博舍

RFID标签有哪几种类型 人工智能识别模式有几种类型

RFID标签有哪几种类型

RFID标签有哪几种类型发布时间:2022/02/1009:30:00      浏览次数:2539RFID标签在生活中随处可见,针对各行业的应用其选用的类型也不一样,利用RFID技术对物体进行标签式管理,通过加装RFID标签,利用RFID读写设备,再结合软件系统,实现对物体的可视化管理和信息实时更新.

RFID射频识别技术作为目前数据自动采集的主要手段之一,电子标签是RFID系统中不可或缺的组成部分,但在多数情况下,电子标签的通用性并不强,而是需要根据场景需求选择不同的RFID标签。

现在越来越多的企业会使用RFID标签,因为它相比传统条码具有以下优势:

1、可以远距离读取,可以单个快速读取,可以快速一对多读取;

2、数据可以修改,数据也可加密,不可被复制安全性高;

3、不需要光学接触读取,可快速盘点批量货物,提高盘点效率和准确性。

RFID电子标签是一种非接触式的自动识别技术,它通过射频信号来识别目标对象并获取相关数据,识别工作无需人工干预,作为条形码的无线版本,RFID技术具有条形码所不具备的防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如等优点。那么RFID标签有哪几种类型?

RFID标签类型

一、按标签供电方式进行分类:有源RFID标签、无源RFID标签

1、有源RFID标签:由内部电池提供能量,优点是作用距离远,缺点是体积大、成本高、使用时间受电池寿命的限制。

2、无源RFID标签:内不含电池,它的能量要从RFID读写器获取,当无源RFID标签靠近RFID读写器时,无源RFID标签的天线将接收到的电磁波能量转化成电能,激活RFID标签中的芯片,并将RFID芯片中的数据发送到RFID读写器。优点是体积小、重量轻、成本低、寿命长,可制作成不同形状应用于不同的环境。

二、按标签工作模式进行分类:主动式、被动式、半主动式

1、主动式RFID标签:依靠自身的能量主动向RFID读写器发送数据;

2、被动式RFID标签:从RFID读写器发送的电磁波中获取能量,激活后才能向RFID读写器发送数据;

3、半主动式RFID标签:自身的能量只提供给RFID标签中的电路使用,并不主动向RFID读写器发送数据,当它接收到RFID读写器发送的电磁波激活之后才向RFID读写器发送数据。

三、按标签读写方式进行分类:只读式、读写式

1、只读式RFID标签:只可读出不可写入,只读式标签又可分:只读标签、一次性编程只读标签与重复编程只读标签。

2、读写式RFID标签:在识别过程中可以被读写器读出,也可以被读写器写入,读写式RFID标签内部使用的是随机存取存储器(RAM)或电可擦可编程只读存储器(EEROM)。

四、按标签工作频率分类:低频(LF)、高频(HF)、超高频(UHF)

RFID标签频率为其一个重要特征,决定了标签的工作原理及工作距离。不同频段有各自的优势和不足——低频产品有很好的穿透性,但数据传输速率有限;高频因其读距和协议的限制往往适用于支付和各种身份识别;超高频可以远距离读取,而且可一次性批量读取,却容易受环境干扰,尤其是金属与液体。同一频段的产品,因为使用环境的不同,其封装形态,安装方式也有巨大的差异。

五、按封装材料进行分类:纸质封装、塑料封装、玻璃封装

RFID标签如何选

第一、RFID标签的识别距离,有些企业对RFID标签的距离有要求,而有些却不知道,选择的时候需了解清楚再做选择。

第二、是否需要防水,是否长时间浸泡?

第三、标签的尺寸,在选择标签时是否对尺寸有要求,往往客户都希望标签尺寸小,这样既好看又安装方便,还能做嵌入式处理应用,根据自身的需求选择适合的尺寸即可。

第四、标签暴露在什么样的温度,是需要耐高温还是低温,这个也是需要考虑的因素。

RFID标签的应用主要是满足以下的一个或几个要求:

(1)对物品信息的跟踪性和可追溯性的要求;

(2)对高准确度、高安全性的要求;

(3)对唯一识别、无法伪造的要求;

(4)对处理大量物品的快捷性的需求;

