博舍

新一代人工智能对智能制造的影响及应用 人工智能在智能制造中的作用有哪些方面

新一代人工智能对智能制造的影响及应用

原标题:新一代人工智能对智能制造的影响及应用

(本文作者:工信部赛迪研究院魏强)

我国在建设制造强国的总体战略中明确提出:要以新一代信息系技术与制造业深度融合为主线,以推进智能制造为主攻方向,实现制造业由大变强的历史跨越。发展智能制造不仅是我国制造业创新发展的主要抓手,同时也是我国制造业转型升级的主要路径。近年来,新一代人工智能技术与先进制造技术深度融合,形成了新一代智能制造——数字化网络化智能化制造,并将成为新一轮工业革命的核心驱动力。在2018年9月由新兴产业百人会主办的“2018全球未来产业创新大会——智能制造专题论坛”上,多位智能制造领域专家围绕“智能制造的技术、案例及解决方案”主题作了演讲,深度解析了智能制造发展的新趋势与新动向。本文将以部分参会专家的观点为基础,介绍新一代人工智能对智能制造的影响以及在智能制造中的应用案例。

一、智能制造的三种范式

广义而论,智能制造(IM,IntelligentManufacturing)是一个大概念,一个不断演进的大系统。根据我国发布的《智能制造发展规划(2016-2020年)》,智能制造是基于新一代信息通信技术与先进制造技术深度融合,贯穿于设计、生产、管理、服务等制造活动的各个环节,具有自感知、自学习、自决策、自执行、自适应等功能的新型生产方式。据国家制造强国建设战略咨询委员会委员、中国工程院制造业研究室主任屈贤明介绍,智能制造概念从20世纪七八十年代出现以来,在实践演化中形成了多种范式,包括精益生产、柔性制造、并行工程、敏捷制造、数字化制造、计算机集成制造、网络化制造、云制造、智能化制造等,这些范式在不同程度、不同视角上反映出制造业的数字化网络化智能化,在指导制造业智能转型中发挥了积极作用。但是,众多的智能制造范式不利于形成统一的智能制造技术路线,给企业在推进智能升级的实践中造成了许多困扰。

中国工程院于2017年发布《中国智能制造发展战略研究》报告,综合智能制造相关范式,总结、归纳和提升出三种智能化制造的基本范式,即:数字化制造、数字化网络化制造、数字化网络化智能化制造。

(1)数字化制造(DigitalManufacturing)

数字化制造是智能制造的第一种范式,也可称为第一代智能制造。20世纪下半叶以来,以数字化为主要内容的信息技术广泛应用制造业,形成了“数字一代”创新产品、数字化制造系统和数字化企业。需要指出,数字化制造是智能制造的基础,其内涵不断发展,贯穿于智能制造的三种基本范式和全部发展历程。

(2)数字化网络化制造——“互联网+制造”(SmartManufacturing)

数字化网络化制造是智能制造的第二种范式,也可称为“互联网+制造”或第二代智能制造。20世纪末互联网技术开始广泛应用,“互联网+”不断推进制造业和互联网融合发展,网络将人、流程、数据和事物连接起来,通过企业内、企业间的协同和各种社会资源的共享与集成,重塑制造业的价值链,推动制造业从数字化制造向数字化网络化制造转变。过去这几年,我国工业界大力推进“互联网+制造”,一方面,一批数字化制造基础较好的企业成功实现了数字化网络化升级;另一方面,大量原来还没有完成数字化改造的企业,采用并行推进数字化制造和“互联网+制造”的技术路线,完成了数字化制造的“补课”,同时跨越到“互联网+制造”阶段。

(3)数字化网络化智能化制造——新一代智能制造(IntelligentManufacturing)

数字化网络化智能化制造是智能制造的第三种范式,也可称为新一代智能制造。进入21世纪以来,移动互联、超级计算、大数据、云计算、物联网等技术快速发展,并推动新一代人工智能技术取得重大突破。新一代人工智能技术与先进制造技术深度融合,形成了新一代智能制造。新一代智能制造系统中增加了基于人工智能技术的学习认知部分,使系统不仅具有强大的感知、计算分析与控制能力,还具有自学习、自适应的能力。新一代智能制造未来将给制造业带来革命性变化,是真正意义上的“智能制造”,将从根本上引领和推进第四次工业革命。

