达到阶段性成熟,一个成功的AI应用与其他应用的差异化对比,更多的来自于精准大量的训练数据。
随着人们对人工智能算法识别准确的要求更上一个台阶,具有更高精准度的数据也将成为训练阶段的主流需求。云测数据在数据采集标注领域的重要优势之一,就是能提供足够精准的训练数据,因此其最高99.99%的精准度可较好的应对人工智能数据精准度提升的情况,行成企业护城河。
对于人工智能数据采集标注服务商来讲,将提高数据标注精准度作为业务追求,才能用存量市场和增量市场“两条腿”稳健前行,而那些低质量的AI数据服务商在未来将面临淘汰或转型其他业务。
二、人工智能向垂直领域落地,场景化数据需求迎来增长
在算法落地阶段,经过研发与训练之后,人工智能应用从理论走向市场,对细分场景化的数据准确度提出更高要求。
从细分结构来看,随着人工智能技术的不断成熟,更多的场景和行业开始嵌入使用人工智能技术,AI行业应用场景逐渐趋于长尾和碎片化,产生了大量新兴垂直领域的数据需求,如疫情期间的口罩识别应用等;同时,从AI应用迭代、用户体验完善的角度来看,AI应用需要更加贴合具体使用场景的数据进行迭代更新。
这些数据采集需求相对复杂、聚焦,难度较大,对AI数据服务商的场景化采集能力提出了很高的要求。随着人工智能对长尾场景的数据需求进一步扩大,未来,场景数据将拥有更广阔的增量空间,具有相关采集工具、资源、能力的数据采集标注服务商将拥有极大的竞争优势。以云测数据为例,为进一步满足场景化数据的需求,首创了“数据场景实验室”进行相应的场景化数据生产。
“底层技术+服务能力”更受数据需求方重视,数据服务商应提前布局。目前,纵观国内外人工智能数据服务厂商,各家企业在模式、技术、服务等方面各有差异,但综合人工智能发展需求和服务厂商的情况来看,“技术+服务”将成为未来3-5年内的重要竞争核心。
三、数据采集标注服务商的“技术能力”将变得更加重要,数据的隐私安全依旧需要完善
技术层面来讲,随着AI训练数据需求多样化,以及复杂程度的提升,客户类型丰富、数据需求多样、并发项目众多等因素对厂商的能力和效率提出更高要求。如云测数据就拥有一套自主研发贯通创建任务、分配任务、数据处理、质检/抽检、和数据安全管理等各环节于一体,并且能对图像、文本、语音、视频以及点云数据做到一站式加工处理的管理和执行一体化平台。这是AI数据服务商技术实力的集中体现,也是快速确立行业地位的关键一步。
其中,由于部分行业领域具有较高的数据敏感性,那些自主研发能力强、技术水平高、可向需求方提供私有化部署服务,或将自身平台与需求方系统兼容,来保证数据的隐私安全等能力,将成为人工智能数据服务商形成差异化竞争的关键。
四、未来3年,人工智能更需要能提供一体化数据解决方案的服务商
“服务能力”属于数据服务商的一项软实力,具体表现为能够积极配合、快速响应需求方的数据要求。通过对数据需求方的调查研究,除了对精细化、质量、安全性、效率等业务层面的核心关注点之外,具备更深刻的行业领域知识、更懂场景、更懂技术、更具行业前瞻性,甚至给出需求方提出采标优化建议等等的服务能力,将成为未来数据需求方选择合作企业的重要参考指标。
尤其在人工智能应用场景落地阶段,常规的数据采集或者数据标注已经不具备竞争优势。可以提供集调研、咨询、设计、采集、标注于一体的人工智能训练数据解决方案的服务商,在扩大人工智能数据服务的业务边界的同时,还将在开拓业务市场、行业地位的确立上具备更多的主动性。
