博舍

全球治理面临八大挑战 人工智能全球治理的挑战有哪些方面的问题

全球治理面临八大挑战

2008年国际金融危机以来,国际社会关于全球治理的呼声愈益高涨。然而,各国在一系列问题上存在争议,围绕主导权和既得利益展开博弈。概而言之,全球经济治理大致面临八大挑战。

首先,治理体系有失均衡。发达国家的经济模式在金融危机中虽受到冲击,但以美国为代表的发达国家掌握着全球治理机制,主导国际规则制定权和解释权,垄断着全球化进程和利益分配的主动权,因而可望通过资本链与货物链向下游国家转嫁危机。危机发生以来,20国集团成为全球治理的主要载体,以中国为代表的新兴国家首次以平等地位在全球治理进程中崭露头角,但仍不足以抗衡发达国家的优势地位。

第二,治理主体存在缺失。全球范围逐渐形成了数以百计的政府间组织,这些组织从不同领域、不同层次推进国际治理。但是,现行由主权国家组成的国际组织缺乏主权国家享有的排他性公共权力,因而无法有效行使话语权。

第三,治理机制缺乏弹性。此次国际金融危机表明,联合国、世界银行和国际货币基金组织等国际治理机制均有待于适应全球治理新形势。20国集团虽已成为全球经济治理的主要平台,但仍停留在“临时性政治俱乐部”阶段,尚待建立和完善全球化监管机制、政策执行机制、治理主体结构,等等。

第四,治理客体存在争议。后金融危机时期,世界各国面临各种不同的问题,因而需要通过国际制度或非制度安排,就需要治理的领域和具体问题达成一致。然而,世界各国对各类问题的关切度不同,因而围绕全球治理的议题设定展开激烈的博弈,围绕治理规则展开较量。

第五,治理效果有待彰显。缺乏监管机制的经济全球化不具有可持续性,同样,缺乏“同舟共济”精神的全球治理也不具有可持续性。长期以来,发达国家受国内政治或本国利益驱使,纷纷利用其政治和经济优势,利用全球治理推销西式政治体制和价值观,维护本国既得利益,而置他国利益于不顾。

第六,治理理论存在争议。回顾历史,全球化主要由跨国公司推动。然而,迄今为止,全球经济治理的理论主要停留在国家层面。进而言之,现行全球治理理论由发达国家学术界率先提出,因而有悖于广大发展中国家的经济与社会发展的实际状况。

第七,需要适应国际法规。全球治理需要各主权行为体依法让渡一定的主权,并容纳更多的非主权行为体成为全球治理的伙伴。显然,上述行为直接与联合国宪章关于主权独立的原则相违背。如何处理好国际法和全球治理之间的关系,已构成各利益攸关方必须解决的重大问题。

第八,国际社会亟待培植集体行动意识。从全球范围看,受政治周期和经济周期影响,各主要大国在全球治理领域各行其是倾向愈益明显。未来,南北国家之间在国际政治和经济体系中地位失衡的状态均难有改观,任何新的治理机制和规则的创立,只要无法得到美国和主要发达国家的认可和支持,只得“绕道走”。

在这个快速变化的世界,新的挑战层出不穷,新的机遇无处不在,如何趋利避害,如何谋划未来发展利益,构成全球治理的重要理论和政策课题。

(作者为中国国际问题研究所副所长刘友法)

浅谈人工智能的伦理问题

浅谈人工智能的伦理问题

资料整理,仅供参考

引言

2018  年3月 18日晚上 10 点左右,伊莱恩·赫兹伯格(ElaineHerzberg)骑着自行车穿过亚利桑那州坦佩市的一条街道,突然间被一辆自动驾驶汽车撞翻,最后不幸身亡。这是一辆无人自动驾驶汽车,尽管车上还有一位驾驶员,但车子由一个完全的自驾系统(人工智能)所控制。与其他涉及人与AI技术二者之间交互的事件一样,此事件引发了人们对人工智能中道德和法律问题的思考。系统的程序员必须履行什么道德义务来阻止其研发产品导致人类的生命受到威胁?谁对赫兹伯格的死负责?是该自动驾驶汽车公司测试部们?人工智能系统的设计者,甚至是机载传感设备的制造商?