展开全文

图1智能制造的三种范式演进

二、新一代人工智能赋能“人-信息-物理”系统

传统制造系统包含人和物理系统两大部分,该系统是完全通过人完成信息感知、分析决策、操作控制以及认知学习去完成各种工作任务,可抽象描述为“人-物理系统”(human-physicalsystem,HPS)。

与传统制造系统相比,第一代(数字化)和第二代(数字化网络化)智能制造系统发生的本质变化是在人和物理系统之间增加了信息系统(cybersystem)。一方面,信息系统可以代替人类完成部分脑力劳动;另一方面,人的一部分感知、分析、决策功能向信息系统复制迁移,进而可以通过信息系统来控制物理系统,从而代替人类完成更多的体力劳动。信息系统的引入使得制造系统同时增加了“人-信息系统”(human-cybersystems,HCS)和“信息-物理系统”(cyber-physicalsystems,CPS),并使得制造系统完成了从传统的“人-物理系统”向“人-信息-物理系统”(human-cyber-physicalsystems,HCPS)的演变。

图2传统制造系统与智能制造系统比较

随着深度学习算法与大数据的兴起,人工智能在经历六十多年的曲折发展过程后迎来蓬勃发展期。新一代人工智能技术使“人-信息-物理系统”发生质的变化,信息系统中增加了基于人工智能技术的学习认知部分,使系统不仅具有强大的感知、计算分析与控制能力,还具有自学习、自适应的能力,进而形成新一代“人-信息-物理系统”。中国工程院院士周济等人认为,新一代人工智能技术对“人-信息-物理系统”产生的主要变化在于:一方面,人将部分认知与学习型的脑力劳动转移给信息系统,因而信息系统具有了“认知和学习”的能力,人和信息系统的关系发生了根本性的变化,即从“授之以鱼”发展到“授之以渔”;另一方面,通过“人在回路”的混合增强智能,人机深度融合将从本质上提高制造系统处理复杂性、不确定性问题的能力,极大地优化制造系统的性能。

图3新一代智能制造系统的技术机理

三、新一代人工智能在智能制造中的应用

中国科学院自动化研究所研究员、博士生导师谭杰研究员认为人工智能对于制造业的价值主要体现在两方面。一方面,人工智能可以提高工业设计水平并促进新型生产方式实现;另一方面,将进一步提升数字化、网络化、智能化的水平,从根本上提高工业知识产生和利用的效率,从而推动制造业发展步入新阶段,并成为经济发展的新引擎。

图4人工智能在智能制造中的案例应用

当前,新一代人工智能在智能制造中的应用已经十分广泛,谭杰研究员对此做了相关总结,如下:

(一)机器感知应用

机器感知应用包括产品外观检测、手机玻璃盖板检测、动力锂电池的极片毛刺检测、语音识别等。

(二)机器学习应用

机器学习应用包括工艺与产品质量改进、异常动作识别、微装配机器人技能学习系统、轴承健康状态感知、刀具的智能管理与寿命预测等。

(三)机器思维应用

机器思维应用包括虚拟调度机器人、数字印刷喷头阵列智能调度、知识自动化系统、人工智能物流调度与决策、高速动车组生产车间的生产因素识别、智能分析与决策系统、故障诊断与智能维护等。

(四)智能行为应用

智能行为应用包括智能无人仓库管理、自动化装备生产线、智能上甑机器人等。

参考文献:

1.工信部、财政部,《智能制造发展规划(2016-2020年)》,工信部联规〔2016〕349号,2016年12月8日.

2.中国工程院,《中国智能制造发展战略研究》.

3.周济.走向新一代智能制造[J].中国科技产业,2018(6).