人工智能对数据提出更高需求,展现了在人工智能产业化落地进程中,数据发挥的重要作用。场景化、高精度的数据和专业化、技术化的服务,将成为未来3-5年人工智能全速发展的重要突破口,驱动人工智能深化发展。人工智能的发展加速各领域智能化的到来,而中国庞大的数据量又为人工智能技术在各个场景落地生长提供了肥沃土壤,叠加向好的政策、大力的技术研发投入和积极拥抱新技术的消费者,人工智能产业未来发展强劲,数据采集标注服务将成为主要拉力,并持续处于上升期,行业前景良好。(顾天娇)
责任编辑:kj005
文章投诉热线:15600572229投诉邮箱:2913236@qq.com发展人工智能 需要经历的三个重要阶段
其实,人工智能经历的这六十多年,都有一个很明显的规律。我认为,这个规律就是人工智能在发展过程中必须经历的三个阶段。现如今,人工智能的浪潮越来越热,技术也越来越强大,对于人工智能这个词相信大家已经耳熟能详了。人工智能从1956年被提出之后,经过岁月的变迁,从提出到发展到如今已经有了62年的历史,这期间积累的人工智能技术和人才,可以说都是在为了我们现在的高科技产品、人工智能产品实现落地,以及实现这些产品应用在日常生活场景中奠定基础。但其实,人工智能从一开始的提出到现在的发展,经历的这六十多年,都有一个很明显的规律,或者说这个规律其实是人工智能在发展途中所需要经历的。我认为,这个规律就是人工智能在发展过程中必须经历的三个阶段。
那么,这三个阶段分别是什么呢?
第一阶段
首先是第一阶,我认为第一阶段是运算智能阶段,也就是在最开始诞生基础理论的阶段,为什么这么说呢,因为第一个阶段,也就是这个阶段奠定了人工智能技术发展的基本规则。并且,在这个阶段的人工智能,具备了存储和运算的能力,而且也拥有了最基本的开发工具,为我们后面的人工智能研究提供了条件,毕竟没有工具,一切都是徒然。除此之外,这个最基本的开发工具也为后来人们升级更好的工具开创了良好的条件。在基础算法和原始开发工具的加持下,人们对于人工智能的研究产生了极大的动力,并且对算法程序和语言开发投入了极大的热情,也正因为如此,这第一个阶段就给人工智能的发展带来了第一波的高潮,大家争先恐后抢占研发,为日后人工智能技术的迭代更新打下了非常重要的基础。
所以这第一个阶段就是集中诞生基础理论的阶段,也是为人工智能的未来打基础的阶段,也是非常重要的一个阶段。
第二阶段
那第一阶段谈理论打基础,那么第二阶段会是什么呢?其实很好猜也很好理解,第二个阶段就是人工智能技术要更新迭代进步的阶段。在这个阶段。由于前个阶段人们研究人工智能所打下的基础,使得现在可以获得和分析的数据飞速增长,经过也一遍一遍的数据分析与研究,认人工智能的超级大规模运算成为了可能,不再存在于幻想中。不过运算的结果是相互的,由于需要不断的运算,那么人们所需要的数据也要非常多,这就倒过来让人们被迫的加速对数据的采集,由于数据过多过杂,也让人们学会了对数据的清洗,同时也增加了对经验的积累。光有数据不行,于是人们也开始研究起硬件来,并将数据转移到硬件上,这一举措使得相应的软硬件基础设施得到了快速的发展,再通过这些基础设施,反过来又带动了大数据行业的蓬勃发展。
如果说第一阶段是因为对人工智能的一时兴起,而带来了第一波高潮,但是原来第一阶段的人们可能不研究人工智能了,那么这第二阶段的高潮,可以说是大企业带来的,大企业在这个阶段发挥出了规模优势,是推动人工智能发展第二波高潮的主要力量,同时也是动力。所以第二阶段也可以叫可以说是感知智能阶段。
第三阶段
前面两个阶段,可以简单的理解为起源和发展,那么到了第三阶段,目标就很明显了。经过第一阶段和第二阶段的研究与进步,到了第三阶段自然就是要对前两个阶段的东西进行实际落地应用,毕竟研究了许久,为的就是这一刻。随着人工智能技术的发展和数据积累,相信大部分行业会逐渐发现人工智能技术好像到达了天花板,短期之内无法再通过研究加强人工智能,于是企业便把目标转向人工智能深入到具体应用上。所以在第三阶段,数据分布的情境化特性使得人工智能在特定情境下的垂直发展成为了可能。