(5)对物品实时监控的需求。

RFID标签在各个领域的应用

1、物流:物流过程中的货物追踪,信息自动采集,仓储应用,港口应用,快递。

2、零售:商品的销售数据实时统计,补货,防盗。

3、制造业:生产数据的实时监控,质量追踪,自动化生产。

4、服装业:自动化生产,仓储管理,品牌管理,单品管理,渠道管理。

5、医疗:医疗器械管理,病人身份识别,婴儿防盗。

6、身份识别:电子护照,身份证,学生证等各种电子证件。

7、防伪:贵重物品(烟,酒,药品)的防伪,票证的防伪等。

8、资产管理:各类资产(贵重的或数量大相似性高的或危险品等)。

9、交通:高速不停车,出租车管理,公交车枢纽管理,铁路机车识别等。

10、食品:水果,蔬菜,生鲜,食品等保鲜度管理。

11、动物识别:训养动物,畜牧牲口,宠物等识别管理。

12、图书馆:书店,图书馆,出版社等应用。

13、汽车:制造,防盗,定位,车钥匙。

14、航空:制造,旅客机票,行李包裹追踪。

15、军事:弹药,枪支,物资,人员,卡车等识别与追踪。

射频识别技术是一项利用射频信号通过空间耦合(交变磁场或电磁场)实现无接触信息传递并通过所传递的信息达到自动识别目的的技术。RFID电子标签技术是上世纪90年代迅速发展起来的物品自动识别技术,当每件产品制造完成时给它赋予唯一信息的电子标签,使它不管流通到哪里,都能够通过识别器(或称读写器)随时获得这件产品的相关信息。电子标签是时下先进的非接触感应技术,因其独有的特点和优点,现已被广泛应用于各个行业、领域。

上一篇:警用装备RFID管理系统

下一篇:浅析RFID读写器的主要功能

人工智能

人工智能-多种模式识别的调研报告时间:2023.7.7

人工智能-多种模式识别的调研报告

摘要

信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。

模式识别(PatternRecognition)是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理 的研究有交叉关系。模式识别的发展潜力巨大。

关键词:模式识别;人工智能;多种模式识别的应用;模式识别技术的发展潜力

引言

随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造。但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。这时,能够提高计算机外部感知能力的学科——模式识别应运而生,并得到了快速的发展。人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知

1、模式识别

什么是模式和模式识别?

模式可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。

模式识别(PatternRecognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(SupervisedClassification)和无监督的分类(UnsupervisedClassification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。

2、人工智能

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

关于什么是“智能”,就问题多多了。这涉及到其它诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人唯一了解的智能是人本身的智能,这是普遍认同的观点。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。因此人工智能的研究往往涉及对人的智能本身的研究。其它关于动物或其它人造系统的智能也普遍被认为是人工智能相关的研究课题。

人工智能目前在计算机领域内,得到了愈加广泛的重视。并在机器人,经济政治决策,控制系统,仿真系统中得到应用。

人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

3、多种模式识别的应用

3.1文字识别

汉字已有数千年的历史,也是世界上使用人数最多的文字,对于中华民族灿烂文化的形成和发展有着不可磨灭的功勋。所以在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了连机手写体识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。

3.2语音识别

语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。

3.3指纹识别

我们手掌及其手指、脚、脚趾内侧表面的皮肤凹凸不平产生的纹路会形成各种各样的图案。而这些皮肤的纹路在图案、断点和交叉点上各不相同,是唯一的。依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹分成有以下几个大的类别:leftloop,rightloop,twinloop,whorl,arch和tentedarch,这样就可以将每个人的指纹分别归类,进行检索。指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。

3.4图像模式识别

图像模式识别的方法很多,从图像模式识别提取的特征对象来看,图像识别方法可分为以下几种:基于形状特征的识别技术、基于色彩特征的识别技术以及基于纹理特征的识别技术。其中,基于形状特征的识别方法,其关键是找到图像中对象形状及对此进行描述,形成可视特征矢量,以完成不同图像的分类,常用来表示形状的变量有形状的周长、面积、圆形度、离心率等。基于色彩特征的识别技术主要针对彩色图像,通过色彩直方图具有的简单且随图像的大小、旋转变换不敏感等特点进行分类识别。基于纹理特征的识别方法是通过对图像中非常具有结构规律的特征加以分析或者则是对图像中的色彩强度的分布信息进行统计来完成。

从模式特征选择及判别决策方法的不同可将图像模式识别方法大致归纳为两类:统计模式(决策理论)识别方法和句法(结构)模式识别方法。此外,近些年随着对模式识别技术研究的进一步深入,模糊模式识别方法和神经网络模式识别方法也开始得到广泛的应用。在此将这四种方法进行一下说明。

3.5句法模式识别

对于较复杂的模式,如采用统计模式识别的方法,所面临的一个困难就是特征提取的问题,它所要求的特征量十分巨大,要把某一个复杂模式准确分类很困难,从而很自然地就想到这样的一种设计,即努力地把一个复杂模式分化为若干较简单子模式的组合,而子模式又分为若干基元,通过对基元的识别,进而识别子模式,最终识别该复杂模式。正如英文句子由一些短语,短语又由单词,单词又由字母构成一样。用一组模式基元和它们的组成来描述模式的结构的语言,称为模式描述语言。支配基元组成模式的规则称为文法。当每个基元被识别后,利用句法分析就可以作出整个的模式识别。即以这个句子是否符合某特定文法,以判别它是否属于某一类别。这就是句法模式识别的基本思想。