关于人工智能的伦理讨论一直在进行,从人工智能研究的开始,重点主要集中在讨论可能性和对未来影响的理论工作,但对人工智能实际应用中研究讨论较少。尽管学术界对人工智能伦理道德的关系进行探讨已经持续了几十年,但并没有得出普遍的人工智能伦理是什么,甚至应该如何定义命名也没有统一规范化。近年来,随着社会科技技术的不断发展,人工智能的发展取得重大的突破。人工智能相关伦理研究讨论日益广泛,影响着我们的生活。在当前AI伦理受到越来越多讨论研究的背景下,本文主要通过对一些案例分析人工智能的伦理问题,结合本学期《工程伦理》课程所学,谈谈自己的理解与收获。

人工智能及其案例讨论分析

“人工智能”被设计为一种为从环境中获取因素的系统,并基于这些外界的输入来解决问题,评估风险,做出预测并采取行动。在功能强大的计算机和大数据时代之前,这种系统是由人类通过一定的编程及结合特定规则实现,随着科学技术的不断进步,新的方法不断出现。其中之一是机器学习,这是目前AI最活跃最热门的领域。应用统计学的方法,允许系统从数据中“学习”并做出决策。关注技术的进步,我们更关注的是在极端情况下的伦理问题。例如在一些致命的军事无人机中使用AI技术,或者是AI技术可能导致全球金融体系崩溃的风险等。

对大量的数据进行汇总分析,我们可以利用AI技术帮助分析贷款申请人的信誉,决定是否给予贷款以及额度,同时也可以对应聘者进行评估,决定是否录取,还可以预测犯罪分子再次犯罪的几率等等。这些技术变革已经深刻影响着社会,改变着人们生活。但是,此类技术应用也会引发一些令人困扰的道德伦理问题,由于AI系统会增强他们从现实世界数据中学到的知识,甚至会放大对种族和性别偏见。因此,当遇到不熟悉的场景时,系统也会做出错误的判断。而且,由于许多这样的系统都是“黑匣子”,人们往往很难理解系统做出判断的内在原因,因此难以质疑或探究,给人们决策带来风险。举几个具体例子:2014年,亚马逊开发了一种招聘工具,用于识别招聘的软件工程师,结果该系统却表现出对妇女的歧视,最后该公司不得不放弃了该系统。2016年,ProPublica在对一项商业开发的系统进行了分析,该系统可预测罪犯再次犯罪的可能性,旨在帮助法官做出更好的量刑决定,结果也发现该系统对黑人有歧视偏见。在过去的两年中,自动驾驶汽车在依靠制定的规则和训练数据进行学习,然而面对陌生的场景或其系统无法识别的输入时,无法做出正确判断,从而导致致命事故。

由于这些系统被视为专有知识产权,因此该私人商业开发人员通常拒绝提供其代码以供审查。同时,技术的进步本身并不能解决AI核心的根本问题—经过深思熟虑设计的算法也必须根据特定的现实世界的输入做出决策。然而这些输入会有缺陷,并且不完善,具有不可预测性。计算机科学家比其他人更快地意识到,在设计了系统之后,不可能总是事后解决这些问题。越多人认识到道德伦理问题应该被当作在部署一个系统前所要考虑的一个问题。