4.臧冀原,王柏村,孟柳,等.智能制造的三个基本范式:从数字化制造、“互联网+”制造到新一代智能制造[J].中国工程科学,2018,20(4):13-18.返回搜狐,查看更多

责任编辑:

如何认识人工智能对未来经济社会的影响

原标题:如何认识人工智能对未来经济社会的影响

人工智能作为一种新兴颠覆性技术,正在释放科技革命和产业变革积蓄的巨大能量,深刻改变着人类生产生活方式和思维方式,对经济发展、社会进步等方面产生重大而深远的影响。世界主要国家都高度重视人工智能发展,我国亦把新一代人工智能作为推动科技跨越发展、产业优化升级、生产力整体跃升的驱动力量。在此背景下,我们有必要更好认识和把握人工智能的发展进程,研究其未来趋势和走向。

人工智能不同于常规计算机技术依据既定程序执行计算或控制等任务,而是具有生物智能的自学习、自组织、自适应、自行动等特征。可以说,人工智能的实质是“赋予机器人类智能”。首先,人工智能是目标导向,而非指代特定技术。人工智能的目标是在某方面使机器具备相当于人类的智能,达到此目标即可称之为人工智能,具体技术路线则可能多种多样,多种技术类型和路线均被纳入人工智能范畴。例如,根据图灵测试方法,人类通过文字交流无法分辨智能机器与人类的区别,那么该机器就可以被认为拥有人类智能。其次,人工智能是对人类智能及生理构造的模拟。再次,人工智能发展涉及数学与统计学、软件、数据、硬件乃至外部环境等诸多因素。一方面,人工智能本身的发展,需要算法研究、训练数据集、人工智能芯片等横跨整个创新链的多个学科领域同步推进。另一方面,人工智能与经济的融合要求外部环境进行适应性变化,所涉的外部环境十分广泛,例如法律法规、伦理规范、基础设施、社会舆论等。随着人工智能进一步发展并与经济深度融合,其所涉外部环境范围还将进一步扩大,彼此互动和影响亦将日趋复杂。

总的来看,人工智能将波浪式发展。当前,人工智能正处于本轮发展浪潮的高峰。本轮人工智能浪潮的兴起,主要归功于数据、算力和算法的飞跃。一是移动互联网普及带来的大数据爆发,二是云计算技术应用带来的计算能力飞跃和计算成本持续下降,三是机器学习在互联网领域的应用推广。但人工智能技术成熟和大规模商业化应用可能仍将经历波折。人工智能的发展史表明,每一轮人工智能发展浪潮都遭遇了技术瓶颈制约,导致商业化应用难以落地,最终重新陷入低潮。本轮人工智能浪潮的技术上限和商业化潜力都大大高于以往,部分专用人工智能可能获得长足进步,但许多业内专家认为目前的人工智能从机理上还不存在向通用人工智能转化的可能性,人工智能大规模商业化应用仍将是一个长期而曲折的过程。人工智能的发展尚处于早期阶段,在可预见的未来仍将主要起到辅助人类工作而非替代人类的作用,同时,严重依赖数据输入和计算能力的人工智能距离真正的人类智能还有很大的差距。

作为继互联网后新一代“通用目的技术”,人工智能的影响可能遍及整个经济社会,创造出众多新兴业态。国内外普遍认为,人工智能将对未来经济发展产生重要影响。

一方面,人工智能将是未来经济增长的关键推动力。人工智能技术的应用将提升生产率,进而促进经济增长。许多商业研究机构对人工智能对经济的影响进行了预测,主要预测指标包括GDP增长率、市场规模、劳动生产率、行业增长率等。多数主要商业研究机构认为,总体上看,世界各国都将受益于人工智能,实现经济大幅增长。未来十年(至2030年),人工智能将助推全球生产总值增长12%左右。同时,人工智能将催生数个千亿美元甚至万亿美元规模的产业。人工智能对全球经济的推动和牵引,可能呈现出三种形态和方式。其一,它创造了一种新的虚拟劳动力,能够解决需要适应性和敏捷性的复杂任务,即“智能自动化”;其二,人工智能可以对现有劳动力和实物资产进行有力的补充和提升,提升员工能力,提高资本效率;其三,人工智能的普及将推动多行业的相关创新,提高全要素生产率,开辟崭新的经济增长空间。