句法模式识别系统主要由预处理、基元提取、句法分析和文法推断等几部分组成。由预处理分割的模式,经基元提取形成描述模式的基元串(即字符串)。句法分析根据文法推理所推断的文法,判决有序字符串所描述的模式类别,得到判决结果。问题在于句法分析所依据的文法。不同的模式类对应着不同的文法,描述不同的目标。为了得到于模式类相适应的文法,类似于统计模式识别的训练过程,必须事先采集足够多的训练模式样本,经基元提取,把相应的文法推断出来。实际应用还有一定的困难。

3.6统计模式识别

统计模式识别是目前最成熟也是应用最广泛的方法,它主要利用贝叶斯决策规则解决最优分类器问题。统计决策理论的基本思想就是在不同的模式类中建立一个决策边界,利用决策函数把一个给定的模式归入相应的模式类中。统计模式识别的基本模型如图2,该模型主要包括两种操作模型:训练和分类,其中训练主要利用己有样本完成对决策边界的划分,并采取了一定的学习机制以保证基于样本的划分是最优的;而分类主要对输入的模式利用其特征和训练得来的决策函数而把模式划分到相应模式类中。

统计模式识别方法以数学上的决策理论为基础建立统计模式识别模型。其基本模型是:对被研究图像进行大量统计分析,找出规律性的认识,并选取出反映图像本质的特征进行分类识别。统计模式识别系统可分为两种运行模式:训练和分类。训练模式中,预处理模块负责将感兴趣的特征从背景中分割出来、去除噪声以及进行其它操作;特征选取模块主要负责找到合适的特征来表示输入模式;分类器负责训练分割特征空间。在分类模式中,被训练好的分类器将输入模式根据测量的特征分配到某个指定的类。统计模式识别组成如图2所示。

图2统计模式识别模型

4、模式识别技术的发展潜力

模式识别技术是人工智能的基础技术,21世纪是智能化、信息化、计算化、网络化的世纪,在这个以数字计算为特征的世纪里,作为人工智能技术基础学科的模式识别技术,必将获得巨大的发展空间。在国际上,各大权威研究机构,各大公司都纷纷开始将模式识别技术作为公司的战略研发重点加以重视。

3.1语音识别技术

语音识别技术正逐步成为信息技术中人机接口的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。

3.2生物认证技术

生物认证技术本世纪最受关注的安全认证技术,它的发展是大势所趋。人们愿意忘掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。国际数据集团(IDC)预测:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100美元的市场规模。

3.3数字水印技术

90年代以来才在国际上开始发展起来的数字水印技术是最具发展潜力与优势的数字媒体版权保护技术。IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。

结语

综上所述,模式识别从20世纪20年代发展至今,人们的一种普遍看法是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。

参考文献

1边肇祺,张学工等编著.模式识别(第二版).北京:清华大学出版社,2000.

2王碧泉,陈祖荫.模式识别理论、方法和应用.北京:地震出版社,1989.

3赵陵滋,甘云祥.统计模式识别算法的MATLAB语言实现.应用科技

4语音识别理想与现实的距离 

5人类形象思维模式识别与机器模式识别之探讨  

6指纹认证方法应注意的问题 

第二篇:人工智能与模式识别

人工智能与模式识别

摘要:信息技术的飞速发展使得人工智能的应用范围变得越来越广,而模式识别作为其中的一个重要方面,一直是人工智能研究的重要方向。在介绍人工智能和模式识别的相关知识的同时,对人工智能在模式识别中的应用进行了一定的论述。模式识别是人类的一项基本智能,着20世纪40年代计算机的出现以及50年代人工智能的兴起,模式识别技术有了长足的发展。模式识别与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。模式识别的发展潜力巨大。

关键词:模式识别;数字识别;人脸识别中图分类号;

Abstract:Therapiddevelopmentofinformationtechnologymakestheapplicationofartificialintelligencebecomemoreandmorewidely.Patternrecognition,asoneoftheimportantaspects,hasalwaysbeenanimportantdirectionofartificialintelligenceresearch.Intheintroductionofartificialintelligenceandpatternrecognitionrelatedknowledgeatthesametime,artificialintelligenceinpatternrecognitionapplicationswerediscussed.Patternrecognitionisabasichumanintelligence,theemergenceofthe20thcentury,40yearsofcomputerandtheriseofartificialintelligenceinthe1950s,patternrecognitiontechnologyhasmadegreatprogress.Patternrecognitionandstatistics,psychology,linguistics,computerscience,biology,cyberneticsandsohavearelationship.Ithasacross-correlationwithartificialintelligenceandimageprocessing.Thepotentialofpatternrecognitionishuge.

