博舍

周波:人工智能生成技术方案的可专利性及其权利归属 人工智能生成物的例子有哪些呢

周波:人工智能生成技术方案的可专利性及其权利归属

1

人工智能生成技术方案的可专利性

就专利法而言,首先面临的一个问题是人工智能生成技术方案能否成为专利保护的客体。可申请专利保护客体问题对于专利法而言是一个十分重要的问题,因为它使法院有机会对特定专利所面临的一系列问题作出思考,在平衡各方利益后,以该技术方案是否具有可专利性的名义推动或者迟滞法律目标的实现。[13]

在中国,以往对可申请专利保护的客体的讨论,往往集中于申请专利保护的对象是技术方案还是抽象的智力活动规则和方法方面,而并没有考虑人工智能这种自然人之外的“机器”生成的技术方案能否获得专利保护的问题。《专利审查指南》规定,“专利法所称的发明,是指对产品、方法或者其改进所提出的新的技术方案,这是对可申请专利保护的发明客体的一般性定义,不是判断新颖性、创造性的具体审查标准。”[14]“技术方案是对要解决的技术问题所采取的利用了自然规律的技术手段的集合。技术手段通常是由技术特征来体现的。”[15]智力活动的规则和方法,“由于没有采用技术手段或者利用自然规律,也未解决技术问题和产生技术效果,因而不构成技术方案。”所以,“它既不符合专利法第二条第二款的规定,又属于专利法第二十五条第一款第(二)项规定的情形。因此,指导人们进行这类活动的规则和方法不能被授予专利权。”[16]但是,“如果一项权利要求在对其进行限定的全部内容中既包含智力活动的规则和方法的内容,又包含技术特征,则该权利要求就整体而言并不是一种智力活动的规则和方法,不应当依据专利法第二十五条排除其获得专利权的可能性。”[17]但是,新近的学术研究已经开始关注人工智能生成技术方案的可专利性问题。有观点认为,因为我国专利法更关注的是发明本身的实质贡献,而非发明可能实现的主观过程,所以,无论是发明创造过程抑或技术方案的定义,均未要求“人类精神”因素的存在,相应地,如果人工智能生成技术方案能够满足专利授权标准,则其可以作为专利保护的客体。[18]

与中国不同,美国学术界在讨论人工智能生成技术方案的可专利性问题时,出发点往往是能否根据美国宪法中的专利和版权条款授予人工智能生成技术方案以专利权,这就会涉及到对技术方案以外的问题的讨论。比如Clifford认为,只有“人”才能成为作者或者发明人[19],而Miller则认为,无论是案例法、成文法还是司法政策,均未限制将作者(当然也包括发明人)的身份拓宽至计算机。[20]虽然美国联邦巡回上诉法院的观点与Clifford的观点类似,认为发明人必须是自然人,“发明中应体现人类精神部分”被作为检验相关技术方案能否获得专利权的重要指标[21],但是,美国最高法院在Goldsteinv.California案中则指出,根据美国宪法中的知识产权条款,作者和发明人等术语不必局限于它们的字面含义,相反,应当从体现美国宪法原则的必要尺度出发作出宽泛的理解。[22]在Diamondv.Chakrabarty案中,美国最高法院进一步指出,专利法客体条款采用宽泛术语,有助于实现宪法和法律的目标,即“促进科学和实用技术的进步”。[23]

所以,在讨论人工智能生成技术方案的可专利性问题时,看似要讨论人工智能生成技术是否属于专利法中有关可申请专利的发明创造的客体问题,但实际上研究的重点并不在于该技术是否在实践中时明确而永久的(definiteandpermanent)[24],而是要看该技术方案能否被现有的专利法律制度所接受,这其中最为现实的问题就是发明人的确定。

2

人工智能生成技术方案的发明人

从《中华人民共和国专利法》第十七条“发明人或者设计人有权在专利文件中写明自己是发明人或者设计人”的规定看,在专利申请文件中表明发明人身份是一种权利而非义务,但是,《中华人民共专利法实施细则》(以下简称《专利法实施细则》)第十六条第三项则明确要求“发明、实用新型或者外观设计专利申请的请求书应当写明”发明人或者设计人的姓名。因此,发明人的确定成为发明或者实用新型专利申请过程中的必备项目,同理,设计人的确定也是外观设计专利申请过程中的必备项目。

专利文件中记载的

发明人仅是名义上的发明人

虽然《专利法实施细则》第十三条的规定,发明人或者设计人,是指对发明创造的实质性特点作出创造性贡献的人;但《专利审查指南》却明确规定“在专利局的审查程序中,审查员对请求书中填写的发明人是否符合该规定不作审查”[25]。因此,除专利申请权权属纠纷;专利权权属纠纷;职务发明创造发明人、设计人奖励、报酬纠纷;发明创造发明人、设计人署名权纠纷;发明权纠纷[26]等特殊案件外,发明人的确定并非专利案件中的重要话题,完全存在发明人填报不实的可能。在美国,很多由人工智能独立完成的技术方案被授予了专利权,但是由于专利权人出于法律在人工智能生成技术可专利性方面缺乏明确规定的顾虑,并未向美国专利和商标局披露人工智能在这一过程中的作用[27],在这种情况下,这些专利文件中记载的发明人当然也是不真实的了。

(2019)京民终190号

扫码进入知产宝数据库

查看判决书

(2017)最高法民申4145号

扫码进入知产宝数据库

查看判决书

所以,无论是在国内还是在国外,专利文件中记载的发明人仅具有形式上的效力;在更多的时候,对发明人的记载实际上只是专利申请人在行使专利申请权过程中的一种单方的、未必真实的陈述,而审查机关对其“尊重”也已经到了只要指明自然人姓名而非法人或者其他组织的名称即可的程度。

人工智能本身不能成其生成技术专利的发明人

虽然有观点认为,可以给予人工智能申请专利成为专利权人的主体资格,或者至少成为发明人[31],但是,回顾法律发展的历史,人正是在与神与物的斗争中艰难地成为唯一的法律主体的[32],“主体就是人”[33],即使是拟制的法人或者其他非法人组织,也都是人的自由意志的体现,如果让渡出法律主体地位,无论是全部的或者部分的,都将使现代法律制度存在的根基荡然无存。所以在人工智能能否对专利法权利主体制度产生冲击这一点上,必须保持充分的清醒的头脑。

从各国现行专利审查规范和具体实践看,发明人必须是自然人,否则专利申请就将被驳回。比如,我国的《专利审查指南》明确规定,“发明人应当是个人,请求书中不得填写单位或者集体……发明人应当使用本人真实姓名,不得使用笔名或者其他非正式的姓名”,即只有自然人才能成为发明人、设计人;欧洲专利局也以“申请中指定的发明人必须是人类而非机器”驳回了两项将人工智能列为唯一发明人的专利申请[34]。所以,无论是从理论出发,还是从现实出发,都需要在人工智能生成技术方案与自然人之间搭建一座桥梁。由于法人这一法律拟制人格的存在,我们最容易想到的或许就是通过拟制的方式,确定特定的自然人成为人工智能生成技术专利的发明人。