对失业、不平衡问题的讨论与思考

人工智能的重要的道德和伦理问题,既是社会风险的前沿,也是社会进步的前沿。我们讨论两个突出问题:失业、不平衡问题。

1.失业

几十年来,为了释放人类劳动,我们一直在制造模仿人类的机器,让机器替代我们更有效地执行日常任务。随着经济的飞速发展,自动化程度越来越高,大量新发明出现在我们生活中,使我们的生活变得更快,更轻松。当我们使用机器人替代我们人类完成任务,即让手工完成的工作变成自动化时,我们就释放了资源来创建与认知而非体力劳动有关的更复杂的角色。这就是为什么劳动力等级取决于工作是否可以自动化的原因(例如,大学教授的收入比水管工的收入还多)。麦肯锡公司最近的一份报告估计,到2030年,随着全球的自动化加速,接近8亿个工作岗位将会消失。例如,随着自动驾驶系统兴起,AI技术引发了人们对失业的忧虑,大量的卡车司机工作岗位可能受到威胁。我们人类将有史以来第一次开始在认知水平上与机器竞争。最可怕的是,它们比我们拥有更强大的能力。也有一些经济学家担心,作为人类的我们将无法适应这种社会,最终将会落后与机器。

2.不平衡

设想没有工作的未来会发生什么?目前社会的经济结构很简单:以补偿换取贡献。公司依据员工一定量的工作来支付其薪水。但是如果借助AI技术,公司可以大大减少其人力资源。因此,其总收入将流向更少的人。那些大规模使用新技术的公司,其少部分人将获得更高比例的工资,这导致贫富差距在不断扩大。在2008年,微软是唯一一家跻身全球十大最有价值公司的科技公司。苹果以39位居第二,谷歌以51位居第三。然而,到2018年,全球十大最有价值公司前五名均是美国科技公司。

当今世界,硅谷助长了“赢者通吃”的经济,一家独大的公司往往占据大部分市场份额。因此,由于难以访问数据,初创企业和规模较小的公司难以与Alphabet和Facebook之类的公司竞争(更多用户=更多数据,更多数据=更好的服务,更好的服务=更多的用户)。我们还发现一个现象,就是这些科技巨头创造的就业机会相比于市场上其他公司往往少很多。例如,1990年,底特律三大公司的市值达到650亿美元,拥有120万工人。而在2016年,硅谷三大公司的价值为1.5万亿美元,但只有190,000名员工。那么如今技能变得多余的工人将如何生存,这样趋势下去会不会引发社会暴乱,科技巨头应不应该承担更多的社会责任,这些都是值得我们思考的问题。

人工智能伦理问题建议

由上文可知,缺乏对伦理的认知,会对社会及人类生活造成的一定风险,因此,为加强AI伦理因素在实际应用的正确导向作用,应从以下几个方面入手:

1.明确定义道德行为

AI研究人员和伦理学家需要将伦理价值表述为可量化的参数。换句话说,他们需要为机器提供明确的答案和决策规则,以应对其可能遇到的任何潜在的道德困境。这将要求人类在任何给定情况下就最道德的行动方针达成共识,这是一项具有挑战性但并非不可能的任务。例如,德国自动驾驶和互联驾驶道德委员会提出:建议将道德价值观编程到自动驾驶汽车中,以优先保护人类生命为重中之重。在不可避免的致命撞车事故发生时,汽车不应基于年龄,性别、身体或心理构造等个人特征来选择是否要杀死一个人。

2.众包人类道德伦理

工程师需要收集足够的关于明确道德伦理标准的数据,以适当地训练AI算法。即使在为道德价值观定义了特定的指标之后,如果没有足够的公正数据来训练模型,那么AI系统可能仍会难以取舍。获得适当的数据具有挑战性,因为道德伦理规范不能始终清晰地标准化。不同的情况需要采取不同的方针,在某些情况下可能根本没有单一的道德伦理行动方针。解决此问题的一种方法是将数百万人的道德伦理困境的潜在解决方案收集打包。例如,麻省理工学院的一个项目,其展示了如何在自动驾驶汽车的背景下使用众包数据来有效地训练机器以做出更好的道德决策。但研究结果还表明,全球道德价值观可能存在强烈的跨文化差异,在设计面向人的AI系统时也要注意考虑这一因素。

3.使AI系统更加透明

政策制定者需要实施指导方针,使关于伦理的AI决策,尤其是关于道德伦理指标和结果的决策更加透明。如果AI系统犯了错误或产生了不良后果,我们将不能接受“ 算法做到了 ”作为借口。但是我们也知道,要求完全算法透明性在技术上不是很有用。工程师在对道德价值进行编程之前应该考虑如何量化它们,以及考虑运用这些人工智能技术而产生的结果。例如,对于自动驾驶汽车,这可能意味着始终保留所有自动决策的详细日志,以确保其道德伦理责任。