Keywords:patternrecognition;digitalrecognition;facerecognition;

1引言

随着计算机应用范围不断的拓宽,我们对于计算机具有更加有效的感知“能力”,诸如对声音、文字、图像、温度以及震动等外界信息,这样就可以依靠计算机来对人类的生存环境进行数字化改造。但是从一般的意义上来讲,当前的计算机都无法直接感知这些信息,而只能通过人在键盘、鼠标等外设上的操作才能感知外部信息。虽然摄像仪、图文扫描仪和话筒等相关设备已经部分的解决了非电信号的转换问题,但是仍然存在着识别技术不高,不能确保计算机真正的感知所采录的究竟是什么信息。这直接使得计算机对外部世界的感知能力低下,成为计算机应用发展的瓶颈。这时,能够提高计算机外部感知能力的学科——模式识别应运而生,并得到了快速的发展,同时也成为了未来电子信息产业发展的必然趋势。

人工智能中所提到的模式识别是指采用计算机来代替人类或者是帮助人类来感知外部信息,可以说是一种对人类感知能力的一种仿真模拟。近年来电子产品中也加入了诸多此类的功能:如手机中的指纹识别解锁功能;眼球识别解锁技术;手势拍照功能亦或是机场先进的人耳识别技术等等。这些功能看起来纷繁复杂,但如果需要一个概括的话,可以说这都是模式识别技术给现代生活带来的福分。它探讨的是计算机模式识别系统的建立,通过计算机系统来模拟人类感官对外界信息的识别和感知,从而将非电信号转化为计算机可以识别的电信号。

2人工智能和模式识别

人工智能(ArtificialIntelligence),是相对与人的自然智能而言的,它是指采用人工的方法及技术,对人工智能进行模仿、延伸及扩展,进而实现“机器思维”式的人工智能。简而言之,人工智能是一门研究具有智能行为的计算模型,其最终的目的在于建立一个具有感知、推理、学习和联想,甚至是决策能力的计算机系统,快速的解决一些需要专业人才能解决的问题。从本质上来讲,人工智能是一种对人类思维及信息处理过程的模拟和仿真。

模式识别,即通过计算机采用数学的知识和方法来研究模式的自动处理及判读,实现人工智能。在这里,我们将周围的环境及客体统统都称之为“模式”,即计算机需要对其周围所有的相关信息进行识别和感知,进而进行信息的处理。在人工智能开发,即智能机器开发过程中的一个关键环节,就是采用计算机来实现模式(包括文字、声音、人物和物体等)的自动识别,其在实现智能的过程中也给人类对自身智能的认识提供了一个途径。在模式识别的过程中,信息处理实际上是机器对周围环境及客体的识别过程,是对人参与智能识别的一个仿真。相对于人而言,光学信息及声学信息是两个重要的信息识别来源和方式,它同时也是人工智能机器在模式识别过程中的两个重要途径。在市场上具有代表性的产品有:光学字符识别系统以及语音识别系统等。

在这里的模式识别,我们可以将之理解成为:根据识别对象具有特征的观察值来将其进行分类的一个过程。采用计算机来进行模式识别,是在上世纪60年代初发展起来的一门新兴学科,但同样也是未来一段实践中发展的必然方向。在生活节奏相当之快的今天人们希望电子产品可以为我们的生活提供更多的便利条件。因此在未来相当一段时间内模式识别技术依然是发展的必然趋势。

模式识别的定义是借助计算机,就人类对外部世界某一特定环境中的客体、过程和现象的识别功能(包括视觉、听觉、触觉、判断等)进行自动模拟的科学技术。随着20世纪40年代计算机的出现以及50年代人工智能的兴起,人们当然也希望能用计算机来代替或扩展人类的部分脑力劳动。(计算机)模式识别在20世纪60年代初迅速发展并成为一门新学科。

模式识别(PatternRecognition)是指对表征事物或现象的各种形式的(数值的、文字的和逻辑关系的)信息进行处理和分析,以对事物或现象进行描述、辨认、分类和解释的过程,是信息科学和人工智能的重要组成部分。模式识别又常称作模式分类,从处理问题的性质和解决问题的方法等角度,模式识别分为有监督的分类(SupervisedClassification)和无监督的分类(UnsupervisedClassification)两种。二者的主要差别在于,各实验样本所属的类别是否预先已知。一般说来,有监督的分类往往需要提供大量已知类别的样本,但在实际问题中,这是存在一定困难的,因此研究无监督的分类就变得十分有必要了。

此外,模式还可分成抽象的和具体的两种形式。前者如意识、思想、议论等,属于概念识别研究的范畴,是人工智能的另一研究分支。我们所指的模式识别主要是对语音波形、地震波、心电图、脑电图、图片、照片、文字、符号、生物传感器等对象的具体模式进行辨识和分类。

模式识别研究主要集中在两方面,一是研究生物体(包括人)是如何感知对象的,属于认识科学的范畴,二是在给定的任务下,如何用计算机实现模式识别的理论和方法。

模式识别与很多学科都有联系,它与统计学、心理学、语言学、计算机科学、生物学、控制论等都有关系。它与人工智能、图像处理的研究有交叉关系。例如自适应或自组织的模式识别系统包含了人工智能的学习机制;人工智能研究的景物理解、自然语言理解也包含模式识别问题。又如模式识别中的预处理和特征抽取环节应用图像处理的技术;图像处理中的图像分析也应用模式识别的技术。