拟制人工智能生成技术专利发明人的制度障碍

人工智能的整个生态链中包含众多主体,如程序员、软件公司、人工智能用户、下游技术专家、产品工程师等等[35],因此,法律对人工智能生成技术方案专利发明人的拟制,也只能从这些候选人中选择一个最恰当的“人”作为人工智能生成技术的发明人。但同时,法律的拟制又不能是恣意任性的,它应当符合自身内在的逻辑和既有规则。那么,谁应当被拟制为人工智能生成技术专利的发明人呢?回答这个问题前,我们不妨先看两个美国的案例。

在OasisResearch,LLC.v.Carbonite,Inc.案中[36],Carbonite主张与其有关的JackByrd应当被包括在涉案发明的发明人中,因为是他首先提出了相关的设计理念,但是,美国德克萨斯东区法院指出,由于JackByrd缺乏完成相关技术方案所必须的技能而将该项目交给其他雇员而自己没有再就此作出其他工作,因此,他除了指明了一个工作目标外,并没有参与发明的实际创造活动,因此不应被认定为发明人。其实还有其他一系列的案例均表明,雇佣他人实施发明并不能使自己成为发明人:企业家要求他人创造出某种产品以实现特定功能,并不能使其成为发明人;提供金钱支持并指示他人创造新技术也不足以使其成为发明人。[37]由此看来,即使拥有人工智能软件或系统的所有人是自然人,从对发明创造的贡献来看,人工智能软件或系统的所有人也不能成为人工智能生成技术专利的发明人。

实际中,人工智能在生成特定的技术方案前,可能需要操作人员设定其发明创造的技术领域或者设定技术参数以最终确定可以选择的技术方案。那么,具体操作人工智能软件或系统的程序员、工程师、技术专家是否可以成为人工智能生成技术专利的发明人呢?在NartronCorp.v.SchukraU.S.A.,Inc.案中[38],美国联邦上诉法院指出,仅提供本领域现有技术信息的人是不能成为发明人的。显然,上述程序员、工程师、技术专家均只是为人工智能生成特定的技术方案提供了或者限定了该专利相关领域的技术信息,按照这一标准,操作人工智能的人并不能成为该专利的发明人[39]。

在我国,虽然《专利法实施细则》第十三条仅规定“在完成发明创造过程中,只负责组织工作的人、为物质技术条件的利用提供方便的人或者从事其他辅助工作的人,不是发明人或者设计人”,而没有涉及具体操作人工智能软件或系统的人是否可以成为发明人或者设计人,但是,由于相关技术方案是人工智能独立生成的,操作人员并未对该发明创造作出实质性贡献,因此,也很难得出人工智能软件或平台的操作人员是发明人的结论。

由人工智能

生成技术专利的申请人指定发明人

直接通过拟制的方式事先确定人工智能生成技术专利发明人存在法律制度上的障碍,那么,有无其他方式能够较好地确定人工智能生成技术专利的发明人呢?本文认为,既然专利文件中记载的仅仅是形式上的发明人,是专利申请人、也就是专利授权后的专利权人,在行使专利申请权过程中的一种单方的、未必真实的陈述,审查机关不进行实质性审查而且也可以通过后续救济程序予以更改,那么,与其强制性地作出事先拟制,不如尊重专利申请人的意思自治,由该专利申请人自行指定名义上的发明人。

虽然通过这种方式被指定的发明人并非真正对发明创造作出实质性贡献的人,但“法律的存在是为了保障自由”[40],如果脱离了空洞的理论纷争,从尊重专利申请权以及后续的专利权这一民事权利的基本立场出发,由应当享有人工智能生成技术专利权的主体依照其意思或约定来选择某一自然人作为发明人,才是一种最为现实可行的办法。那些已经获得授权的人工智能生成技术专利,恰恰也就是专利权人与专利审查机构之间的这种“默契”的结果。

如此一来,问题的关键就成为如何确定人工智能生成技术专利的专利权归属了:谁是此类专利的专利权人?

3

人工智能生成技术方案的专利权归属

人工智能并非法律上的主体,既然它不能成为相关专利的发明人,当然也不能成为该专利的专利权人。[41]

如前所述,“人工智能是利用数字计算机或者数字计算机控制的机器模拟/延伸和扩展人的智能,感知环境/获取知识并使用知识获得最佳的理论、方法、技术及应用系统”[42],其核心在于人工智能所采用的计算机软件,因此,虽然在讨论人工智能生成技术方案的专利权人时,也会涉及软件程序员、软件公司、人工智能用户、下游技术专家、产品工程师等等[43]不同主体,但由于雇佣关系的存在以及复杂的人工智能软件往往都是由作为作法人的企业拥有,所以实际上最为核心的研究对象还是两类,即计算机软件的使用人和计算机软件的所有人(或者说著作权人)。

两种不同观点

有观点认为,人工智能软件的所有人或许可人应当拥有该人工智能所生成的所有技术的专利权。[44]在相邻近的人工智能生成物的著作权归属问题上,也有类似的观点。比如有学者认为,如果人工智能软件的使用者或者软件程序员并没有为作品付出创造性劳动,那么“法院就应当将该作品的著作权授予拥有该软件著作权的人”。[45]

相反的观点认为,人工智能软件的使用人,即用户,应当拥有人工智能生成技术方案的专利权。[46]这样的观点同样在著作权领域存在,Samuelson认为,计算机软件用户应当拥有该软件生成物的著作权,因为根据获取版权的要件,用户才是最应当对该作品负责的人。[47]

科斯定理的启示

经济学理论认为,竞争性市场应当追求经济效率,即任何一方在不损害另一方的情况下都不可能变得更好,这一目标被称为帕累托效率或配置效率,这种经济效率同样适用于专利法。[48]实现这一效率的权威理论就是著名的科斯定理,即:只要财产权是明确的,并且企业间的交易成本为零,那么,无论在开始时将财产权赋予谁,市场均衡的最终结果都是有效率的,社会的总财富也能够实现最大化。[49]虽然交易成本为零只是一个理论上的假设,但可以通过不断减少交易成本以最大限度地接近社会财富最大化的目标。当然,这里还要提到外部性的问题。

外部性是市场主体活动产生的副作用,而行为主体并不承担所有的后果或从中受益。[50]这种副作用代表了一个政策问题,因为他们在私人边际成本和社会编辑成本之间造成了分歧,企业根据私人经济利益作出选择而不考虑社会成本或利益。很多情况下,企业出于自我利益而选择在非有效水平上生成,而科斯定理使这种担忧最小化。它认为,如果相关财产权利得到明确分配,而不管初始分配如何,在交易成本为零以及存在完全信息的情况下,资源都将得到有效率的配置。[51]

科斯定理不仅适用于负外部性的情形,而且同样适用于外部利益由市场活动创造的正外部性的情形。人工智能技术方案专利化恰恰就是这样一种外部利益。因为它可能使最初的人工智能软件销售之外的各方主体创造利益,比如软件程序员、工程师、产品设计师、软件下游用户或者所有者,当然这取决于政府最初如何分配这种专利权。[52]