另一方面,人工智能替代劳动的速度、广度和深度将前所未有。许多经济学家认为,人工智能使机器开始具备人类大脑的功能,将以全新的方式替代人类劳动,冲击许多从前受技术进步影响较小的职业,其替代劳动的速度、广度和深度将大大超越从前的技术进步。但他们同时指出,技术应用存在社会、法律、经济等多方面障碍,进展较为缓慢,技术对劳动的替代难以很快实现;劳动者可以转换技术禀赋;新技术的需求还将创造新的工作岗位。

当前,在人工智能对经济的影响这个领域,相关研究已经取得了一些成果,然而目前仍处于研究的早期探索阶段,还未形成成熟的理论和实证分析框架。不过,学界的一些基本共识已经达成:短期来看,人工智能发展将对我国经济产生显著促进作用;长期来看,人工智能的发展路径和速度难以预测。因此,我们需对人工智能加速发展可能导致的世界经济发展模式变化保持关注。

(作者单位:国务院发展研究中心创新发展研究部)

(责编:赵超、吕骞)

分享让更多人看到

微生物+人工智能:开启新一代生物制造

光明图片/视觉中国

新闻事件

近期,中国科学院微生物研究所的吴边团队通过使用人工智能计算技术,构建出一系列的新型酶蛋白,实现了自然界未曾发现的催化反应;并在世界上首次通过完全的计算指导,获得了工业级微生物工程菌株,取得了人工智能驱动生物制造在工业化应用层面的率先突破。成果发表在学术期刊《自然·化学生物学》杂志上。

该项研究不仅降低了传统化学合成中对反应条件的苛刻要求,更重要的是解决了化学合成带来的污染问题。这是人工智能技术在工业菌株设计方向的成功案例,验证了其科学理论基础,也将为人工智能与传统生物产业的互作融合打开新局面。

现代生物制造已经成为全球性的战略性新兴产业,在化工、材料、医药、食品、农业等诸多重大工业领域得到了广泛的应用,根据OECD预测,到2030年约有35%的化学品和其他工业产品来自生物制造。欧、美、日等主要发达国家都将绿色生物制造确立为战略发展重点,并分别制定了相应的国家规划。我国正处于建设创新型国家与加快生态文明体制改革的决定性阶段,紧随并引领世界科技前沿,发展新型绿色生物制造技术,支撑传统产业升级变革,关乎资源、环境、健康,符合国家重大战略需求。

近年来,人工智能技术迅猛发展,其影响开始推广到绿色生物制造领域,尤其是在其核心元件蛋白质的设计方面,发挥了巨大的作用。通过人工智能技术,预测蛋白质结构、设计蛋白质功能,可以极大地扩展人工改造生命体的应用场景,变革性地推动绿色生物制造的发展。蛋白质的工程改造正在经历了从传统实验进化到计算机虚拟设计的演变过程,计算机辅助蛋白结构预测以及新功能酶设计策略得到了前所未有的重视和发展,成为了生物学、化学、物理学、数学等多学科交叉的热点前沿领域。

人工智能“计算”新酶已成为国际热点

酶是生物催化技术中的核心“发动机”,其本质是一种蛋白质。蛋白质的生物学功能很大程度上由其三维结构决定,结构预测是了解酶功能的一种重要途径。《科学》杂志将蛋白质折叠问题列为125个最为重大的科学问题之一。

近年来,随着计算机科学、计算化学、生物信息学等多学科的联合进步,这一问题的解决看到了曙光。尤其是在CASP竞赛推动下,蛋白质结构预测方法和新功能酶计算设计策略得到了迅猛的发展。

设计蛋白质一方面可以揭示蛋白质结构与功能关系的规律,另一方面可以创造具有潜在应用价值的蛋白质。2016年,《自然》杂志发表了题为《全新蛋白质设计时代来临》的重要综述。同年,《科学》杂志也将蛋白质计算机设计遴选为年度十大科技突破之一。2017年,美国化学会将人工智能设计新型蛋白质结构列为化学领域八大科研进展之首。多个来自美国、瑞士等国的科研团队活跃在这个领域,文章发表在《自然》、《科学》等顶级学术期刊上。