模式识别的方法主要有决策理论方法和句法方法,模式识别方法的选择取决于问题的性质。如果被识别的对象极为复杂,而且包含丰富的结构信息,一般采用句法方法;被识别对象不很复杂或不含明显的结构信息,一般采用决策理论方法。这两种方法不能截然分开,在句法方法中,基元本身就是用决策理论方法抽取的。在应用中,将这两种方法结合起来分别施加于不同的层次,常能收到较好的效果。

模式识别的应用非常广泛,比较典型的有:1文字识别:在信息技术及计算机技术日益普及的今天,如何将文字方便、快速地输入到计算机中已成为影响人机接口效率的一个重要瓶颈,也关系到计算机能否真正在我过得到普及的应用。目前,汉字输入主要分为人工键盘输入和机器自动识别输入两种。其中人工键入速度慢而且劳动强度大;自动输入又分为汉字识别输入及语音识别输入。从识别技术的难度来说,手写体识别的难度高于印刷体识别,而在手写体识别中,脱机手写体的难度又远远超过了联机手写体识别。到目前为止,除了脱机手写体数字的识别已有实际应用外,汉字等文字的脱机手写体识别还处在实验室阶段。2语音识别:语音识别技术技术所涉及的领域包括:信号处理、模式识别、概率论和信息论、发声机理和听觉机理、人工智能等等。近年来,在生物识别技术领域中,声纹识别技术以其独特的方便性、经济性和准确性等优势受到世人瞩目,并日益成为人们日常生活和工作中重要且普及的安验证方式。而且利用基因算法训练连续隐马尔柯夫模型的语音识别方法现已成为语音识别的主流技术,该方法在语音识别时识别速度较快,也有较高的识别率。3指纹识别:每个人的指纹是唯一的,依靠这种唯一性,就可以将一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,便可以验证他的真实身份。一般的指纹分成有以下几个大的类别:环型(loop),螺旋型(whorl),弓型(arch),这样就可以将每个人的指纹分别归类,进行检索。指纹识别基本上可分成:预处理、特征选择和模式分类几个大的步骤。除了这几个眼下热门的方向,模式识别还在遥感和医学诊断领域发挥了重要的作用。

最后介绍下模式模式识别的发展潜力,模式识别技术有着近乎无限的发展潜力,模式识别技术是人工智能的基础技术,21世纪是智能化、信息化、计算化、网络化的世纪,在这个以数字计算为特征的世纪里,作为人工智能技术基础学科的模式识别技术,必将获得巨大的发展空间。在国际上,各大权威研究机构,各大公司都纷纷开始将模式识别技术作为公司的战略研发重点加以重视。模式识别发展潜力较大的技术有1语音识别技术,语音识别技术正逐步成为信息技术中人机接口(HumanComputerInterface,HCI)的关键技术,语音技术的应用已经成为一个具有竞争性的新兴高技术产业。中国互联网中心的市场预测:未来5年,中文语音技术领域将会有超过400亿人民币的市场容量,然后每年以超过30%的速度增长。2生物认证技术,生物认证技术(Biometrics)本世纪最受关注的安全认证技术,它的发展是大势所趋。人们愿意忘掉所有的密码、扔掉所有的磁卡,凭借自身的唯一性来标识身份与保密。国际数据集团(IDC)预测:作为未来的必然发展方向的移动电子商务基础核心技术的生物识别技术在未来10年的时间里将达到100亿美元的市场规模。3数字水印技术90年代以来才在国际上开始发展起来的数字水印技术(DigitalWatermarking)是最具发展潜力与优势的数字媒体版权保护技术。IDC预测,数字水印技术在未来的5年内全球市场容量超过80亿美元。

模式识别从20世纪20年代发展至今,人们已经形成了一种普遍看法,那就是不存在对所有模式识别问题都适用的单一模型和解决识别问题的单一技术,我们现在拥有的只是一个工具袋,所要做的是结合具体问题把统计的和句法的识别结合起来,把统计模式识别或句法模式识别与人工智能中的启发式搜索结合起来,把统计模式识别或句法模式识别与支持向量机的机器学习结合起来,把人工神经元网络与各种已有技术以及人工智能中的专家系统、不确定推理方法结合起来,深入掌握各种工具的效能和应有的可能性,互相取长补短,开创模式识别应用的新局面。

3人工智能在模式识别中的应用

(一)数字识别及语音识别。在数字识别的过程中,对于手写体的识别一直是一个难题,而其又在邮政编码的识别、银行业务等方面具有较为广泛的应用,但是其字体形式变化较大,导致提高对其的识别率成为了一个难题,精准的识别存在着较大的困难。而采用人工智能中的神经网络技术后,系统可以利用神经网络的学习及快速并行功能来实现对手写数字的快速识别,有力的提高相关运用领域的工作效率。