Schuster依据科斯定理,对人工智能方面的外部性因素进行了分析:在存在正外部性的情况下,人工智能软件的生产企业仅基于该软件自身固有的价值决定其生产,而不考虑该人工智能软件生成技术方案的专利的价值。这就意味着一种并非经济有效的状况,因为一方(公众)的处境可以得到改善,但人工智能软件生产企业将停止提供该人工智能软件。[53]

如果要从科斯定理假设的前提出发,无交易成本以及存在完全信息的情况下,人工智能生成技术方案专利权的归属问题就显得多余了。因为专利权分配给谁并不重要,因为最重视该专利权的一方将通过购买的方式获得该权利,而这一价值最终也将流向上游的人工智能软件生成企业。但是,就像Schuster指出的那样,在人工智能生成技术方案专利归属方面,要无限接近科斯定理的理想化状态,最佳的方式就是要消除或者减少相关专利权的交易成本以及交易主体的数量,从而减少甚至消除在人工智能生成技术方案专利权方面的交易成本,从而实现经济效益和社会财富的最大化。[54]由此一来,必然的结论就是将专利权分配给认为该权利最有价值的一方。

专利权归属的最佳方案

在人工智能的整个生态链中,除了人工智能软件使用者即用户外,其他的主体,比如软件程序员、下游技术专家、产品设计师,要么受到雇佣关系的存在,不可能独立实施相关行为;要么囿于对市场需求的缺乏,比如人工智能软件的生产厂家,不能敏锐地设定人工智能需要开发的技术方案的领域和方向,都不能实现人工智能价值的最大化,所以相较于人工智能软件使用者而言,都不会为人工智能及其生产技术方案作出更大的投入。

所以本文认为,人工智能软件使用者或者说用户才是认为人工智能软件及其生产技术方案最有价值的一方;按照科斯定理,人工智能软件使用者或用户就应当拥有人工智能生成技术方案的专利权。

当然就目前的实际情况看,由于人工智能软件通常有着十分复杂的研发过程,能够通过市场交易行为获得该软件所有权或使用权的主体通常也都是拥有较为雄厚资本的企业法人。但是不排除随着技术的发展和普及,人工智能软件生成成本下降,小微企业和单个的自然人也有可能通过购买或者获得许可的方式享有人工智能软件的所有权或使用权,进而取得该人工智能生成技术方案的专利权。

4

结论

就技术本身而言,专利法并未给人工智能生成技术方案取得专利权保护设置障碍。理论上对于人工智能缺乏法律上的主体资格因而无法成为其所生成的技术方案的发明人的困惑,实际上完全可以通过技术化的处理得以解决。因为发明人如何记载,从权利行使角度而言,完全是专利申请权人即授权后的专利权人专利权行使的具体体现,法律应当尊重当事人的意思自治。在人工智能生成技术的专利保护方面最为关键的,其实是专利权的权利归属问题。而借助于经济学上的科斯定理,不难发现,由最重视也最能实现人工智能软件价值的使用者或者说用户拥有该软件所生成技术方案的专利权才是最有效率的,也最能实现社会财富的最大化。

参考资料

[1]周波,高级法官,现任最高人民法院知识产权审判庭(民三庭)审判员。

[2]尼克:《人工智能简史》,中国工信出版集团、人民邮电出版社2017年版,第1~9页。

[3]JMccarthy,MLMinsky,NRochester,CEShannon,AProposalfortheDartmouthSummerResearchProjectonArtificialIntelligence,JournalofMolecularBiology,2006,278(1):279-289.

[4]WIPO(2019),WIPOTechnologyTrends2019:AtificialIntelligence.Geneva:WorldIntellectualPropertyOrgnization,Foreword,Page6.

[5]参见北京互联网法院(2018)京0491民初239号民事判决书,裁判日期:2019年4月25日。

[7]参见北京市高级人民法院(2014)高行(知)终字第2935号行政判决书,裁判日期:2015年4月21日。

[9]参见国家知识产权局公告(第三四三号)。修订后的《专利审查指南》自2020年2月1日起施行。

[10]U.S.PatentNo.6,847,851(filedJuly12,2002),SeeRyanAbbott,IThink,ThereforeIInvent:CreativeComputersandtheFutureofPatentLaw,57BostonCollegeLawReview1079,1086(2016).

[11]SarahMorgan,EPOrejects‘AIinventor’patentapplications,2019-12-23,availableat:http://www.worldipreview.com/news/epo-rejects-ai-inventor-patent-application-19057,lastvisitedat2019-12-30.

[12]RyanAbbott,IThink,ThereforeIInvent:CreativeComputersandtheFutureofPatentLaw,57BostonCollegeLawReview1079,1081(2016).

[13]BobertP.Merges&JohnF.Duffy,PatentLawandPolicy:CasesandMaterials,7th.Ed.,CarolinaAcademicPress,2017,Chapter2,A.,page163.

[14]中华人民共和国国家知识产权局制定:《专利审查指南2010(修订版)》,2017年6月第1版,第119页。

[15]中华人民共和国国家知识产权局制定:《专利审查指南2010(修订版)》,2017年6月第1版,第119页。

[16]中华人民共和国国家知识产权局制定:《专利审查指南2010(修订版)》,2017年6月第1版,第123页。

[17]中华人民共和国国家知识产权局制定:《专利审查指南2010(修订版)》,2017年6月第1版,第124页。

[18]刘友华、李新凤:《人工智能生成的技术方案的创造性判断标准研究》,载《知识产权》2019年第11期,第40页、第42页。

[19]RalphD.Clifford,IntellectualPropertyintheEraoftheCreativeComputerProgram:WilltheTrueCreatorPleaseStandUp?,71TUL.L.REV.1675,1701(1997).

[20]ArthurR.Miller,CopyrightProtectionforComputerPrograms,Databases,andComputer-GeneratedWorks:IsAnythingNewSinceCONTU?,106HARV.L.REV.977,1067(1993).

[21]UniversityofUtahv.Max-Planck-GesellschaftZurForderungDerWissenschaftenEV.,734F.3d1315,1323(Fed.Cir.2013).

[22]Gordsteinv.California,412U.S.546,561(1973).

[23]Diamondv.Chakrabarty,447U.S.303(1980).

[24]BurroughsWellcomeCo.v.BarrLaboratories,Inc.,40F.3d1223,1229(Fed.Cir.1994).

[25]中华人民共和国国家知识产权局制定:《专利审查指南2010(修订版)》,2017年6月第1版,第15页。

[26]参见最高人民法院《民事案件案由规定》(法发〔2011〕42号)的相关规定。

[27]W.MichaelSchuster,ArtificialIntelligenceandPatentOwnership,75WASH.&LEEL.REV.1945,1948(2018).

[28]参见北京市高级人民法院(2019)京民终190号民事判决书。

[29]参见北京市高级人民法院(2018)京民终522号民事判决书及最高人民法院(2019)最高法民申888号民事裁定书。

[30]最高人民法院(2017)最高法民申4145号民事裁定书。

[31]邓建志、程智婷:“人工智能对专利保护制度的挑战与应对”,载《南昌大学学报》2019年第4期,第15-24页。

[32]参见:欧家路:《民事主体的观念溯源——以希腊罗马社会为背景》,载肖厚国主编:《民法哲学研究》(第一辑),法律出版社2009年版,第22-58页。

[33]“这种自为地自由的意志的普遍性是形式的普遍性,即在意志单一性中的自我意识着的此外便无内容的单纯自我相关。这样看来,主体就是人。”[德]黑格尔著,范扬、张企泰译:《法哲学原理》,商务印书馆1961年版,第44页。

[34]SarahMorgan,EPOrejects‘AIinventor’patentapplications,2019-12-23,availableat:http://www.worldipreview.com/news/epo-rejects-ai-inventor-patent-application-19057,lastvisitedat2019-12-30.