那么还有第四阶段吗?目前来看是没有的,我们需要克服目前第三阶段的困难才能前进。企业们要挖掘人工智能在实际场景中应用的可能性,让机器具备能理解思考、像人一样能够学习和推理的能力。所以,我们可以看见目前有越来越多基于人工智能的科技产品诞生,例如它不仅能下围棋,还可以当医生、当老师,甚至做律师,可以在很多方面,不光从是代替人类做简单重复的机械式体力劳动,还可以替代人类很多纷繁复杂的脑力劳动,释放出人类更聪明的智慧和灵感。所以第三阶段也叫实际场景应用阶段,当然,也可以以人工智能的角度来看,那就是认知智能阶段,这里的认知智能,意思是让人工智能去学习、学会像人类一样的思考,具有自己认知的能力。
当然,随着人工智能在三个阶段里不断的完善发展,目前各个行业基本都会有人工智能的影子在,相信大家也都有接触过,那么这里我们就来举几个人工智能在部分行业的应用。
人工智能应用场景举例
比如智能家居,想必也是大家听到最多的一个词,智能家居是以住宅为平台,基于物联网技术,由硬件、软件系统、云计算平台构成的一个家居生态圈,其中包括家居生活中多种产品,涵盖多个家庭生活场景。虽然大家听到非常多的智能家居,但是呢,我国智能家居市场其实正在处于启动阶段,尚未进入爆发期,而且产品渗透率较低,并不是大家想象的那般已经非常普及了,但是可以想象,人工智能技术肯定会为智能家居行业带来颠覆性的突破。
再例如智能安防,不要以为安防与我们无关,这其实是错的。安防在我们的身边到处都是,但是安防为什么能和人工智能扯上关系呢?那是因为随着物联网技术的发展,传统简单被动的安防形式已无法满足日常多样化的生活和工作场景,比如现在越来越高明的骗术和利用高科技偷窃等,与其被动,不如我们主动防护,所以在大数据、人工智能等技术的带动下,安防向城市化、综合化、主动安防方向发展,智能安防成为当前发展的主流趋势,其应用覆盖了金融、交通、教育等行业,囊括银行机构、政府、学校、家庭等场所。把安防赋予人工智能的强大能力,让我们能够持续的在安全环境中生活。
人工智能的未来展望
总的来说,依据人工智能这几十年的发展规律,是完全符合那三个阶段的。当前,人工智能可以说是非常的火爆,就比如现在正在举办的2021世界人工智能大会,在大会上就出现了非常非常多的优秀的人工智能实际落地场景,可谓是百花齐放。最后说回我们国内,单纯看我们国内的话,其实还是处于第二阶段的,也就是还处在成长期。因为目前人工智能在技术、应用、安全、隐私以及道德伦理等方面,还有不少问题需要不断完善。
人工智能的发展是为了满足人民的美好生活,工具为人服务,人工智能是人创造的,也必须为人服务,要有利于维护社会公平正义,解决发展不平衡、不充分的问题,推动全体人民的共同富裕、共同发展。未来,希望各大企业都可以围绕着“满足人民的美好生活”为目标,不断的在人工智能里深入研究,并基于人工智能开发出为人民服务的实用工具,早日解决发展不平衡、不充分的问题,推动全体人民的共同富裕、共同发展。
人工智能的历史与未来,主要划分为了哪三个阶段
事物飞速发展之时,往往需要你停下脚步,回顾自己所处的位置,否则你会很容易陷入对细节的兴奋之中。构成人工智能基础的数据科技正以不同的方式向前发展,而且速度飞快。因此,在你改变职业之前,或者决定使用人工智能扩展业务时,让我们首先对人工智能做一个鸟瞰,以帮助理解我们所处的位置以及未来走向。
人工智能的三个阶段
我们倾向于把人工智能看做新事物,尤其是新技术以及和深度学习相关的新技巧。然而,人工智能已经过数十年的发展,否认过往的成功似乎不合逻辑,因为技术总是不断向前发展。