结束语

伦理问题的出现是工程活动发展的必然要求。以人工智能技术为基础的现代工程活动日益复杂,对自然和社会的影响越来越深刻。同时,作为工程活动中的关键角色,工程师群体在一定意义上具有改变世界的力量。正所谓“力量越大,责任也就越大”。工程师在一般的法律责任之外,还负有更重要的道德责任。作为AI领域的工程技术人员,不断创新人工智能技术的同时也要关注实际应用中的伦理道德,相信人工智能技术可以让世界变得更加美好!

开课吧:人工智能技术应用面临的挑战包括哪些方面

众所周知目前的人工智能技术广泛应用与各行各业当中,并且对这些行业产生了一定的改善作用。想要更加深入的应用人工智能技术,还需要对人工智能技术有更透彻的了解。

人工智能技术应用面临的挑战包括哪些方面?

由于AI能处理大量数据,让目前的AI技术对于零售业、需要进行因果驱动因素预测的应用,以及银行业的风险评估应用重要性高。目前的AI系统其实仍然面临许多挑战,这些挑战也深深影响AI的应用市场推广。

目前AI技术应用面临的挑战,包含标注训练数据、大量全面的数据获取、输出结果的解释,以及学习的普遍性等。

人工智能技术应用面临的挑战包括哪些方面?

在标注训练数据方面,由于目前AI系统主要都是采用监督学习模式,必须事先耗费大量时间、人力或资金进行数据标注,因此成为AI系统推广导入的劣势所在。目前针对此劣势,已有许多研究学者陆陆续续推出新的演算模型,希望能逐步达成让数据能自动被标注的目标,以大幅缩减人力与时间的投入。

在大量全面的数据获取方面,由于对许多产业而言,要获取数量与质量都足够的数据并不容易,因此对于这类数据较不易取得的产业而言,导入AI系统的难度也会较高。

而输出结果的解释部份,目前AI系统还难以达到。原因在于,目前AI系统虽然能算出结果,但却无法一步一步地解释这个结果是如何获得的,因此面临这类需要针对运算结果进行解释的需求,目前为止都还无法达到。

至于学习的普遍性部分,是因为目前AI模型在将学习经验自A类移转至B类时,经常会遇到困难。这意谓着企业需要投入大量资金训练新的模型,即便是A类与B类两者间有部分相似性也难以避免。

人工智能的伦理问题与治理原则

第一类问题来自我们对人工智能系统对其决策结果的伦理意义缺乏判断的忧虑。人工智能往往被用来解决一个具体问题,而且只能通过已有的有限数据来作出决策,往往无法像人一样理解更广的社会和伦理语境。故此,我们对人工智能缺乏对决策后果的伦理意义的认知有恐惧,这是完全可以理解的。当人工智能决策的后果涉及一个结果和另外一个结果之间的比较时,往往造成难以预料的后果。例如,人可能给人工智能系统一个获取食物的指令,结果这个系统却杀死了人的宠物。这是因为人工智能对某个结果的伦理意义无法完全理解,以致于错误地执行了指令。我们对人工智能对决策结果的伦理判断能力不足的忧虑,在人工智能技术本身缺乏透明度(黑箱问题)时就更加严重了。人工智能采纳的机器学习往往因为算法(例如机器学习)和算力限制的原因,无法回溯机器作出决定的具体机制。无法回溯会带来我们在事先预测后果和事后作出纠正的能力的局限,导致我们在决定是否应用人工智能技术的问题上踌躇不决。

第二类问题来自我们对人工智能的潜力的忧虑。人工智能可能成为人类全部决定的参与和影响者,但我们尚且不知道没有任何已知的伦理准则能指引上述行为。人类创造的“上帝”无力护理这个世界,这让我们恐惧震惊。我们担心随着人工智能的发展,它会导致已有的社会问题进一步恶化,同时可能带来新的社会问题。