[35]W.MichaelSchuster,ArtificialIntelligenceandPatentOwnership,75WASH.&LEEL.REV.1945,1977(2018).

[38]NartronCorp.v.SchukraU.S.A.Inc.,558F.3d1352,1359(Fed.Cir.2009).

[39]W.MichaelSchuster,ArtificialIntelligenceandPatentOwnership,75WASH.&LEEL.REV.1945,1950(2018).

[40]FriederickCarlvonSaviny,SystemdesheutigenRomischenRechts1(Berlin,1840-8),331-2,转引自:[美]詹姆斯·戈德雷著,张家勇译:《私法的基础:财产、侵权、合同和不当得利》,法律出版社2007年版,第21页。

[41]当然也有相反的观点,有学者在研究在涉及发明行为时承认计算机享有法律人格的可能性。SeeEricaFraser,ComputerasInventor:LegalandPolicyImplicationsofArtificialIntelligenceonPatentLaw,13-ED305,330(2016).

[43]W.MichaelSchuster,ArtificialIntelligenceandPatentOwnership,75WASH.&LEEL.REV.1945,1977(2018).

[44]RyanAbbott,IThink,ThereforeIInvent:CreativeComputersandtheFutureofPatentLaw,57BostonCollegeLawReview1079,1082(2016).

[45]AndrewJ.Wu,FromVideoGamestoArtificialIntelligence:AssigningCopyrightOwnershiptoWorksGeneratedbyIncreasinglySophisticatedComputerPrograms,25AIPLAQ.J.131,138(1997).

[46]W.MichaelSchuster,ArtificialIntelligenceandPatentOwnership,75WASH.&LEEL.REV.1945,1948(2018).

[47]PamelaSamuelson,AllocatingOwnershipRightsinComputer-GeneratedWorks,47U.PITT.L.REV.1185,1203(1986);谢琳、陈薇:《拟制作者规则下人工智能生成物的著作权困境解决》,载《法律适用》2019年第9期,第38-47页。

[49]SeeJeanneL.Schroeder,TheEndoftheMarket:APsychoanalysisofLawandEconomics,112HARV.L.REV.483,527(1998).SeealsoJeffSovern,TheCoaseTheoremandthePowertoIncreaseTransactioncosts,40MCGEORGEL.REV.935,935n.1(2009).

[50]SeeWendyE.Wagner,What’sItAllAbout,Cardozo?,80TEX.L.REV.1577,1586(2002);ThomasA.Donovan,Litigation:AnAntidoteforDemocracy,54FED.LAW.8,9(2007).

[51]SeeR.H.Coase,TheProblemofSocialCost,3J.L.&ECON.1,15(1960).

[52]SeePaulE.McGreal,OntheCostDiseaseandLegalEducation,66SYRACUSEL.REV.631,637(2016).

[53]W.MichaelSchuster,ArtificialIntelligenceandPatentOwnership,75WASH.&LEEL.REV.1945,1976(2018).

[54]W.MichaelSchuster,ArtificialIntelligenceandPatentOwnership,75WASH.&LEEL.REV.1945,1979-1980(2018).

注:本文“首发于《中国专利与商标》杂志2020年第2期”。返回搜狐,查看更多

论人工智能对著作权制度的冲击与应对

制造出比肩人类智力水平的机器人,一直是科学家的梦想。这种对未来的美好憧憬,在诸多科幻电影中得到了完美诠释。计算机的发明让科学家看到了实现这一愿望的现实途径。世界上第一台通用计算机于1946年在美国宾夕法尼亚大学诞生,仅仅10年后,计算机科学家、数学家和神经学家在美国达特茅斯学院召开了史上第一次人工智能研讨会,该会议为期两个月,标志着人工智能学科的诞生[1]。经过两次发展高潮和低谷后,随着核心算法的突破,计算能力的迅速提高,以及海量互联网数据的支撑,人工智能终于在21世纪的第二个10年里迎来了质的飞跃,成为全球瞩目的科技焦点[2]。在今天,基于人工智能而实现的自动驾驶、智能医疗、智能投顾、智能教育、智能司法等,已逐渐渗透到人类社会生活的诸多领域。不可回避的是,人工智能作为一项模拟人类智能行为的科学技术,如同以往的科技革命一样,对现行的法律制度也提出了巨大的挑战。如学者在回顾科技革命对著作权带来挑战所感叹的那样,“著作权从一开始就是技术之子”[3],今天因为人工智能技术的发展,著作权制度似乎又来到了需要重新审视的节点。

一、人工智能对著作权法的挑战

1709年,英国颁布《安娜法典》,标志着版权制度正式建立,随着众多科技技术的发展,版权制度的内涵与外延不断得到拓展与丰富。复印技术的发展,改变了作品复制的效率;摄影技术的发明与发展,使得作品的范围扩充了照片、电影等类别;互联网技术使得作品传播效率与方便性达到了称之为“触手可及”的程度,从而滋生了网络传播权。回顾过往,我们不难发现,著作权法史与科技史水乳交融。那么,这一次人工智能又可能颠覆了著作权的什么呢?它超越了以往技术对著作权法挑战的范围——作品的创作主体、方式与效率。

(一)人工智能对于作品创作主体的颠覆

现行《著作权法》规定“中国公民、法人或者其他组织的作品,不论是否发表,依照本法享有著作权……”①,“著作权人包括:(一)作者;(二)其他依照本法享有著作权的公民、法人或者其他组织”②,依此可清晰界定能够享有著作权的主体是公民、法人或者其他组织。法律从来都是将人(包括自然人和法律拟制的人如法人、其他组织)作为享有权利和履行义务的唯一主体。然而,人工智能似乎正在逐渐改变这条严密的界限。

①参见《中国人民共和国著作权法》第2条。

②参见《中国人民共和国著作权法》第9条。

随着人工智能深入人类社会,人们已习惯将人工智能当作某些活动的主体。围棋终结者AlphaGo作为一款人工智能程序,在2015年便以5:0的比分横扫了曾三次斩获欧洲围棋冠军的职业二段棋手樊麾,随后又以4:1的比分战胜了韩国顶尖棋手李世石,AlphaGo因此名声大噪[4]。自此,人们已潜意识地将AlphaGo当作一名棋艺高超的棋手。随后,又不断出现了诗人小冰、海报设计师鹿班、作曲家Aiva、合成的新闻主播等,这些都说明人工智能已在人类社会扮演着不同的角色。对于现行著作权制度造成巨大冲击的就是这类新型人工智能作者的出现。他们的作品是那么地引人关注,因为这些作品与人类作者的作品几乎别无二致,就像人们已潜意识地将AlphaGo当作一名棋艺高超的棋手,诗人小冰、海报设计师鹿班、作曲家Aiva也自然成了人们心中的作者。由此也引发了人类社会对于人工智能将取代人类工作的担忧,甚至著名物理学教授史蒂芬·霍金也“担心人工智能将全面取代人类”[5]。这种现实和担忧似乎验证和承认了人工智能已成为创作作品的主体,以致我们不得不考量是否应将人工智能作品纳入著作权法律保护体系当中。