我国在工业化应用上率先获得突破

目前,全球微生物酶制剂市场主要由几家跨国企业垄断。与之相比,国内企业在市场竞争中仍然处于不利的位置,以大宗普通微生物催化剂(如淀粉酶、糖化酶)为主,行业呈现出竞争白热化的态势。但我国已经注意到这个问题,并着力改善。2017年5月,《“十三五”生物技术创新专项规划》在坚持创新发展、着力提高发展质量和效益层面,提出拓展产业发展空间、支持人工智能技术等具有重大产业变革前景的颠覆性技术发展要求。

在此规划的指引下,我国的多个研究团队在该领域取得了不俗成绩。例如,中国科学院微生物研究所的吴边团队通过人工智能计算技术,赋能传统微生物资源,在世界上首次完成了工业级工程菌株的计算设计,获得人工智能驱动生物制造工业化的率先突破。该团队不仅设计了β-氨基酸这一类具备特殊生物活性的非天然氨基酸的最优合成途径,还借助人工智能计算手段,成功设计出一系列的β-氨基酸合成酶,并据此构建出能够高效合成β-氨基酸的工程菌株。

不仅如此,微生物研究所还积极推进成果的落地转化。通过与企业的合作,已经建成千吨级的生产线,相关产品潜在市场规模超过30亿,有望在紫杉醇、度鲁特韦与马拉维若等抗癌与艾滋病治疗药物的生产过程中大幅度降低生产成本。中国科技大学的刘海燕团队则提出了一种新的统计能量模型,为搭建具有高“可设计性”的蛋白质主链结构提供了可行性解决方案。2017年,该团队与中科院脑科学与智能技术卓越创新中心杨弋团队合作,设计出了新一代细胞代谢荧光蛋白质探针,并将其应用于活体动物成像与高通量药物筛选,相关成果发表于《自然·方法学》。

除此之外,中国科学院天津工业生物技术研究所的江会锋团队,通过使用人工智能技术进行关键合成酶的发掘,在国际上首次实现了重要中药活性成分灯盏花素的人工生物合成,相关成果发表于《自然·通讯》,引起强烈反响。

建立适合人工智能驱动生物技术的科研环境

开展人工智能设计元件的核心算法与策略研究。人工智能技术应用于生物制造领域最为基础的部分是核心算法与设计策略的创造。考虑到基础研究的难度与特点,建议选拔一批在该领域的拔尖科学家,提供相对稳定的支持,让他们潜心研究、长期攻关、实现更多原创发现,提出更多原创理论,开辟更多领域发展方向。将人工智能技术与蛋白质结构与功能理论、合成化学理论、量子化学理论有机交叉融合,发展新型算法,搭建“高可设计性”系统策略,把控底层核心技术源头,力争实现人工智能关键技术驱动生物制造的国际领跑地位。

拓展人工智能设计元件在生物制造领域的应用场景。在发展算法的基础上,我国还应积极推进人工智能设计在生物制造领域的应用拓展。建议由优势单位组织重大项目,协同全国相关单位联合攻关;发展系统、科学的新型化学应用拓展策略,利用新型生物催化反应改造和优化现有自然生物体系,从头创建合成可控、功能特定的人工生物体系,在创造研究工具和技术方法的基础上,推动化学、生物、材料、农业、医学等多学科的实质性交叉与合作,为天然化学品与有机化工原料摆脱对天然资源的依赖,促进可持续经济体系形成与发展奠定科学基础,全面提升我国生物制造产业的核心竞争力。

推进人工智能驱动生物制造技术的产业发展。创新驱动发展战略需要落实创新成果,创造新的经济增长点。人工智能驱动的生物制造技术的最终价值也应该体现在实实在在的产业活动上,如果没有与上下游的良好生态,再出色的技术或产品也只能是死路一条。建议在技术发展与市场需求的耦合驱动下,坚持产学研多方位的开放联合,消除成果转化过程执行层面仍然广泛存在的种种屏障;重视资本对于技术和产业发展的催化作用,探索设立专项产业发展基金等市场调控手段;在国家层面,协调沟通行业监管机构,破除不合时宜的陈旧政策限制,尽快建立有利于新兴生物技术的政策法规体系;实现资源、能源的节约与替代,加快转变经济增长模式,加速推进绿色与高效低碳生物经济的产业基础格局。

