博舍

【智库声音】智能化态势认知技术与发展建议 智能客服的发展建议怎么写

【智库声音】智能化态势认知技术与发展建议

1.2有人/无人协同作战中的态势认知新挑战

分布式作战环境下,有人/无人协同作战推动人机协作从指令化走向一体化,使战场态势认知更自主、时间更紧迫[4]。鉴于目前全自主智能无人系统并不成熟且种类不完备,有人/无人协同作战将成为典型作战样式。若有人飞机(或车辆)中的人无需对智能化的无人机进行精准控制,将极大减轻人的负担,同时提高编队的作战效能。而无人平台智能作战的全域多维、自主涌现和不确定等特点,以及新质力量编成和新型作战样式的引入,又使基于网络化作战概念的信息互连互通和态势共享协同方式无法满足有人/无人作战群的需求,而自主战场态势的理解与认知将对智能化辅助决策技术提出更高的时效性要求。

2

态势认知支撑技术

目前,人工智能技术在智能化感知与信息处理、智能化指挥控制辅助决策及无人化军用平台等领域扮演着越来越重要的角色[5]。下文重点介绍推动战场态势认知向智能化不断演进和发展的相关支撑技术。

2.1仿生智能算法

仿生智能算法是人工智能领域一个重要分支,是近年来新兴技术,已广泛应用于多目标优化、生物系统建模、机器人控制和决策支持等领域[6]。仿生智能算法中,每一个个体均为具有经验和智慧的智能体,个体间存在互相作用机制,通过相互作用形成强大的群体智慧来解决复杂问题[7],具有不因个别个体出现故障而影响群体对问题求解的鲁棒性,以及系统通信开销少易扩充等特点,因此在求解多因素/变量复杂优化问题中显示出强大的潜力。仿生智能算法具有巨大的军事应用潜力,可用于无人平台运动控制、无人编队航路规划、联合作战力量部署和战场局势优劣评估等,有助于解决多域联合作战敌方可能行动方案的判断、有人/无人协同作战中作战力量的布势等态势认知难题。

2.2边缘计算

边缘计算是一种网络边缘执行计算任务的新型计算模型,相比于云计算模型,能够更加迅速和可靠地响应用户需求[8⁃9]。边缘计算将强计算资源与高效服务下沉到网络边缘端,具有时延更低、带宽占用更少和隐私保护性更好等特点。边缘计算与人工智能技术相结合存在着巨大的军事赋能潜力,可用于解决重点目标防卫、战场异常事件检测以及战术作战力量的快速组合、分配与运用等态势认知问题,有助于解决有人/无人自主系统协同作战中作战力量的态势自主认知的难题。

2.3人机融合技术

人机融合智能理论着重描述了一种由人、机和环境系统相互作用而产生的新型智能形式,它既不同于人的智能也不同于人工智能,而是一种物理性与生物性相结合的新一代智能科学体系[10]。人机融合智能将人作为机器或算法的一部分宝贵资源,具有巨大军用应用潜力,是人工智能的重要发展方向。在有人/无人协同探测、协同干扰、协同打击和协同作战等模式中,可用于聚焦态势生成、态势信息主动推送等态势认知问题,有助于解决时空推理和作战资源分配等复杂且时间紧迫的计算任务,以及战役布势等态势认知难题。

2.4分布估计算法

分布估计算法是一种新兴的智能进化算法,是统计学习与进化计算的结合。分布估计算法采用一种全新的进化模式,通过一个概率统计模型描述备选解在解空间的分布特征,先采用统计学习方法从群体整体宏观角度建立一个描述解分布的概率模型,再对概率模型随机采样产生新的种群,不断重复以实现种群进化,直至达到终止条件[11⁃12]。相比于遗传算法,分布估计算法利用群体间概率模型更新下一代种群生成下一代最优解,具有更强的搜索能力和更快的收敛速度。分布估计算法是人工智能中进化计算领域出现的一种崭新算法,具有广泛的军事应用前景,可用于解决多无人飞行器自主任务临机规划、联合作战力量战场布势等态势认知难题。

2.5智能博弈技术

智能博弈指采用模拟仿真技术,对当前战场态势的可能发展变化进行模拟[13⁃15]。智能博弈技术通过模拟仿真,将战场状态、作战企图和筹划方案等信息进行关联分析,对战场发展趋势以及可能发生的事件和风险进行推演,形成敌方趋势预判、我方行动构想以及战场环境趋势预报与分析等态势预测产品,为指挥员决策、作战筹划规划和作战行动控制等提供支撑,从而缩短指挥员对情况观察判断时间,提升指挥信息系统对战场态势分析预测能力。

2.6沉浸式技术

伴随着云计算、大数据和人工智能等技术的快速发展,军事仿真在装备建设、军事演习、作战训练与后勤保障等领域相继取得重要进展,尤其是近年来虚拟现实和增强现实技术的快速发展,使得计算机生成的虚拟图像可实时和动态地融合到人体能感知到的真实环境中,而沉浸式技术正是虚拟现实和增强现实技术发展的最新成果[17⁃18]。与传统的静态沙盘和作战地图相比,沉浸式军事训练系统不受场地限制,可在参战官兵眼前呈现出包含网络和电磁等跨空间的动态逼真场景,从而提供一种身临其境的现场感。采用沉浸式技术构建的军事训练虚拟战场,有助于指挥员对未来战争提前具有感性认知,确保指挥员对战场态势做出正确而快速的理解与认知。