从上述前提出发,笔者从目的、手段两个层面提出思考人工智能伦理(嵌入机器的伦理)的两个基本方向:技术必须促进人类的善(体现在人的根本利益原则);在越来越发达的机器的自主性背景下确认人的主体性(体现在责任原则)。换言之,认识到新的技术本身的特征和它的潜在社会影响,我们看到人工智能伦理要强调:(1)人可以利用人工智能得到更大的能力(行善/伤害),因此有更大的责任,所以应当更加强调归责性;(2)人工智能则必须服从人类设定的伦理规则。这也是《人工智能标准化白皮书(2018)》中提出了人工智能设计和应用中应遵循的两个基本原则的基本依据。违反人的根本利益原则的人工智能,无论是用来欺诈顾客的营销算法、用于司法造成歧视部分公民的司法决策系统,还是对个人信息的过度收集和滥用,都违反人工智能伦理原则。

根据人工智能伦理风险的具体性质与特征,可从算法、数据和应用三个方面度来梳理人工智能的风险。对伦理风险的治理,需要立法和政策明确各相关主体的责任,包括信息提供者、信息处理者和系统协调者。此外,人工智能还可能对社会产生远期发展的风险,如对既有的就业、市场竞争秩序、产权等法律制度的挑战,甚至生产方式的根本变革,这些我们将其归入长期和间接的伦理风险之中。

算法方面

算法方面的风险主要包括算法安全问题、算法可解释性问题、算法歧视问题和算法决策困境问题。算法安全问题产生于算法漏洞被黑客攻击和恶意利用的挑战,同时算法从设计、训练到使用中面临可信赖性问题和算法随时可用对可靠性带来挑战。

算法可解释性涉及人类的知情利益和主体地位,对人工智能的长远发展意义重大。国务院颁布《新一代人工智能发展规划》,同时,潘云鹤院士提到人工智能应用的一个需要关注的问题是算法的不可解释性。算法可解释性问题在国外也引起媒体和公众的关注。例如,电气和电子工程师协会(IEEE)在2016年和2017年连续推出的《人工智能设计的伦理准则》白皮书,在多个部分都提出了对人工智能和自动化系统应有解释能力的要求。美国计算机协会美国公共政策委员会在2017年年初发布了《算法透明性和可问责性声明》,提出了七项基本原则,其中一项即为“解释”,希望鼓励使用算法决策的系统和机构,对算法的过程和特定的决策提供解释。2017年,美国加州大学伯克利分校发布了《对人工智能系统挑战的伯克利观点》,从人工智能的发展趋势出发,总结了九项挑战和研究方向。其中之一,即第三项,就是要发展可解释的决策,使人们可以识别人工智能算法输入的哪些特性引起了某个特定的输出结果。

与可解释性问题常常同时出现的是算法歧视问题,即在看似中立的算法中,由于算法的设计者的认知存在某种偏见,或者训练算法使用了有问题的数据集等原因,带来了人工智能系统决策出现带有歧视性的结果。这类例子媒体时有报道,例如在金融领域“降低弱势群体的信贷得分”、“拒绝向‘有色人种’贷款”、“广告商更倾向于将高息贷款信息向低收入群体展示”等。

算法歧视主要分为“人为造成的歧视”“数据驱动的歧视”与“机器自我学习造成的歧视”三类。人为造成的歧视,是指由于人为原因而使算法将歧视或偏见引入决策过程中。数据驱动造成的歧视,是指由于原始训练数据存在偏见性,而导致算法执行时将歧视带入决策过程中。算法本身不会质疑其所接收到的数据,只是单纯地寻找、挖掘数据背后隐含的模式或者结构。如果数据一开始就存在某种选择上的偏见或喜好,那么算法会获得类似于人类偏见的输出结果。机器自我学习造成的歧视,是指机器在学习的过程中会自我学习到数据的多维不同特征,即便不是人为地赋予数据集某些特征,或者程序员或科学家刻意避免输入一些敏感的数据,但是机器在自我学习的过程中,仍然会学习到输入数据的其它特征,从而将某些偏见引入到决策过程中,这就是机器自我学习造成的歧视。