而语音识别,简单的将就是能使得计算机能听懂人所说的话,一个典型的例子就是七国语言(中、日、英、意、韩、法、德)口语自动翻译系统,它可以将人说的话翻译成为机器所设定的目的语言,在整个过程中不需要翻译人员的参与。其中的中文部分实验平台设置在中科院自动化所的模式识别国家重点实验室中,这标志着我国的机器口语翻译研究已经跨入世界先进行列。在这个系统的功能实现之后,出国旅行需要预定旅馆、购买机票、就餐等需要和外国人进行对话时,只需要利用电话网络或者是国际互联网就能够顺利的和对方进行通话,进行语言交流。

在数字识别的过程中,对于手一83一写体的识别一直是一个难题,而其又在邮政编码的识别、银行业务等方面具有较为广泛的应用,但是其字体形式变化较大,导致提高对其的识别率成为了一个难题,精准的识别存在着较大的困难。而采用人工智能中的神经网络技术后,系统可以利用神经网络的学习及快速并行功能来实现对手写数字的快速识别,有力的提高相关运用领域的工作效率。而语音识别,简单的将就是能使得计算机能听懂人所说的话,一个典型的例子就是七国语言(中、日、英、意、韩、法、德)口语自动翻译系统,它可以将人说的话翻译成为机器所设定的目的语言,在整个过程中不需要翻译人员的参与。其中的中文部分实验平台设置在中科院自动化所的模式识别国家重点实验室中,这标志着我国的机器口语翻译研究已经跨入世界先进行列。在这个系统的功能实现之后,出国旅行需要预定旅馆、购买机票、就餐等需要和外国人进行对话时,只需要利用电话网络或者是国际互联网就能够III~I的和对方进行通话,进行语言交流。

(二)人脸立体识别模式。人脸识别的过程主要包括这样三个主要的部分:

其一,人脸模式库,即与所采集的实时图像进行对比,判断其是否存在于人脸模式库当中,若存在,则给出每个人脸的位置和大小等相关的脸部信息;

其二,对面部特征进行定位,即对每一个人脸的主要器官进行检测,包括对其的具体位置和形状等特征进行具体的信息收集,然后将之进行归一化的处理;

其三,比对,即根据所采集到得人脸面部特征来和人脸模式库中的图像进行对比,之后对该人脸的身份进行核实。

常见的人脸识别技术大部分可以归为这样三个类型:采用基于几何特征的方法,基于模板的方法以及基于模型的方法。其中,基于几何特征的方法最为常见,它通常需要与其他的算法进行结合之后才能形成比较好的识别效果;而基于模板的方法又能够分为基于匹配的方法、脸部特征的方法、线性判别分析的方法、神经网络方法以及奇异值分解方法等;再次,基于模型的方法主要包括基于隐马尔可夫模型、主动外观模型和主动形状模型方法等。

采用人脸识别模式来进行身份验证具有明显的有点,诸如:易用性好、准确度高、隐私性能好、稳定性好,且能被大部分的用户容所接受。人脸二维图像的识别已经基本实现,但是基于三维的立体图像人脸识别技术却处于研发阶段。人脸的二维及三维模型所反映的脸部外部信息是不同的,二维图像中的灰度值反映的是人脸表面亮度的差异,而三维图像中添加了深度信息,它能够表达脸形的信息数据,使得脸部的信息量更加丰富,能提高脸部的识别概率。

人脸立体识别模式。人脸识别的过程主要包括这样三个主要的部分:其一,人脸模式库,即与所采集的实时图像进行对比,判断其是否存在于人脸模式库当中,若存在,则给出每个人脸的位置和大小等相关的脸部信息;其二,对面部特征进行定位,即对每一个人脸的主要器官进行检测,包括对其的具体位置和形状等特征进行具体的信息收集,然后将之进行归一化的处理;其三,比对,即根据所采集到得人脸面部特征来和人脸模式库中的图像进行对比,之后对该人脸的身份进行核实。常见的人脸识别技术大部分可以归为这样三个类型:采用基于几何特征的方法,基于模板的方法以及基于模型的方法。其中,基于几何特征的方法最为常见,它通常需要与其他的算法进行结合之后才能形成比较好的识别效果;而基于模板的方法又能够分为基于匹配的方法、脸部特征的方法、线性判别分析的方法、神经网络方法以及奇异值分解方法等;再次,基于模型的方法主要包括基于隐马尔可夫模型、主动外观模型和主动形状模型方法等。采用人脸识别模式来进行身份验证具有明显的有点,诸如:易用性好、准确度高、隐私性能好、稳定性好,且能被大部分的用户容所接受。人脸二维图像的识别已经基本实现,但是基于三维的立体图像人脸识别技术却处于研发阶段。人脸的二维及三维模型所反映的脸部外部信息是不同的,二维图像中的灰度值反映的是人脸表面亮度的差异,而三维图像中添加了深度信息,它能够表达脸形的信息数据,使得脸部的信息量更加丰富,能提高脸部的识别概率。