(二)人工智能对于作品创作方式的颠覆

著作权法所称创作,是指直接产生文学、艺术和科学作品的智力活动③。特别地,对应《著作权法》保护如文字作品、口述作品、音乐、戏剧、曲艺、舞蹈、杂技艺术作品、美术、建筑作品、摄影作品等多种作品形式④,具体的创作方式就更不相同。法律并没有直接定义创作行为,虽然创作行为难以准确定义,但根据我们对创造活动的观察和自身体会,创作实际是作者基于一定素材并结合情感、思想、逻辑等内心活动,借助文字、语言、音符、线条、色彩等形式产生作品的一项复杂活动。

③参见《中华人民共和国著作权法实施条例》第2条。

④参见《中国人民共和国著作权法》第3条、《中华人民共和国著作权法实施条例》第2条。

不管作品是什么样的内容和形式,但都是作者表现情感、思想等心理活动的创作结果。然而,人工智能并不具备人类所特有的思想与情感,其创作方式自然与人类作者迥然相异。虽然关于人工智能的新闻时常在冲击我们的眼球,但由于具有技术难度方面的因素,人们对于人工智能还缺乏清醒的认识。人工智能并不会像人类那样思考,也不具备人类喜怒哀乐的情感,人工智能学科只是计算机学科的一个分支,人工智能是以“计算”的方式完成了创作。这种以计算方式完成创作的作品,与人类作者依靠情感、思想等内心活动创作的作品,可能都具有作品的外观,但内核却大相径庭,如将这种计算所得到的作品纳入著作权法保护范畴之内,亦会对现行著作权制度产生较大的冲击。

(三)人工智能对于作品创作效率的颠覆

知识产权是一项专有或垄断权,法律赋予权利人在一定时期内独占某项智力成果的相关利益,比如现行《著作权法》规定公民作品中的财产权保护期为作者终生及其死亡后50年⑤。赋予作者著作权固然有激励创作之目的,但如此长的保护期限也反映出作品创作困难、创作缓慢的现实。人工智能是科技进步的新产物,是一项对大幅提升人类生产效率的计算机技术。和机器提高人类制造业的生产效率的原理一样,人工智能似乎也使得创作这件事变得简单。基于计算力的发展,人工智能完成作品的创作时间以秒来计算,这种作品创作的速度让历史上所有高产作家瞠目结舌。试想如果作品仅在以秒计算的时间内就能创作完成,却给予作品如此长的保护期限,这似乎是一种权利的错误配置。人工智能高出人类作家多个数量级的创作效率,这对于著作权制度中规定的较长保护期限无疑造成了巨大的冲击。

⑤参见《中华人民共和国著作权法》第21条。

(四)著作权领域学者对人工智能的法律评价

人工智能对于作品创作主体、方式、效率的颠覆,引发了学术界广泛的讨论,是否对人工智能作品予以著作权保护,观点不一。总体而言,学术界对人工智能作品是否应纳入著作权制度保护以及具体的保护路径的观点分为两类:一是对人工智能作品采取著作权强保护、弱保护和不保护;二是对人工智能作品采取著作权以外的方式保护,比如邻接权。有学者主张不应对人工智能生成物给予著作权保护,原因在于其“获得的结果具有唯一性,从而不符合独创性的要求”[6];也有人认为虽然这些成果属于作品,但应“根据现行法,人工智能不能提出专利权或著作权的要求”,人工智能创作成果应“进入公域,任何人都可以使用”⑥。考虑到人工智能如此高产,这种创作的高效率意味着低成本,为体现公平原则,有学者主张对人工智能创作的成果予以弱保护,比如采取缩短权利保护期的方式,即“人工智能的创作者享有为期10年的著作权或专利权,过期后进入公域”[7]。

⑥RalphDClifford."IntellectualPropertyintheEraoftheCreativeComputerProgram:WilltheTrueCreatorPleaseStandUp?".Tul.l.rev,1996.

人工智能创作的成果是著作权法意义上的作品吗?谁对这些“作品”享有相应的权利,我们是否需要对这些人工智能创作的“作品”给予著作权法上的特殊保护。笔者将在下文对这些问题依次进行讨论。为避免引发歧义或者陷入先入为主的误区,笔者有必要跟随其他学者一样,将人工智能“创作”产生的“作品”,仅能先谨慎地称之为人工智能生成物。

二、人工智能生成物作品属性探究(一)著作权法视野下的作品

我国《著作权法》所称作品,是指文学、艺术和科学领域内具有独创性并能以某种有形形式复制的智力成果。从该定义出发,我们来界定作品的属性。“在文学、艺术和科学领域内”和“能以某种有形形式复制”分别指作品内容所属的范畴和作品具有可复制性,属于比较容易判断的范畴。智力成果,体现的是著作权法对于智力劳动的保护。所谓成果,则可体现为各种各样的作品形式。学术上有争议之处在于,判断某内容或信息是否属于作品,关键在于判断其是否具有独创性。

独创性的判断,在学术界至今没有统一的标准。综合学术界观点,独创性含义有二:一是独立创作的过程;二是具有创造性的效果评价。有学者主张具有独创性即可,因为独创性指作品是自己完成的而不是抄袭的[8],即独创性仅要求独立创作的过程,独立创作是著作权法鼓励创新的应有之义,其对立面是抄袭、剽窃。还有学者主张独创性的评价应包含前述两层含义,既要独立创作,还要求所创作之物具有一定程度的创造性。对独创性中的“独”与“创”应该分别认识,“独”是指独立创作、源于本人;而“创”是指一定水准的智力创造高度创造性的效果评价[9]。

笔者认为,著作权法应对独立创作的过程要求更严格、苛刻,而对创造性的效果评价的法律约束更模糊。究其原因,独立创作本就是智力劳动付出的过程和事实,是著作权法激励创新之本。诚如“一千个读者,就有一千个哈姆雷特”所言,创造性的效果评价,具有强烈个人主观色彩的价值评价,创造性评价难以建立可量化的标准,因判断者自身素质和对文化、艺术理解的差异,所得到的结果往往差异也很大。因此,笔者认为,对于作品独创性的判断,应首先要求独立创作,不剽窃和抄袭;对于作品创造性的价值判断应交与市场进行选择和淘汰,市场有需求的则可认为是有创造性的,需求越大,创造性也越强,反之亦然。

(二)人工智能生成物之独创性评价

1.人工智能之智在于计算

人工智能本质上是计算机程序对于人类智能行为的模拟。这种模拟的实际意义是,利用计算机程序解决人类智能行为才能解决的问题。人工智能如果对于外部世界的理解和反馈更像人,则我们可以认为这种模拟更加成功。但是计算机对于人类智能的模拟,绝不是按照人类大脑本身运行的方式来进行,而是以其独特的基于计算的方式。人工智能与人类智能是基于不同的原理实现的。