算法决策困境源于人工智能自学习能力导致的算法结果的不可预见性。为此要减少或杜绝算法决策困境,除了提高算法的可解释性,还可以引入相应的算法终结机制。

数据方面

数据方面的风险主要包括侵犯隐私的风险和个人敏感信息识别与保护的风险。在现代社会,隐私保护是信任和个人自由的根本,同时也是人工智能时代维持文明与尊严的基本方式。人工智能时代下侵犯隐私的风险更大,受害者也更多。

传统法律规范对隐私的保护集中于对个人在私人领域、私人空间活动的保护,以及个人私密的、非公开的信息保护。在个人信息的基础之上,法律规范区分普通个人信息和个人敏感信息。法律通常对个人敏感信息予以更高的保护,例如对个人敏感信息的处理需要基于个人信息主体的明示同意,或重大合法利益或公共利益的需要等,严格限制对个人敏感信息的自动化处理,并要求对其进行加密存储或采取更为严格的访问控制等安全保护措施。个人敏感信息在授权同意范围外扩散,或者个人信息的扩散超出收集、使用个人信息的组织和机构控制范围,以及使用者超出授权使用(如变更处理目的、扩大处理范围等),都可能对个人信息主体权益带来重大风险。

人工智能技术的应用极大地扩展了个人信息收集的场景、范围和数量。图像识别、语音识别、语义理解等人工智能技术实现海量非结构化数据的采集,而人工智能与物联网设备的结合丰富了线下数据采集的场景。例如,家用机器人、智能冰箱、智能音箱等各种智能家居设备走进人们的客厅、卧室,实时地收集人们的生活习惯、消费偏好、语音交互、视频影像等信息;各类智能助手在为用户提供更加便捷服务的同时,也在全方位地获取和分析用户的浏览、搜索、位置、行程、邮件、语音交互等信息;支持面部识别的监控摄像头,可以在公共场合且个人毫不知情的情况下,识别个人身份并实现对个人的持续跟踪。这些都需要法律进一步地规范。

社会方面

与社会相关的伦理问题主要包括算法滥用和误用。算法滥用和误用是指人们利用算法进行分析、决策、协调、组织等一系列活动中,其使用目的、使用方式、使用范围等出现偏差并引发不良影响或不利后果的情况。例如,人脸识别算法能够提高治安水平、加快发现犯罪嫌疑人的速度等,但是如果把人脸识别算法应用于发现潜在犯罪人或者根据脸型判别某人是否存在犯罪潜质,就属于典型的算法滥用。由于人工智能系统的自动化属性,算法滥用将放大算法所产生的错误效果,并不断强化成为一个系统的重要特征。

算法滥用主要由算法设计者出于经济利益或者其他动机的操纵行为、平台和使用者过度依赖算法、将算法的应用盲目拓展到算法设计未曾考虑的领域等。电商平台算法设计者推荐不符合用户利益的产品,或者娱乐平台为了自身的商业利益对用户的娱乐或信息消费行为进行诱导、导致用户沉迷等,都是算法设计者操纵行为的展现。在医疗领域过度依赖人工智能平台的读图诊断,导致误诊,以及在安防领域和犯罪误判导致的问题,都直接关系到公民的人身安全与自由。

应当注意的是,与社会相关的伦理问题有如下特性:其一,它们与个人切身利益密切相关,如算法应用在犯罪评估、信用贷款、雇佣评估等关切人身利益的场合,对个人切身利益的影响广泛。其二,它们带来的问题通常难以短时间应对,例如深度学习是一个典型的“黑箱”算法,如果深度学习为基础建立的模型存在歧视,应对时难以查清原因。其三,在商业应用中出现这类问题时,由于资本的逐利性,公众权益容易受到侵害。