4蚁群算法与物流配送4.1物流配送的优化方法

随着物流配送向集约化、一体化方向发展,常将配送的各环节综合考虑,其核心部分是配送车辆的集货、配货和送货过程。配送系统优化,主要是配送车辆的优化调度(包括集货路线优化、货物装配和送货路线优化),以及集货、配货和送货一体化优化。车辆路径问题(VehicleRoutingProblem,VRP)是配送环节的重要组成部分。合理安排车辆数和车辆路线是减少浪费、提高经济效益的重要手段,不但可以降低商品的物流成本,还可以提高客户的满意度,扩大潜在市场,这对于整个物流运输速度、成本、效益有着重要的影响。

近年来,国内外专家对VRP问题的研究日趋深入,但多数集中于对某个单一目标的优化研究,并假设满足某些约束条件。而在实际车辆调度过程中,经常涉及到时间或空间各方面的约束。因此,多目标问题比单目标问题就更常见。VRP问题有多种模型,其中:带时间窗的车辆路径问题(VehicleRoutingProbtemwithTimeWindows,VRPTW)是一个具有代表性的带约束多目标问题。与典型的旅行商问题(TravelingSalesmanProblem,TSP)相比,增加了车容量、时间窗等约束条件,其中两个目标维度分别为车辆数与总时间耗费(或总路径长度当速度定义每单位时间耗费为1时),其目标是在满足空间容量限制和时间限制的条件下,求使总成本最小的最优解。

目前,VRP问题的求解算法很多,可大致分为精确算法和启发式算法两大类。精确算法的计算量一般随着问题规模的增大而呈指数增长,所以多用于规模较小的问题。而对于求解大规模的NP(Non-deterministicPolynomialProblem)难题,则较常用模拟退火算法(SA)、禁忌搜索算法(TS)、遗传算法(GA)、神经网络(NN)、蚂蚁算法(AS)等现代启发式算法。

蚁群算法最初由意大利科学家Dorigo.M于1991年提出,是一种基于群体、用于求解复杂组合优化问题的通用搜索技术。该方法首先被应用于TSP,并在一系列阃题中得到应用,诸如二次分配、Job—shop、图着色问题、VRP问题、集成电路设计以及通信网络负载等离散优化问题等。但蚁群算法搜索时间长、易于停滞(即搜索到一定程度后所有个体所发现的解完全一致),存在不能扩大对解空间继续搜索的缺陷。

4.2蚁群算法研究现状

蚁群算法(AntSystem,AS)是一种新生算法,具有很强的通用性和鲁棒性。从提出到现在,仅短短十余年的时间,但其在离散型组合优化问题的求解中,表现出强大的优越性,所以引起人们的关注。目前蚁群算法的研究学者主要集中在比利时、意大利、德国等国家,美国和日本在近几年也开始了对蚁群算法的研究。国内的研究始于1998年末,主要在上海、北京、东北少数几个学校和研究所开展了此项工作。蚁群算法作为一种新型的智能优化算法,与其它优化算法相比,具有正反馈、分布式计算以及贪婪的启发式搜索等主要特点。正反馈过程使得该算法能够发现较好解;分布式计算使得该算法易于并行实现,更快得到较好解;与启发式算法相结合,使得该算法易于发现较好解,这些特点为更好解决复杂的组合优化问题提供了可能。由于在蚁群算法中所有个体都要进行信息素更新,造成了信息素分配的浪费和分配畸形,所以蚁群算法的性能并不很理想。Dorigo.M等人在蚁群算法又提出了改进的蚁群系统(AntColonySystem,简称ACS),在蚂蚁选择下一城市时使用的转移概率中加入伪随机分配概率,以避免出现蚁群算法中的信息素分配畸形。尽管蚁群系统与蚁群算法相比提高了算法的性能,但它仍然使用蚁群算法中的全局信息素更新原则和局部信息素更新原则,即对所有个体进行信息素更新,造成了信息素的大量冗余,弱化了好信息素的强度。

目前,所有蚁群算法的改进基本上都是建立在蚁群算法基础之上。自1998年,第一届蚂蚁优化国际研讨会召开以来,已经是第三届了,大大推动了蚁群算法的发展。蚁群算法已经引起越来越多的关注,尽管还缺乏完善的理论分析,对它的有效性也没有给出严格的数学解释,但回顾模糊控制的发展历史,理论的不完善并不妨碍应用,有时应用是超前于理论的,并推动理论的研究,伴随着研究的不断深人,蚁群算法必将迎来一个光明的前景。

