关于区块链技术的自我理解与认识
这里参考博客https://blog.csdn.net/qq_36347365/article/details/87013008
正文我觉得网上已经有很多关于区块链技术的博客与技术论文,我作为一个学生,在这里不会对区块链技术的本身写的很详细,关于区块链的概念,我觉的上面的参考博客写的很好,这里我只想对自己的认识做个总结。在读完《Bitcoin:APeer-to-PeerElectronicCashSystem》和《BlockchainChallengesandOpportunities:ASurvey》这两篇文章后,在这里我将把自己对区块链的理解和认识写一些。区块链,我认为它是一个巨大的数据库账本,它采用一种去中心化点对点的交易方式,极大的提升了安全性、可靠性。这里仅仅是在金融层面上的区块链技术,区块链最大的特性在于对信息数据的加密以及共享。就是在这样的情况下,在区块链技术下衍生出来的比特币(bitcoin)变得十分火热。但是毫无疑问,区块链在发展到今天的情况下,我们也要直面区块链技术存在的不足与挑战。在文章《Bitcoin:APeer-to-PeerElectronicCashSystem》中,中本聪分别用12个小节,通过对现代支付方式存在的问题出发,提出基于密码学原理的在线交易方式,当然这里的出发点在于信息的安全与可交易。中本聪通过交易、时间戳服务器、工作量证明、网络、激励、回收磁盘空间、支付验证的简化、合并分割交易额、隐私、计算等方面大致的说明了区块链技术在信息处理共享的优势,另外同时假设了一些攻击的情况,通过对攻击者的概率性分析,泊松分布的计算,可以看见攻击者对区块链的进攻不如自己接受区块链的激励机制。以此来说明区块链技术具有的安全性。另外我们从它的网络机制可以看出,在区块链的世界中,信息是随时互联互通的,同时利用哈希加密等加密技术,增加了区块链的安全性。区块链从某种程度上实现了数据安全共享共管的条件。另外区块技术具有分散性,持久性,匿名性和可审计性等关键特征。最主要在于区块链使成本得到了下降,这是所有机构都乐于见到的。《BlockchainChallengesandOpportunities:ASurvey》这篇文章在总体描述区块链技术的同时,指出了区块链技术未来的发展走向,未来的一些共识,同时也说了区块链技术未来所面对的挑战。总的来说,挑战有以下几点:1、中心化问题2、资源消耗问题3、密码学安全问题4、效率以及抗压问题这上面的几点是在参考博客中提到的。不过我自己也觉得还有几点5、合法化问题6、应用面较狭窄我们都知道在行业中有一句话叫做“天下没有免费的午餐”,区块链虽然很好的解决了一些在数据交易处理管理上的问题,但随之而来的其他问题仍然是需要去解决的。在这一方面的降低,一定会在某一方面升高。如何让区块链技术普及化,或者说更好的服务更多的人,不仅仅是部分知识份子与精英阶层。区块链技术的法律层面还未健全,是否面临合法化问题。前一段时间,比特币被中央人民银行点名,说明了比特币是否还存在一些资本市场的气息,资本便意味着一种不稳定性。我认为区块链技术在现在仍然是不成熟的,原因主要在于我们在很多情况下不能将区块链技术大加利用,目前在电子商务、e支付、数据管理与处理方面,区块链技术起到了一定的作用,但它的应用面还很狭窄。我们是否可以提出一个通俗易懂的理论,能够使大多数人接受区块链,了解区块链并灵活运用区块链,当然在老师的《AnOverviewofBlockchainTechnology:Architecture,Consensus,andFutureTrends》这一篇论文中也提出了很多关于区块链技术发展的possibilities,包括区块测试、大数据分析等等。我也相信,随着编程算法技术的不断发展,区块链技术的普及以及大规模应用也只是时间问题。
参考文献[1]SatoshiNakamoto-Bitcoin:APeer-to-PeerElectronicCashSystem[2]ZhengZ,XieS,DaiH,etal.BlockchainChallengesandOpportunities:ASurvey[J].InternationalJournalofWeb&GridServices,2017.[3]ZhengZ,XieS,DaiH,etal.AnOverviewofBlockchainTechnology:Architecture,Consensus,andFutureTrends
浅析对人工智能,机器学习和深度学习的理解
我们对于“人工智能”这个术语都很熟悉。毕竟,它是《终结者》,《黑客帝国》和《机械姬》等美国大片电影中非常流行的关键词。但你最近或许也听说过其他术语,像“机器学习”和“深度学习”,有时这两个术语会和“人工智能”互相替换使用,前年早些时候,GoogleDeepMind的AlphaGo打败了韩国的围棋大师李世乭九段。在媒体描述DeepMind胜利的时候,将人工智能(AI)、机器学习(machinelearning)和深度学习(deeplearning)都用上了。这三者在AlphaGo击败李世乭的过程中都起了作用,但它们说的并不是一回事。那么这三个名词之间有什么区别?