当我费力向其他人解释人工智能之时,我不断为预测分析寻找一些分界线,这些分析我们已经实践了相当一段时间,也是大众对人工智能持有的观点,主要将人工智能的历史与未来划分为了三个阶段:
1.手工知识(HandcraftedKnowledge)阶段
2.统计学习(StatisticalLearning)阶段
3.语境顺应(ContextualAdaptation)阶段
Launchbury的观点对我帮助极大。尽管阶段(ages)的比喻很有用,但是这很容易让人误解为一个阶段结束了下一个阶段作为替代才开始。与此相反,我把人工智能看作一个金字塔,其中下一阶段的发展奠定在前一阶段之上。这也清晰地表明了即使是最古老的人工智能技术也不会过时,且实际上依然在使用之中。
对于第二个阶段统计学习(StatisticalLearning),即我们目前所处的阶段,我分为了一些更细的阶段,因为第二个阶段之中有一些重大突破值得单独作解释。
三个阶段
第一阶段:手工知识
第一个阶段的典型代表是「专家系统」(expertsystems),其把大量知识转化为由中小企业团队精心制定的决策树来增强人类的智能。专家系统的代表例子是TurboTax或者做调度的物流程序,它们在上世纪80年代已经出现,且很有可能更早。
对比1
尽管我们有能力运用机器学习统计算法诸如回归、SVM、随机森林以及神经网络,且这些算法自上世纪90年代以来获得了飞速扩展,但手工系统的应用并未完全消失。最近Launchbury提及到该系统的一个应用成功防御了网络攻击。大约在2004年之前,相似的系统实际上已经成为自动驾驶车的核心(其失败的主要原因是不能解释所有的现实问题)。
Launchbury认为专家系统在推理方面表现不俗,但仅限于几个严格定义的问题,且没有学习能力,不能处理不确定性问题。
第二阶段:统计学习
第二个阶段是我们现在所处的阶段。尽管Launchbury倾向于关注深度学习方面的进步,实际上早在我们使用计算机寻找数据中的信号之时就已经步入了第二阶段。统计学习阶段开始于数十年之前,但是在上世纪90年代获得了牵引力,并通过处理新数据、容量甚至是数据流而不断获得扩展。
由于不断增加的深度学习技术工具箱(比如回归、神经网络、随机森林、SVM、GBM),统计学习阶段伴随着从数据之中寻找信号能力的爆炸性增长应运而生。
这是一种不会消失的基础数据科学实践,它可以解释消费者(他们为什么来、为什么留、为什么走)、交易(是否存在欺诈)、装置(它是否有问题)、数据流(30天之后其价值是什么)的所有行为问题。统计学系对人类智能的增强是不断发展的人工智能的部分之一。
在第二阶段之中,至少有另外两个重大突破极大地提升了人类的能力。第一个是Hadoop与大数据。现在我们已经有了大规模并行处理以及储存和查询大的非结构快速移动数据集的方法。2007年Hadoop首次开源,直到现在。第二个小的突破是现代人工智能工具集的兴起,其由以下6种技术组成:
1.自然语言处理
2.图像识别
3.强化学习
4.问答机
5.对抗式训练
6.机器人
除了少数例外,这些技术可被整合为依赖于深度学习的一类,但是如果你查看深度学习工作方式以及深度神经网络运行方式的详情,你很快会意识到这些并不是问题的核心。
在卷积神经网络、循环神经网络、生成对抗神经网络、强化学习之中的进化神经网络及其所有变体之中通常有很少;反过来在问答机(Watson)、机器人或者不使用深度神经网络的强化学习变体之中存在更少。
由于这些技术的共同之处是它们生成自己的特征,也许我们应该称之为无特征建模的阶段(EraofFeaturelessModeling)。你仍然不得不使用已知的标注实例进行训练,但是你不必在列中填入预定义的变体和属性。它们在极其大的计算阵列上也需要大规模并行处理,很多次需要专业芯片(比如GPU、FPGA)以在人类时间尺度上搞定一切。