5心得体会

在经济全球化快速发展的进程中,物流作为“第三利润源”对经济活动的影响越来越强,而它作为当前经济最重要的竞争领域,在优化国内外两个市场的资源配置中起着尤为重要的作用。随着电子商务的发展,出现了一些新的配送模式,使得储存不再是必然的环节,国外有巨头如ebay,国内也有阿里巴巴这样的电子商务帝国,他们的崛起,彻底改变了人们的生活方式。而电子商务的发展,离不开物流配送行业的快速发展。模式识别是一门与生活密切相关的学科,是今后电子产品发展的必然趋势。想想看我们现在身边的电子产品诸如手机、电脑乃至第三代身份证中无不存在模式识别技术的影子。手机电脑中的例子有很多,但与我们密切相关的三代身份证都需要录入指纹,为的是在未来的破案过程中警方可用提取道德指纹在指纹库中寻找到嫌疑人的身份信息。这会大大缩短破案时间提高治安水平,为人民的安居乐业提供前提。

的确模式识别这门学科设计了相当广泛的领域,是未来相当一段时间内飞速发展的领域,这门学科为大四还在迷茫的我指引了一个明确的前进方向。虽然这门学科暂时结业了,但我相信学无止境,在今后的日子里我也有了自己确定的研究方向。我会将一些工具学科的方法利用到这门学科中,或许我在段时间内做不出新的产品或者是项目,但我可以从头做起,先去学习已有的实例而后做相应的应用。

更多相关推荐:调研报告与调查报告的区别

调研报告与调查报告的区别及写作技巧说到调研报告就不能不先说调查报告有许多人把这两种文体混为一谈在写作中不加以区分其实是错误的调查报告是对某一情况某一事件调查研究后将所得的材料和结论加以整理而写成的书面报告调查报...

调研报告与调查报告的区别及其写作技巧、样本及格式要求-志文工作室编辑

调研报告与调查报告的区别及其写作技巧样本及格式要求一什么是调研报告为了对某件事情作比较深入全面的了解我们就需要进行一番调查研究然后形成书面文字这就是调研报告二调研报告与调查报告的区别说到调研报告就不能不先说调查...

调研报告与调查报告的区别

调研报告与调查报告的区别调查报告是对某一情况某一事件调查研究后将所得的材料和结论加以整理而写成的书面报告调查报告的使用范围很广制定方针政策解决各种实际问题弄清事情真相扶植新生事物推广典型经验都离不开调查报告调查...

调查报告与调研报告的区别

调研报告与调查报告的区别及写作技巧说到调研报告就不能不先说调查报告有许多人把这两种文体混为一谈在写作中不加以区分其实是错误的调查报告是对某一情况某一事件调查研究后将所得的材料和结论加以整理而写成的书面报告调查报...

调研报告与调查报告的区别及写作技巧

调研报告与调查报告的区别及写作技巧说到调研报告就不能不先说调查报告有许多人把这两种文体混为一谈在写作中不加以区分其实是错误的调查报告是对某一情况某一事件调查研究后将所得的材料和结论加以整理而写成的书面报告调查报...

调研报告与调查报告的区别及写作技巧

调研报告与调查报告的区别及写作技巧说到调研报告就不能不先说调查报告有许多人把这两种文体混为一谈在写作中不加以区分其实是错误的调查报告是对某一情况某一事件调查研究后将所得的材料和结论加以整理而写成的书面报告调查报...

调研报告与调查报告的区别及写作技巧

调研报告与调查报告的区别及写作技巧说到调研报告就不能不先说调查报告有许多人把这两种文体混为一谈在写作中不加以区分其实是错误的调查报告是对某一情况某一事件调查研究后将所得的材料和结论加以整理而写成的书面报告调查报...

实体店与网店优劣比较的调查报告

关于在消费者购买决策过程中实体店与网店优劣比较的调查报告调查者10广策绝对印象小组调查课题实体店与网店在消费者购买决策过程中的优劣比较调查时间20xx年3月26日调查方式问卷调查调查报告内容调查目的通过进行问卷...

关于导学案使用与否的效果区别的调研报告

关于是否使用导学册的课堂教学效果区别研究调查黄苏珍在课改的背景下我校与时俱进精心筹划从改变教学方式入手改革课堂模式于上学期试行导学案在实践中探索在探索中完善如今已在学校全面推开根据学校的具体要求一是确保导学案的...

关于城乡教育差异的调查报告(整理完整版)

思想道德修养与法律基础实践课教学成果报告题目姓名吴鸿展学号51122902120xx142xxxxxxxx120xx135班级完成日期指导教师关于城乡教育差异的调查报告成国森张展通伍炯城萧海彬林士祺511229...

关于男女购物行为差异的调查报告

关于男女购物行为差异的调查报告为了了解男女消费者购物的心理和行为差异我们进行关于男女消费者购买心理和行为差异的调查我们调查了男女消费者各50人虽然过程不是非常顺利但也还算成功因为在分发调查问卷的过程中肯定会遇到...

课题研究中西方饮食文化差异调查报告

中西方饮食文化差异调查报告张志玲孙静文方璐一调查目的中国饮食文化历史悠久博大精深影响深远风靡世界它经历了几千年的历史发展已成为中华民族的优秀文化遗产世界饮食文化宝库中的一颗璀璨的明珠西方的一些国家曾为一些国家的...

调研报告和调查报告的区别(25篇)

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