著名计算机科学家吴军认为,现有的计算机还没有突破图灵机的边界,都是以计算的方式来解决各种问题的,计算机解决问题的边界受如下方式约束:世界上有很多问题,其中一小部分是可用数学方式解决的问题,在这部分数学问题中又有一小部分是目前有解的,在这部分有解的问题中也只有一小部分是理想状态下的计算机可以解决的,而人工智能能解决的问题只是计算机程序实际应用解决问题当中的一部分⑦。因此,人工智能产品只能解决在数学上有解且能够用计算机程序实现的部分问题,这是计算机的极限所决定的本质问题。因此,人工智能的“智”之所在,体现为对被求解问题的数学回答和程序实现。

⑦参见得到APP《吴军的谷歌方法丨第004封信丨为什么计算机不是万能的》。

2.人工智能创作的独特方式

人类创作行为的本质是基于一定的思想、情感,用文字、符号、线条、色彩、音符等要素构建成文体、图画、音乐等形式且有意义的表达。人类的创作可以说是基于思想、情感而生的个性化表达。在计算机发明以前的几千年文化演进里,创作这件事不会被理解成是以数学的方式进行的。然而,计算机解决问题的方式只能是数学方式,“创作”也不例外。人工智能之所以可以“创作”,是因为形成作品的表达在数学上可以看作为文字、符号、线条、色彩、音符等要素的排列、组合。然而,这样的表达在数学上是无限的,所以人工智能科学家的任务是利用人工智能构建出符合人类可理解的且有思想、有意义的表达。人工智能无法具备某种思想和情感,但其可以依靠计算机高速的计算能力轻而易举地形成表达,然而随意生成的表达是无意义的,人工智能科学家实际是利用不断丰富的样本数据,优化核心算法,以此提高表达的有效性,使该表达能够达到让人类受众认可承载于表达之中的思想、情感、艺术价值的程度,这也就实现了人工智能创作作品的功能与目的。由此可知,人类创作与人工智能创作最大的差别是人类创作是先有思想和情感,再寻求于外在表达而形成作品;相反,人工智能创作,是利用计算机程序形成表达,并借助大量数据优化算法以提高表达的有效性,使得表达有思想。前者是先有思想,再借助于表达形成作品;后者是先有表达,再优先算法使表达具有思想、情感或艺术价值上的依托,以此归入到作品的范畴。

以音乐创作为例,任何具有艺术价值的悦耳歌曲,在数学上,都可以看作是音符的有序排列。具体而言,人工智能科学家开发计算机程序,让其学习和识别不同风格曲目的编排方式和技巧,比如音符如何排列更像爵士乐,如何排列更像摇滚乐,随着样本数量的不断加大,人工智能对于音乐风格的掌握会逐渐提高,创作能力也会逐渐增强。2016年,索尼计算机科学实验室开发的FlowMachines,就是系统通过“分析”近13000份世界各地不同风格的乐谱,最终创造了一首“披头士风格”的流行歌曲《Daddy’sCar》[10]。当然,最终的歌曲并不是完全由人工智能从头到尾执行,在人工智能完成后,法国作曲家BenotCarré最后排列好这些曲调和歌词,使其更加流畅。由阿里工程师芦阳开发的MusciGo,只需将几千上万首完整的音乐作品输入这个系统,人工智能MusicGo就会自行“学习”各种饶舌音乐的规律和方式(数据),从而建立一个可以创作的“神经元网络”。MusicGo采用了机器学习技术,也就是说,人给机器“喂养”什么内容,机器就自动学习什么内容[11]。经过“喂养”和设定,借用这个程序,他写出了2017年的双11饶舌神曲《天猫双11有嘻哈》。上面这些案例,都是向受众明确告知歌曲是由人工智能创作,受众在欣赏这些音乐时,难免带有先入为主的情绪,尽管有不少人对前面案例中的音乐赞赏有加,但也有人认为人工智能创作的音乐只是音符和词句的堆砌,达不到人类创作者的艺术高度。从著作权视角下去评价,其可能不具有作品的创造性,因此达不到由著作权法保护的程度。

因此,需要有案例来说明,就同一题材背景下,人类创作者和人工智能的创作水平相差几何,普通受众能否轻易辨别。在2018年8月18日《机智过人》第二季第2期节目中,主持人要求人工智能小冰和国内词曲创作人黄国伦、李泉分别就三国赤壁题材各自创作一首词曲,并交由歌手黄龄分别演唱,再由观众判断哪一首是人工智能小冰所创作的。结局出人意料之外,三首歌曲都相当有水平,现场嘉宾和观众难以分辨哪首歌曲系人工智能小冰创作。无独有偶,在2018年11月10日《机智过人》第二季第10期节目中,主持人对人工智能设计师鹿班进行两轮测试,第一轮考验是鹿班与三名人类资深设计师分别给汽车做商业海报,第二轮考验中央美术学院范迪安院长要求鹿班与另外两名人类资深设计师分别给《孙子兵法》设计书籍封面,最后交由观众判断。鹿班学习了500万张优秀人类设计作品,现在每秒能做8000次设计,自2016年上线至今,鹿班已经完成了10亿次海报设计,是全球首位大规模投入使用的人工智能平面设计师。可以说,人工智能设计师鹿班不仅海量地学习设计作品,同时还有丰富的实战经验。现场嘉宾和观众都对哪一幅作品是鹿班的创作作出了错误判断。特别是在《孙子兵法》书籍设计时,人工智能鹿班设计的作品,抓住了《孙子兵法》中“兵无常势,水无常形”的核心意境,以虚实结合的线条和色彩演绎出的行军水墨画,获得了观众和点评嘉宾的一致认可。因此,人工智能生成物与人类作品同样具备思想、感情及文化层面的深度,自然也具备著作权法保护作品所要求的独创性。可以说,人工智能与人类因创作而划分来的界限变得越来越模糊。

人工智能创作,实际是科学家编写计算机程序以数学方式对创作问题的求解,通过向海量数据的不断学习,逐渐优化核心算法,使得机器也具有了创作的智能行为。诚如现代人工智能概念提出者约翰·麦卡锡所言,机器不一定需要像人一样思考才能获得智能,而重点是让机器解决人脑才能解决的问题[2]。虽然人工智能与人类作者创作方式各异,但对于丰富文学、艺术和科学作品所贡献的价值应是相当的。