人工智能治理原则与实践

人工智能技术的特质及其伦理挑战,给社会的治理带来了问题。传统上,治理所预设能够遵循规则的主体(Agent),也就是人本身。今天我们认识到人工智能的特征在于其高度的自主性,即其决策不再需要操控者进一步的指令,考虑到这种决策可能会产生人类预料不到的结果,人工智能技术的设计者和应用者必须在人工智能技术研发、应用的各个环节贯彻伦理原则,以实现对人工智能的有效治理。

在传统技术领域,常见的防止损害的方式是在造成伤害之后进行干预。但是,等待人工智能系统造成伤害之时才考虑干预,很多时候为时已晚。一个更好的方法是将即时和持续的伦理风险评估和合规体系建设作为系统运行的一个组成部分,即时和持续评估人工智能系统是否存在伦理风险、并在损害产生之前以及损害不大的时候就通过合规体系进行处理。即时和持续的风险评估对于人工智能系统的保障要比按下“紧急按钮”要有效得多。

故此,我们在讨论人工智能治理应遵循的思路和逻辑时,必须警醒行业自律的有限性和立法的滞后性。如阿西莫夫等科技伦理的思想者所意识到的,必须将伦理在技术层面就进行明确,才能保证治理的有效性。构建人工智能的伦理标准是治理不可或缺的一面。此外,根据法律和政策本身的特征来制定法律、完善政策、设立管制机构,也是治理必须执行的方法。

国内外人工智能治理方面的探索值得我们关注和借鉴。例如,欧盟通过对机器人规制体现了依据人工智能伦理来设计治理体系的前沿探索。美国于2016年出台的战略文件就提出要理解并解决人工智能的伦理、法律和社会影响。英国政府曾在其发布的多份人工智能报告中提出应对人工智能的法律、伦理和社会影响,最为典型的是英国议会于2018年4月发出的长达180页的报告《英国人工智能发展的计划、能力与志向》。

联合国于2017年9月发布《机器人伦理报告》,建议制定国家和国际层面的伦理准则。电气和电子工程师协会(InstituteofElectricalandElectronicsEngineers,IEEE)于2016年启动“关于自主/智能系统伦理的全球倡议”,并开始组织人工智能设计的伦理准则。在未来生命研究所(futureoflifeinstitute,FLI)主持下,近4000名各界专家签署支持23条人工智能基本原则。

我国也在这个方面开展了探索与实践。2017年发布的《新一代人工智能发展规划》提出了中国的人工智能战略,制定促进人工智能发展的法律法规和伦理规范作为重要的保证措施被提了出来。2018年1月18日,在国家人工智能标准化总体组、专家咨询组的成立大会上发布了《人工智能标准化白皮书(2018)》。白皮书论述了人工智能的安全、伦理和隐私问题,认为设定人工智能技术的伦理要求,要依托于社会和公众对人工智能伦理的深入思考和广泛共识,并遵循一些共识原则。

人工智能技术的开发和应用深刻地改变着人类的生活,不可避免地会冲击现有的伦理与社会秩序,引发一系列问题。这些问题可能表现为直观的短期风险,如算法漏洞存在安全隐患、算法偏见导致歧视性政策的制定等,也可能相对间接和长期,如对产权、竞争、就业甚至社会结构的影响。尽管短期风险更具体可感,但长期风险所带来的社会影响更为广泛而深远,同样应予重视。

人工智能技术的日新月异与治理体系相对稳定性之间不可避免地存在矛盾,这需要我们明确应对人工智能的基本原则。在国际范围内比较,人工智能伦理基本原则以2017年1月在阿西洛马召开的“有益的人工智能”(BeneficialAI)会议提出的“阿西洛马人工智能原则”(AsilomarAIPrinciples),以及电气和电子工程师协会(IEEE)组织开展的人工智能伦理标准的工作受到了最多的关注。此前,各国也提出了机器人原则与伦理标准。作者认为,我国人工智能的研究和应用应遵循两个人工智能伦理基本原则,即人的根本利益原则和责任原则。