因此,重要的区别就是第二阶段的人工智能可以延续几十年,并且其主要从机器学习、大数据/Hadoop和无特征建模三个方面已经对新技术进行了三次大的变革。但这些突破仍然在统计学习方法这一阶段内,该阶段还会继续发展并产生更多的突破。
Launchbury表明,到目前为止,我们已经拥有非常先进、细分和强大预测能力的系统,但是仍然还没有理解语境和最小推理能力。因为我们的技术对数据有更大量的需求,这已经成为了一个障碍,而对我们仍然有价值和高效的预测分析技术并不应该是这样的。但我们在这个阶段早期无法解决的困难,包括自动驾驶汽车、机器赢得日益复杂游戏的能力、图像、文本和自然语言处理等方面目前都已经取得了重大的突破。
第三阶段:语境顺应(contextualadaption)
接下来呢?Lauchbury说,当前统计学习时代出现了两个问题,第三个阶段要解决两个问题。
解释推理行为的模型:虽然我们的深度神经网络善于分类,比如图片,但是处理原理仍然显得神秘莫测。我们需要既可以进行分类也可以得到解释的系统。理解推理就能让对处理过程的修正真正有效。
生成模型:这些模型可以从潜在语境中进行学习,比如一个模型,掌握了每个字母的笔画,而不是基于大量糟糕的书写样本进行粗暴分类。我们今天使用的生成模型有望显著减少对训练数据的需求。
鉴于这些特点,处在这一阶段的人工智能系统就能使用语境模型(contextualmodels)进行感知、学习、推理以及抽象,将从一个系统中学习到的东西应用到一个完全不同的语境中。
全景视野
新阶段的开始并不意味着前一阶段会戛然而止。一些技术、功能的有用性或许会降低,但是完全被淘汰出局也不太现实。比如,最新技术所需的大量计算力、研发的复杂性以及训练都会制约这些技术退出历史舞台,将来某个时候出现的高价值的问题可能还会用到这些技术。
其他情况,比如语境采用阶段,我们可能不得不等待新一代芯片的出现,这类芯片更加类似人脑。这些被称为神经形态或者脉冲神经网络的第三代神经网络都会用到现在研发最早阶段的那些芯片。
现在,我们处在第二阶段(统计学习)的什么位置?
当前阶段的三章内容中,人们可能最关注的是新东西,深度学习、强化学习以及上述构成该阶段的六种技术之间的平衡。
这是一场演化的艰难过程,刚开始结出果实,但这些新的发展中绝大部分仍然没有准备好开花结果。尽管可以看到这些技术会往哪个方向发展,但是,只有两到三个技术有望可靠商业化(图像处理、文本和语音处理,类似WatsonQAMs的有限版本。)
当你试着将这些技术拧在一起时,这些技术也不过是松散地在一起,集成这些技术仍然是最具挑战性的事情之一。我们总会想到办法的,只是还没到这一步。
我们总会走到那一步的,甚至进入第三阶段。不过,走过这一阶段之前,或许还会出现我们未曾预料的演化或者变革。人工智能、大数据、云计算和物联网的未来发展值得重视,均为前沿产业,多智时代专注于人工智能和大数据的入门和科谱,在此为你推荐几篇优质好文:1.人工智能时代,AI人才都有哪些特征?http://www.duozhishidai.com/article-1792-1.html2.大数据携手人工智能,高校人才培养面临新挑战http://www.duozhishidai.com/article-7555-1.html3.人工智能,机器学习和深度学习之间,主要有什么差异http://www.duozhishidai.com/article-15858-1.html
多智时代-人工智能和大数据学习入门网站|人工智能、大数据、物联网、云计算的学习交流网站