3.人工智能生成物独创性之来源

人工智能生成物之所以具有独创性,在于随着人工神经网络和深度学习技术的应用,赋予不同人工智能程序不同的创作基因,其创作结果也颇具个性色彩。神经网络是由一层一层的神经元构成,层数越多,就越深,所谓深度学习就是用很多层神经元构成的神经网络达到机器学习的功能[12]111。根据人工智能在语音、图像等方面不同的应用,神经网络结构会发生相应变形。神经网络输入层接收信息后,经过每层神经元对信息的处理与计算,最终在输出层输出结果。理论上讲,如果一层网络是一个函数的话,多层网络就是多个函数的嵌套[12]112。神经网络本质上可以看成一个数学函数,数据通过神经元逐层运算后得到结果,每个神经元可以理解成一个参数,参数设置的不同,最终的输出结果也会不同。人脑的神经连接有一百万万亿个,要使人工智能的功能接近于人类,神经网络的神经元数量必须要达到一定的数量级别才行。2012年,时任斯坦福大学人工智能实验室主任的吴恩达与谷歌合作搭建了一个当时最大的神经网络,神经元数量多达十七亿[12]113。而由于神经元数量较多,且一个神经元参数的变动又会影响下一层参数的设置,神经元的参数不同所得到的结果也会不同,当神经元数量超过一定数量后,神经网络就构成了一个混沌系统,人类是难以预测其结果的。

显然,通过手动方式设置这些参数,工作量之大,任何人都难以完成。人工智能开发者通常的做法是先随机设置参数,再用学习数据去不断调整和优化参数,使其输出达到开发者满意的结果。随着神经网络接收的学习数据在内容和数量上的不同,神经元参数会不断调整,输出结果也会不断优化。按照人工智能大师西蒙的说法,学习就是系统在不断重复的工作中对本身能力的增强或者改进,使得系统在下一次执行同样任务或者类似任务时,会比现在做得更好或者效率更高[13]。以上是人工智能神经网络的计算原理,人工智能创作作品是基于此原理的实际运用。因此,人工智能由于算法设计、神经网络结构、学习内容和数量上的不同,会使得人工智能具备不同的创作才能,而算法设计、学习数据的选取均体现了人工智能开发者的创造性工作。同时,就算是同一人工智能,基于学习对神经网络参数的改变,在不同阶段的创作也会发生变化。而且,这种混沌系统下的变化所带来的结果难以预测,故,有学者称利用人工智能“获得的结果具有唯一性,从而不符合独创性的要求”[6]。笔者以为此种说法欠妥当。人工智能基于算法设计和学习数据的不同,具备了独特的创作基因而彰显出个性,其生成物具有独创性,而赋予其独创性的行为可追根溯源至人工智能开发者的创造性工作。

三、给予人工智能生成物著作权保护的理论基础

人工智能生成物既然已经具备作品的所有客观属性,理应作为作品,成为著作权法保护的对象,相关权利人应作为著作权人享有相关权益。但相较于传统人类创作者的作品,人工智能生成物的创作方式显得颇为独特,这使得对其予以著作权法保护仍有使人费解的地方。因此,笔者认为对人工智能生成物作品赋予著作权保护,有必要进一步论证其理论基础。

(一)财产权劳动理论下的知识产权制度

洛克在《政府论》中说到,“土地和一切低等动物为一切人所共有,但是,每人对他自己的人身享有一种所有权,除他以外任何人都没有这种权利。他的身体所从事的劳动和他的双手所进行的工作,我们可以说是正当地属于他的”[14]18。洛克认为,“劳动使它们同公共的东西有所区别,劳动在万物之母的自然所已完成的作业上面加上一些东西,这样,它们就成为他的私有的权利了”[14]19。依据洛克的劳动理论,人们对原来共有的东西施加劳动,就产生相应物品的私有财产权。洛克的财产权劳动理论成为知识产权正当性依据之一,学者冯晓青认为自然法原理和洛克的财产权劳动理论是知识产权制度正当性的重要理论基础,不仅可以用于解释知识产权的形成,而且在知识产权从传统形式转化到现代形式的过程中发挥了非常重要的作用[15]。

知识产权作为一种财产权,劳动理论仍有适用的空间。人工智能生成物,系人工智能科学家团队投入资金购买计算机设备,不断设计和优化核心算法,选择海量数据训练模型,最终使人工智能产品完成作品的创作,这无疑是一种辛勤劳动的付出,另加之人工智能生成物本身又具有作品的客观属性,这为其获得著作权保护奠定了坚实的基础。因人工智能与人类智能本身运作方式不同,从创作的过程来看,人工智能科学家与人类创作者所付出的智力劳动确有差异,但这不必然地构成人工智能生成物获得著作权保护的障碍,相对于人类创作者随性、浪漫的创作,人工智能是以严谨的数学方式构建表达。但不管是哪种方式,都属于智力劳动的付出,从财产权劳动理论的角度,都应予以财产权保护。

(二)著作权法立法宗旨

知识产权法激励创新与鼓励创作之立法宗旨,已然成为国际共识。人工智能生成物是对文学、艺术和科学领域作品的有益丰富,也是对人类作品创作的良好补充,是科技革命下新的创新之源。对人工智能生成物予以著作权保护,符合知识产权法之宗旨。

反之,如果将人工智能生成物不予以著作权保护,而其本身又具备作品的客观属性,只能以类似于对待已过权利保护期的作品,将其归属于公共领域。这导致的最直接的后果是,没有著作权对应的利益激励和法律保护,人工智能开发者的兴趣和热情会大为下降,人工智能创作将沦为一纸空话,这与著作权法激励创作、丰富精神文化产品之意大相违背。顺应知识产权法之立法宗旨,我们应对人工智能生成物予以著作权保护。

(三)著作权随技术进步而扩张的历史宿命

随着科技技术的进步与发展,特别是创作工具与传播媒体不断创新与迭代,作品种类也不断丰富。有学者总结到,“技术的发展是版权扩张的直接原因”[16],回顾过往,我们可以清晰地看到在科学技术的灌溉下,著作权从一颗小树苗,已逐渐长成参天大树。

然而,在新技术诞生之初的一段时期内,技术给予著作权更多的是困惑。譬如,在照相技术发明的初期,照片是否独创性,能否成为著作权保护对象存有争议。1865年德国巴伐利亚地区借鉴法国的做法,将照片列入著作权法保护的对象,但同一时期的普鲁士却认为,摄影被认为是手工艺,不能享有著作权保护[17]。不保护的主要理由是摄影所针对的客体是作为事实的人物、风景等自然界存在的事物,摄影仅是对这些实物简单、机械地捕捉。但随着对摄影理解的不断摄入,学术界与实务界基本上已达成共识,“摄影作品的独创性在于拍摄时对拍摄对象的选择、对拍摄时机与角度的把握、对拍摄技能的运用以及后期的编辑处理”⑧,摄影作品不是机械性地记录拍摄对象,而是摄影者运用其技能对拍摄对象予以创作性选择的结果,创作过程体现了摄影者的创造性判断和思考。同样地,互联网技术对于著作权的冲击与影响巨大,但随着学术讨论与实务理解的深入,网络传播权应运而生。

⑧参见北京市朝阳区人民法院作出的“朝民初字〔2011〕20681号”民事判决书。

人工智能也是技术进步的产物,对于创作而言,人工智能的本质仍是工具,人的创造性劳动仍然起着根本性的决定作用。比如,人工智能产品功能的设计与构造、核心算法的开发与优化、数据的筛选与喂养工作,这些都离不开人的创造性劳动,这与摄影者利用摄影工具所付出的创造性劳动何其相似。而且,这些创造性劳动的投入,对于人工智能生成物最终生成的内容有着重大的影响,这些创造性劳动的不同,依据混沌理论,也使得人工智能生成物最终具有个性化的表现,从而使人工智能生成物达到独创性所包含的创造性要求。只不过,人工智能相比以往技术,似乎更具有迷惑性,让人以为是机器在创作,而不是背后的人在创作;但透过本质,我们可以清晰地看见是人发明人工智能,并利用人工智能进行创作,人工智能只不过是科技革命下的新型创作工具而已。鉴于此,笔者觉得有必要对人工智能生成物予以著作权保护,这符合著作权随着科技发展而相应扩张的宿命。