人的根本利益原则

人的根本利益原则,即人工智能应以实现人的根本利益为终极目标。这一原则体现对人权的尊重、对人类和自然环境利益最大化以及降低技术风险和对社会的负面影响。人的根本利益原则要求:

(1)在对社会的影响方面,人工智能的研发与应用以促进人类向善为目的(AIforgood),这也包括和平利用人工智能及相关技术,避免致命性人工智能武器的军备竞赛。

(2)在人工智能算法方面,人工智能的研发与应用应符合人的尊严,保障人的基本权利与自由;确保算法决策的透明性,确保算法设定避免歧视;推动人工智能的效益在世界范围内公平分配,缩小数字鸿沟。

(3)在数据使用方面,人工智能的研发与应用要关注隐私保护,加强个人数据的控制,防止数据滥用。

责任原则

责任原则,即在人工智能相关的技术开发和应用两方面都建立明确的责任体系,以便在人工智能应用结果导致人类伦理或法律的冲突问题时,人们能够从技术层面对人工智能技术开发人员或设计部门问责,并在人工智能应用层面建立合理的责任体系。在责任原则下,在人工智能技术开发方面应遵循透明度原则;在人工智能技术应用方面则应当遵循权责一致原则。

透明度原则

透明度原则要求人工智能的设计中,保证人类了解自主决策系统的工作原理,从而预测其输出结果,即人类应当知道人工智能如何以及为何做出特定决定。透明度原则的实现有赖于人工智能算法的可解释性(explicability)、可验证性(verifiability)和可预测性(predictability)。

权责一致原则

权责一致原则,是指在人工智能的设计和应用中应当保证问责的实现,这包括:在人工智能的设计和使用中留存相关的算法、数据和决策的准确记录,以便在产生损害结果时能够进行审查并查明责任归属。权责一致原则的实现需要建立人工智能算法的公共审查制度。公共审查能提高相关政府、科研和商业机构采纳的人工智能算法被纠错的可能性。合理的公共审查能够保证一方面必要的商业数据应被合理记录、相应算法应受到监督、商业应用应受到合理审查,另一方面商业主体仍可利用合理的知识产权或者商业秘密来保护本企业的利益。

应当明确,我们所说的人工智能伦理原则,不仅应当由人工智能系统的研发和应用的人类主体遵守(包括在研究机构、行业领域的科技企业和科技工作者),而且这些原则应当嵌入人工智能系统本身。机器如何遵循伦理规则这一点,有人仍有质疑。典型的看法是,伦理规则只是给人的,没有可能给人工智能系统(包括机器人)设定伦理规则。的确,传统上伦理原则所针对的是能够遵循这些原则的主体(Agent)也就是人本身。但是,考虑到人工智能的特征在于机器对人的智能的“模拟、延伸和扩展”,即其决策不需要操控者一步步的指令,同时这种决策可能会产生人类预料不到的结果,人工智能系统也应当受到伦理规则的规制。

结论

社会必须信任人工智能技术能够给人带来的利益大于伤害,才有可能支持继续发展人工智能。而这种信任,需要我们认识和探讨人工智能领域的伦理和治理问题,并且在发展人工智能技术发展的早期就有意识地加以运用。今天学者、科技工作者和社会已经有基本共识,就是负责人工智能系统的研发和应用的人类主体,包括在研究机构、行业领域的科技企业和科技工作者,应当服从一些基本的伦理原则。本文提出的两个基本伦理原则,是国内在这方面思考的总结和升华。除了人工智能的基本伦理原则,前人给我们的另一个启发是人工智能伦理应该嵌入系统本身。当我们越来越依赖于机器人代替我们作出决策时,我们应当在这个决策过程中嵌入伦理思考,而不是等待决策结果已经给我们带来负面影响之后再去纠正。

本文希望用一种更清醒的眼光去看待人工智能伦理和治理问题。学者和公众需要一起探讨:我们有没有可能防止人工智能给个人和社会带来的损害?只有在这个问题得到更深入的思考和妥善解决的时候,人工智能的发展才有真正的基础。

转自丨法理杂志返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