(作者:向华,系中国科学院微生物研究所副所长、微生物资源前期开发国家重点实验室主任)

人工智能的作用及意义是什么

  伴随着大数据的发展,人工智能的时代已经越来越近,但目前人工智能仍处于起步阶段,无论是理论研究还是实际应用,都离人工智能还有很大的距离。因此,现在的人工智能通常都要求特定的使用场景和一系列的先决条件。但随着人工智能的不断发展和代理的逐步应用,这必然是一种趋势。如今,人工智能产品在运输、物流、教育、安全等领域已得到广泛应用,并发挥了一定作用,特别是在解决低端劳动力短缺问题方面,人工智能已成为低端制造业可持续发展的重要替代品。接下来小编就给大家介绍一下人工智能的作用及意义是什么,一起来看看吧。

迅捷转换器2.824条点评咨询产品免费试用解决用户选型困难的好软件,有各维度的信息客户案例暂无合作品牌暂无人工智能的作用及意义是什么?  AI时代会给整个社会带来怎样的变化?可从以下三个角度进行分析和预测:第一,从工作的角度来看,智能时代的人类将从事更有意义的工作;随着人工智能的不断发展,人们的就业机会也将不断提升,随着人们从事更有意义、更有创造性的工作,大量具有单调重复、科技含量低、危险系数高等特点的就业机会将被人工智能产品逐步取代。   二是从学习的角度来看,人工智能将在教育领域得到普及。AI的发展会给教育领域带来深刻的变化,之后人工智能会对教育领域的许多基础知识进行讲解。AI和教育的结合可以从深层解决因材施教的问题,同时也能轻易发现学习的薄弱环节,从而显著提高学习效率。当前,人工智能与教育融合已开始进入落地并产业化的阶段。   从生活的角度来看,人工智能技术将为人类提供更加舒适的生存环境。当前,智能小区、智能家庭已具备产业化的基础,随着物联网、云计算和人工智能等技术的不断发展,人工智能将进一步改善人们的居住环境。AI给人类带来的变化将是全方位的、深刻的,人工智能的发展也将推动整个社会劳动力结构的升级,进而推动人才结构的升级,因此,要跟上人工智能时代的发展步伐,必须不断学习人工智能方面的知识。   AI已经以某种形式或其它方式融入了日常生活。它具有巨大的潜力,可以推动在这个数据驱动的世界中的创新和重大改进。来自预测分析、聊天机器人、自动驾驶汽车和网络安全的人工智能随处可见。    这在几乎所有部门都是可行的。在很多方面,我们都采用了人工智能服务。网络犯罪和破坏的风险正成倍增长,因为我们越来越多地陷入虚拟世界,并变得由技术驱动。在现代社会中,网络安全是最重要的问题之一。互联网攻击和网络犯罪时有发生,影响到世界各地的个人、企业和政府机构。企业必须处理其数字资产的安全威胁(包括硬件、软件、数据和基础设施)。史无前例的网络安全需求至关重要。   在提高网络安全性方面,欺诈检测、恶意软件检测、入侵检测、网络评分风险和用户/机器行为分析是5个最高的AI用例。   人工智能和ML解决方案重新定义了组织如何处理网络安全,并确保当用户控制了他们的数据和隐私时,用户会得到信任。   像谷歌、亚马逊、Facebook、苹果这样的大公司,已经在人工智能工具方面投入巨资,以应对网络威胁和数据泄漏。   有以下几种方法可以使AI和ML在改善网络安全方面发挥重要作用: 危险检测   AI和高级的机器学习算法可以帮助组织识别威胁、入侵和恶意行为。用AI软件探测威胁绝非新鲜事,因为大部分的网络安全公司都采用AI算法来自动调查和确定攻击指标。及时发现偏差和行为变化可以帮助组织以明智的方式更快地作出反应。 互联网安全:   许多基于AI的入侵检测软件在网络层上被使用,以确保更好的网络安全。因为AI工具可以自己学习和识别模式,所以他们可以很快的观察到数以百计的物体,包括文件、IP地址、钓鱼链接、访问者和大量的数据。人工智能比人类探测到的更快,因为人类不能探测到数以百万计的站点和地址。实时性的探测和自动化流程可以帮助企业快速、有效地作出反应。 防御袭击:   公司可以使用AI来减少DDoS和钓鱼攻击的风险。按照传统方法,发现违规行为并采取行动作出反应可能要花费数天甚至数月。利用基于AI的安全方法,企业可以建立一种自动有效的方法,在攻击发生前加以预防,而不是在攻击可能造成损害后采取行动。人工智能算法通过编程,可以在几秒钟内处理大量数据,而这对于人类来说是不可能的。AI工具被广泛应用于异常检测——一种识别稀有和可疑的观测、项目或事件的方法,这与大多数数据不同。 预计分析:   AI能帮助用户分析他们的行为。借助于AI的这一功能,算法可以自我学习用户行为,并创建相关使用、时间和平台的模式。这种方式包括登录时间,IP,地址,输入,滚动模式,以及时间。基于AI的工具能够持续监测和实时监测数据,并能在数据或行为中即时检测异常情况,从而降低潜在损害的可能性。   现在有各种先进的AI工具和解决方案可用于研究、预测、扫描和连续检查组织各个层次的漏洞。能够在认证、网络和分析级别部署AI工具。如果与人类网络分析员共同使用,而不是单独使用,这些工具会越来越好,并能为保护数据、网络和资源提供最佳效果。在处理大量数据和数分钟内确定罕见的活动或场景时,人类不能和AI相比。还可能会给AI程序提供错误的输入,或者以导致意外中断的错误方式对它进行编程。人工智能可以随着时间的推移被学习,并发现它与传统行为的不同之处。深度学习和机器学习算法能够识别模式和变化,并逐步理解它们。人工智能的自我学习能力可以帮助安全团队快速发现常规网络流量的差异。以上就是小编为大家介绍的人工智能的作用及意义是什么,希望对您有帮助。