我会先解释一下人工智能(AI)、机器学习(ML)和深度学习(DL),以及它们有怎样的区别。
1三者的概念人工智能(英语:Artificial Intelligence, AI):是指由人工制造出来的系统所表现出来的智能。通常人工智能是指通过普通电脑实现的智能。人工智能的研究可以分为几个技术问题。其分支领域主要集中在解决具体问题,其中之一是,如何使用各种不同的工具完成特定的应用程序。AI的核心问题包括推理、知识、规划、学习、交流、感知、移动和操作物体的能力等。
目前有大量的工具应用了人工智能,其中包括搜索和数学优化、逻辑推演。而基于仿生学、认知心理学,以及基于概率论和经济学的算法等等也在逐步探索当中。
机器学习(英语:MachineLearning):是人工智能的一个分支。人工智能的研究是从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,一条自然、清晰的脉络。显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题。机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、计算复杂性理论等多门学科。机器学习理论主要是设计和分析一些让计算机可以自动“学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与推断统计学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多推论问题属于无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。
机器学习有下面几种定义:
机器学习是一门人工智能的科学,该领域的主要研究对象是人工智能,特别是如何在经验学习中改善具体算法的性能。机器学习是对能通过经验自动改进的计算机算法的研究。机器学习是用数据或以往的经验,以此优化计算机程序的性能标准。机器学习已广泛应用于数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人等领域。
机器学习最成功的应用领域是计算机视觉,虽然也还是需要大量的手工编码来完成工作。人们需要手工编写分类器、边缘检测滤波器,以便让程序能识别物体从哪里开始,到哪里结束;写形状检测程序来判断检测对象是不是有八条边;写分类器来识别字母“ST-O-P”。使用以上这些手工编写的分类器,人们总算可以开发算法来感知图像,判断图像是不是一个停止标志牌。
深度学习(英语:DeepLearning):是机器学习拉出的分支,它试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。
深度学习是机器学习中一种基于对数据进行表征学习的方法。观测值(例如一幅图像)可以使用多种方式来表示,如每个像素强度值的向量,或者更抽象地表示成一系列边、特定形状的区域等。而使用某些特定的表示方法更容易从实例中学习任务(例如,人脸识别或面部表情识别)。深度学习的好处是用非监督式或半监督式的特征学习和分层特征提取高效算法来替代手工获取特征。
统计学习:关于计算机基于数据构建概率统计模型,并运用模型对数据进行预测与分析的一门学科。机器学习:致力于研究如何通过计算的手段,利用经验来改善系统自身的性能。深度学习:机器学习中的神经网络算法的延伸,可以理解为包含很多个隐层的神经网络模型。
2 三者的区别人工智能:人工智能是人类社会发展主要目标机器学习:机器学习是实现人工智能的核心技术深度学习:是机器学习中最热门的算法
1956年,约翰·麦卡锡成为了第一位创造了人工智能机器的人。他制造的机器具备足够高的能力,得以执行类似人类智力水平的任务,包括:做出规划、理解语言、识别对象和声音、学习并解决问题等。
对于人工智能,我们可以从广义和狭义两个层面来理解。广义层面来讲,AI应该具备人类智力的所有特征,包括上述的能力。狭义层面的人工智能则只具备部分人类智力某些方面的能力,并且能在这些领域内做的非常出众,但可能缺乏其他领域的能力。比如说,一个人工智能机器可能拥有强大的图像识别功能,但除此之外并无他用,这就是狭义层面AI的例子。
从核心上来说,机器学习是实现人工智能的一种途径。
1959年,ArthurSamuel在AI之后创造了“机器学习”这个短语,并将其定义为“在没有被明确编程的情况下就能学习的能力。”当然,你可以不使用机器学习的方式来实现人工智能,不过这需要你运用复杂的规则和决策树,再敲下几百万行的代码才行。
实际上,机器学习是一种“训练”算法的方式,目的是使机器能够向算法传送大量的数据,并允许算法进行自我调整和改进,而不是利用具有特定指令的编码软件例程来完成指定的任务。
举个例子,机器学习已经被用于计算机视觉(机器具备识别图像或视频中的对象的能力)方面,并已经有了显著的进步。你可以收集数十万甚至数百万张图片,然后让人标记它们。例如,让人标记出其中含有猫的图片。对于算法,它也能够尝试建立一个模型,可以像人一样准确地标记出含有猫的图片。一旦精度水平足够高,机器就相当于“掌握”了猫的样子。
深度学习是机器学习的众多方法之一。其他方法包括决策树学习、归纳逻辑编程、聚类、强化学习和贝叶斯网络等。
深度学习的灵感来自大脑的结构和功能,即许多神经元的互连。人工神经网络(ANN)是模拟大脑生物结构的算法。
在ANN中,存在具有离散层和与其他“神经元”连接的“神经元”。每个图层挑选出一个要学习的特征,如图像识别中的曲线/边缘。正是这种分层赋予了“深度学习”这样的名字,深度就是通过使用多层创建的,而不是单层。
3 深度学习,给人工智能以璀璨的未来深度学习使得机器学习能够实现众多的应用,并拓展了人工智能的领域范围。深度学习摧枯拉朽般地实现了各种任务,使得似乎所有的机器辅助功能都变为可能。无人驾驶汽车,预防性医疗保健,甚至是更好的电影推荐,都近在眼前,或者即将实现。
所以我们就安心学习好机器学习就好,那么如何学习好机器学习呢,下面用几张图片展示!