3

态势认知技术的发展建议

3)人机融合的态势聚焦与推送,提升态势信息的精准服务能力。态势图精准服务与群体共享指伴随多军兵种的协同作战过程,主动学习用户的作业行为,实现精细化态势图生成、高准确度服务和共享群体态势认知。开展人机融合技术、仿生智能算法、智能博弈和沉浸式技术研究,充分发挥机器计算能力和人类综合与创造能力,提供伴随作战过程的态势精准保障与人机理解能力,使指挥员对关注的战场情况一目了然,实现多层和多域的综合态势生成、聚合与解聚。例如,美军已形成了从通用作战态势图(COP)到用户定义作战图(UDOP)再到互关联通用作战态势图(IR⁃COP)等系列态势图族,从而提高了态势信息的整合能力,满足了不同用户需求。其中,UDOP旨在提供用户定义的态势精确认知,而IR⁃COP则侧重于实现对情报监视与侦察(ISR)信息、情报信息及作战计划信息的整合、组织与高效利用,实现指挥控制(C2)能力的最大化。

4)平行仿真的局势推演与预测,提升指挥员塑造战场态势能力。智能化辅助提升指挥员快速理解与准确预测战场态势成为一项全新的技术挑战。指挥员不仅要全面准确分析、理解、判断与评估当前战场局势,更要基于当前战场的“态”准确预测未来战局发展的趋势与走向。开展智能博弈、人机融合技术和边缘计算等研究,构建与真实系统一致和平行的仿真战场态势环境,基于实时战场态势信息,在线仿真模拟战场目标运行状态,并根据我方行动方案计划和掌握的敌情,快速推演未来不同时刻的敌我体系化对抗的可能态势和走向,为辅助指挥员超前决策和临机调整作战方案/计划提供时间窗口。例如,美军在“深绿”项目的“水晶球”模块中开展了基于战场实际情况的快速模拟推演,并通过对未来作战方案的可能选项实现对未来可能态势的生成、评估和监测。

4

结束语

本文分析了多域战和有人/无人协同作战样式的特点,以及对态势认知技术新挑战。结合人工智能技术的发展趋势,给出了破解态势推理与计算、态势推演与预测等研究中技术难题的智能化技术发展思路,为更好实现战场态势认知智能化提供了依据。最后,给出了态势认知技术的发展建议,不仅可为开展战场态势认知技术研究提供支持,也可为开展辅助决策分析和自主决策等作战问题研究提供参考。

参考文献(References):

[1]李婷婷,刁联旺,王晓璇.智能态势认知面临的挑战及对策[J].指挥信息系统与技术,2018,9(5):31-36.

[2]胡晓峰,荣明.智能化作战研究值得关注的几个问题[J].指挥与控制学报,2018,4(3):195-200.

[3]张剑龙.美国多域战研究及对我直升机装备发展的启示[J].直升机技术,2019,(2):1-5.

[4]陈杰,辛斌.有人/无人系统自主协同的关键科学问题[J].中国科学:信息科学,2018,48:1270–1274.

[5]丁友宝,彭志刚,张洪群.智能化作战及军队战略推进与发展[J].国防科技,2019,40(4):4-9.

[6]巩世兵,沈海斌.仿生策略优化的鲸鱼算法研究[J].传感器与微系统,2017,36(12):10-12.

[7]彭业飞,冯智鑫,张维继.仿生智能算法研究现状及军事应用综述[J].自动化技术与应用,2017,36(2):5-9.

[8]周知,于帅,陈旭.边缘智能:边缘计算与人工智能融合的新范式[J].大数据,2019,2:53-63.

[9]李林哲,周佩雷,程鹏.边缘计算的架构、挑战与应用[J].大数据,2019.10:1-14

[10]刘伟,厍兴国,王飞.关于人机融合智能中深度态势感知问题的思考[J].山东科学大学学报,2017,19(6):10-17.

[11]薛焕然,江涛,郑聪.基于分布式估计算法的群体智能优化[J].计算机与现代化,2017,257(1):17-21.

[12]张东俊,黎潇,吴红.基于分布估计算法的战能转化控制方法[J].哈尔滨工程大学学报,2018,39(12):2046-2054.

[13]吕学志,胡晓峰,吴琳.战役态势认知的概念框架[J].火力与指挥控制,2019,44(7):1-6.

[14]朱丰,胡晓峰,吴琳.从态势认知走向态势智能认知[J].系统仿真学报,2018,30(3):761-770.

[15]张阳,韩文彬,李晓燕.战场威胁态势的认知域可视建模[J],火力与指挥控制,2014,39(9):56-58.

[16]许畅,高金虎.认知干预战略欺骗的新视角[J].情报杂志,2019,38(7):23-27.

[17]吴鹏飞,石章松,吴中红.基于沉浸式虚拟现实的协同训练及演示平台构建[J].火力与指挥控制,2018,43(3):138-140.

[18]刘崇进,吴应良,贺佐成.沉浸式虚拟现实的发展概况及发展趋势[J].计算机系统应用,2019,28(3):18-27.

《指挥信息系统与技术》2020年第2期

李婷婷刁联旺

注:原文来源网络,文中观点不代表本公众号立场,相关建议仅供参考。

人工智能

陆军

海军

空军

航天

网络空间

电子信息

核武器

制造

基础科学

技术返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