人工智能在服装智能制造中的应用(上)

面对人工智能的爆发性发展期,2016年我国政府工作报告和2019年的党的十九大工作报告中都纷纷提出要大众创新、万众创业,要推动“互联网+”深入发展,促进数字经济加速成长,让企业广泛受益,百姓普遍受惠;要打造好工业互联网平台,拓展“智能+”,为制造业转型升级赋能。这里说的“智能+”指的就是“人工智能+”,而"人工智能+X"指的是日趋成熟的人工智能技术应用范式,人工智能(AI)向各行各业快速渗透融合,进而重塑着整个智能社会的发展,这是人工智能驱动第四次技术革命最主要的表现方式。见图2:

图2AI与各行各业融合

AI与各行各业的融合必然也包含了与服装智能制造的融合,那么什么样的AI技术能在服装智能制造中应用呢?我国在短短几年的AI技术发展过程中,已形成较完善的人工智能产业链,见图3。图中可见,AI的应用层面、技术层面和基础层面中的智能机器人、无人机、自动驾驶汽车、智能芯片、传感器、图像识别、计算机视觉、语音识别、文字识别、自然语言处理、知识图谱、机器学习、深度学习等等均是AI技术的研究领域,它们都与服装智能制造相关。而其中智能机器人、图像识别、计算机视觉、语音识别、文字识别、机器学习、深度学习等AI技术在服装智能制造中应用最为关键。

图3AI产业链

众所周知,过去机器为了执行任务,总是要依靠手动编码带有特定指令设定的软件程序来完成某个特殊任务,现在有了AI技术就可以用机器学习来解决问题。所谓机器学习(ML—MachineLearning)就是让机器具有类似人类的学习能力,能够自主的获取知识,也就是运用算法来分析数据,从中学习、测定、预测现实世界某些事。使用大量的数据和算法来“训练”机器,赋予它学习如何执行任务的能力,这就是AI技术所要做的事。

机器学习的算法通常可分为三类,即分类相关算法、回归相关算法和聚类相关算法,这些都源于“统计学习”的理论基础。其中最为著名的算法是深度学习(DL—DeepLearning),它是一种高级机器学习方法,也是现代的人工神经网络ANN(Artificialneuralnetwork)方法的升级版,就是通常说的深度神经网络(DNN—Deepneuralnetwook),见图4,图中最左为信息输入层,最右边为信息输出层,中间为神经元组成的隐藏层。利用深度神经网络(DNN)算法可构建复杂的非线性关系,让机器感知周围的世界。