4 如何学好机器学习?机器学习可以分为下面几种类别监督学习从给定的训练数据集中学习出一个函数,当新的数据到来时,可以根据这个函数预测结果。监督学习的训练集要求是包括输入和输出,也可以说是特征和目标。训练数据中的目标是由人标注的。常见的监督学习算法包括回归分析和统计分类。无监督学习与监督学习相比,训练集没有人为标注的结果。常见的无监督学习算法有聚类。半监督学习介于监督学习与无监督学习之间。它主要考虑如何利用少量的标注样本和大量的未标注样本进行训练和分类的问题。。增强学习通过观察来学习做成如何的动作。每个动作都会对环境有所影响,学习对象根据观察到的周围环境的反馈来做出判断。在传统的机器学习领域,监督学习最大的问题是训练数据标注成本比较高,而无监督学习应用范围有限。利用少量的训练样本和大量无标注数据的半监督学习一直是机器学习的研究重点。当前非常流行的深度学习GAN模型和半监督学习的思路有相通之处,GAN是“生成对抗网络”(GenerativeAdversarialNetworks)的简称,包括了一个生成模型G和一个判别模型D,GAN的目标函数是关于D与G的一个零和游戏,也是一个最小-最大化问题。
GAN实际上就是生成模型和判别模型之间的一个模仿游戏。生成模型的目的,就是要尽量去模仿、建模和学习真实数据的分布规律;而判别模型则是要判别自己所得到的一个输入数据,究竟是来自于真实的数据分布还是来自于一个生成模型。通过这两个内部模型之间不断的竞争,从而提高两个模型的生成能力和判别能力。
图片总结的如此清晰,我就不重复说了(此图片来此天善智能某课堂的PPT)5 机器学习知识结构
小编从学习机器学习需要的各个方面在此阐述了要想学习机器学习,首先需要学习或者说准备什么东西,从以下四个方面说起。
5.1数学基础大学专业不是数学的同志们需要恶补的知识科目如下:
微积分线性代数矩阵论凸优化离散数学概率论统计学随机过程5.2 机器学习理论
机器学习的理论知识如下,其中推荐的包括算法和学习模型,还有训练的网址,全是干货哦,当然还是不全,以后小编了解到会逐渐加上的。
有监督机器学习模型和算法:分类和回归线性回归感知机器学习决策树朴素贝叶斯人工神经网络,逻辑回归,随机森林,GBDTlightgbmxgboost....5.3 编程与开发
编程开发使用的主要是python语言和Linux服务器,加上TensorFlow
python:numpypandasmatplotlibseabornsklearnLinux:javacSparkHadoopSQLexcel..
5.4英文能力熟练地英语阅读能力6 以下文章将会有助于你更加深入了解人工智能、机器学习、深度学习:
小编文中许多知识点都是参考下面的文章,大家有兴趣的可以继续了解三者的区别。
1、ArtificialIntelligence,MachineLearning,andDeepLearning
2、WhyDeepLearningisRadicallyDifferentfromMachineLearning
3、一篇文章讲清楚人工智能、机器学习和深度学习的区别
4、人工智能,机器学习和深度学习有什么区别?
5、如何区分人工智能、机器学习和深度学习?
6、WHYDEEPLEARNINGISSUDDENLYCHANGINGYOURLIFE
7、TheCurrentStateofMachineIntelligence3.0
8、Hereare50CompaniesLeadingtheAIRevolution