图4深度神经网络(DNN)

AI能否成功落地要靠深度学习(DL),而深度学习能否顺利进行,则需要海量大数据支撑、先进算法模型和超大的计算机计算能力支撑,见图5。

图5深度学习的支撑技术

虽然说由机器学习到深度学习是一大进展,但围绕机器学习研究的算法多而复杂。最近一些AI公司研究了自动机器学习AutoML(AutomaticMachineLearning),这项研究的目的旨在在没有专业知识的情况下使用的低门槛甚至零门槛的机器学习算法,摆脱对机器学习专家的依赖,该技术正在成为机器学习赋能行业AI落地的关键。目前美国谷歌公司发布的CloudAutoML、我国第四范式公司的AutoML技术均已投入实际工业应用,见图6。

图6自动机器学习(AutoML)

我们通常所说的AI与制造业融合,主要是指三大方面。一是对制造产品注入AI,使产品成为智能产品;二是向服务注入AI,使服务成为智能制造服务;三是向生产制造注入AI,使生产制造成为智能制造。在2019年美国Gartner公司发布的《2019人工智能发展报告》中提到的人工智能技术对企业各个业务层面的影响度,见图7:

图7AI对企业重大影响度

由图可见,现在的AI技术已经在企业的产品和服务、生产制造和服务中达到40%以上的影响度。相信随着AI技术不断成熟,AI技术对企业的影响度会不断增加。此外,AI技术对服装企业各项业务已实现了全覆盖,这为今后实现服装企业智能制造打下了扎实的基础。

1)AI在服装服饰产品智能化中的应用

目前服装服饰产品智能化主要依靠服装织物技术、电子信息技术、网络通信技术、人工智能技术和计算机技术,这些技术集成于能够穿戴的服装服饰产品,出现了各式各样的智能服装服饰产品,见图8和图9。图8左是深圳智裳科技公司推出的智能瘦身衣,其中自主研发的柔性传感新材料具有生物电、压力等传感功能,通过释放EMS(ElectronicMuscleSimulator--电子肌肉模拟器)脉冲波,模拟大脑神经中枢电信号,可以刺激肌肉自主高效运动,从而达到瘦身的效果;图8是他们推出的带有监测系统的智能文胸,它通过胸部测量建立乳房周围温度场,茯得温度场大数据,然后通过监测,作出正常与异常大数据对比分析,及时监测用户的乳腺异常情况。图9左图是智能运动鞋袜,袜子由导电纤维制成,跑步时通过传感器和导电纤维将数据传送给脚环,脚环再与智能手机对接,显示跑步数及运动情况;图9右图为利用脑机接口技术制作的帽子,戴上可保持大脑始终处于清醒状态。

图8智能服装与文胸

图9智能运动鞋袜和帽子

2)AI应用于服装流行趋势预测

英国每年有30万吨旧服装浪费,如何减少浪费也成了一个研究课题。英国FashionPocket股份有限公司认为正确把握服装流行趋势可以减少服装浪费,因此他们收集了超过2500万服装图像数据,用人工智能机器学习算法分析、预测了全球服装服饰的走向,并协助计算和预测本国与全球服装产品流行动向,见图10:

图10AI分析服装流行趋势

3)AI应用于智能服装设计

2019年,麻省理工学院利用AI技术中的GAN模型进行服装设计。GAN是一种深度学习模型,全称是“GenerativeAdversarialNetworks”,中文为“生成式对抗网络”。GAN设计出两个神经网络,通过一个生成、一个判断进行博弈。例如在连衣裙的设计上,研究人员收集了大约5000张过去的连衣裙时装样式图片,一个为GAN的生成模型,一个为GAN相对抗的判断模型,在进行几天训练后,就可以得到新设计的连衣裙时装样式,见图11,图中左侧为过时的服装图像数据,右侧为AI技术生成的新款时装。

图11用GAN制作服装

(未完持续)返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