四、人工智能生成物著作权立法建议

诚如前文所述,人工智能生成物符合著作权法规定的作品范畴,但人工智能在作品创作主体、方式、效率上存在特殊性,怎样对人工智能生成物在著作权法层面予以具体的保护,仍需要进一步讨论和明确。

(一)保护方式:对人工智能生成物赋予著作权保护

笔者的立法建议是对人工智能生成物赋予著作权保护,这更符合其本质。在思考用什么样的法律权利对人工智能生成物予以保护时,笔者认为应当探究相关主体在实践行为中的主观意图如何,并探究该行为对应的后果如何。简言之,人工智能开发者利用人工智能欲实现创作的目的,并付出相关劳动,相关生成物具备法律定义的作品外观,就应当用著作权对人工智能生成物予以保护。

著作权和邻接权构成了作品的相关权利体系。故而有学者认为人工智能生成物应以邻接权予以保护,主张“人工智能创作物虽然在满足一定条件后可在客观上获得独创性,但是因其既非人的智力成果,也非工具主义下人手的延伸,因此无法被解释进当前著作权的范围”[18];“以邻接权制度保护人工智能创作物也与邻接权制度的功能高度契合”,“将人工智能创作物作为邻接权客体进行保护契合了邻接权制度保护传播者利益的基本功能”,“契合了邻接权制度保护投资人利益的目标”[19]。

笔者认为,用邻接权保护人工智能生成物,与邻接权本身保护的客体相悖,亦与人工智能生成物的本质相悖。传统的邻接权如表演者对其表演享有的权利、录音制品制作人对其录音制品享有的权利、广播电视组织对其广播电视节目享有的权利,均因对作品演绎和传播而享有相关权利。因此,使邻接权客体得以产生的人类活动不属于创作,为“非创作性投入”[20]。笔者认为,以著作权和邻接权来保护人工智能生成物的判断标准在于,是否有创作性投入和是否有新作品产生。创作性投入包括有创作的主观意图和付出创作劳动的客观行为。人工智能开发者定义人工智能实现创作的功能,说明开发者具备创作的主观意图,为实现人工智能创作而投入设备、开发算法、选择学习数据等,说明开发者为创作付出了实际的劳动,并最终获得具备独创性的作品。因此,人工智能生成物的本质更适合用作品著作权予以保护。相反地,相关主体在实施表演、制作录音录像时,根本无创作的主观意图,也明知其行为无法产生具备独创性的作品,用邻接权保护人工智能生成物不能体现相关主体的创作意图,也不能解释人工智能生成物的作品属性,故而用邻接权保护人工智能生成物并不恰当。

(二)权利主体:人工智能作品著作权归属于投资者

笔者给出的立法建议是参考“电影制片人模式”,将人工智能作品著作权归属于投资者。

传统作品的著作权原则上由付出劳动的创作者享有,当然也存在职务作品、电影制片人的例外模式。为人工智能生成物付出劳动的创作者是谁呢?不同于传统作品,人工智能创作需要多方面的工作与付出,比如计算机设备的投入、算法设计与开发、学习数据的考量与选择等,且这些工作无疑对于人工智能生成物完成创作具有决定性的意义,不同的算法、不同的数据会造就不同创造性的作品,因此,技术开发人员似乎理应对人工智能生成物享有著作权。

但基于以下几方面的考虑,笔者建议将人工智能生成物的著作权赋予投资者,而技术人员的利益则通过合同的方式予以保护。首先,考虑到人工智能研究与开发投入巨大且存在相当大的风险,理应对人工智能投资者的权益进行合理补偿,技术人员的利益应重点以获取劳动报酬、分配项目收益的合同方式予以保护,这符合市场经济中风险与收益对等的原则,也能起到激励利用人工智能创作的目的。人工智能作品创作参与主体众多和投入成本大的模式与拍摄电影方式极其类似,将人工智能作品著作权归属于投资者,这也与电影作品中保护投资者的理论和模式一致。“实践证明,把电影作品和视听作品当作合作作品,不利于保护投资者(制片者)的利益,再者,由于作品权利主体众多,交易谈判过程更加复杂,也不利于电影作品和视听作品的顺利流转,投资人利益得不到保障,作品的传播者也无法提高积极性,法院最终经过相关判例的发展,判决电影作品和视听作品的版权属于雇主,雇员不享有作品的版权”[21]。因此,将人工智能作品著作权归属于投资者,能够分配风险与收益承担问题,提高作品创作效率,且将已有现行制片人成熟的法律模式作为参考,人工智能作品著作权归属于投资者也较容易得到各参与主体和社会公众的认可和接受。其次,前述模式也是人工智能立法一体化的要求。对于人工智能的利用,还涉及诸多领域,其他领域也要求类似的制度安排。比如,利用人工智能开发创新药物、制造自动驾驶汽车等,这些项目也同样需要巨大的资本投入,同样也存在项目失败的亏损风险,为推动创新和合理分配风险将获取的专利权给予投资人或投资人的公司,其他获取合同上的利益分配,是较好的一种制度安排。

(三)保护期限:与一般作品同等的著作权保护期限

对于人工智能作品保护期限问题,有学者建议,就“人工智能创作内容”的保护期而言,可以将其规定为“自作品登记之日起20年的有效保护期”,以兼顾到社会公众的利益[22]。基于计算力的大幅提升,人工智能不到一分钟就能创作词曲、写好新闻稿件、完成海报设计,而且人工智能的创作是不知疲累的,可以连续、高速地大批量生产作品,如此高的创作效率和如此低的创作成本是人类创作者望尘莫及的。在面对摄影作品对手工绘画工作的竞争压力下,历史上有的国家曾对摄影作品著作权保护期限定为5年、10年不等[16]。因此,对人工智能生成物作为作品予以保护,似乎不得不考虑因创作效率产生的公平问题。

基于以下三方面原因,笔者不主张对人工智能作品划分单独的权利保护期限,笔者给出的立法建议是对人工智能作品给予一般作品同等的权利保护期限。

第一,在法律实施过程中,受众难以区分作品来源,即几乎无法识别作品是由人类还是由人工智能创作的。如果对人工智能作品缩短权利保护期,但在实际操作中又无法得到执行,这样的规定没有现实意义,反而还因缩短保护期限阻碍人工智能作品的创作动力,这明显相悖于著作权法激励创作之宗旨。

第二,著作权人受益多少最终取决于作品价值,而不是作品创作效率。即使在没有人工智能技术的背景下,作者获取作品利益多寡也不取决于创作效率的高低,因为创作效率并不代表作品的质量和价值。就不同的人类作者而言,可能其创作效率差不多,但创作成果的价值差别却很大,比如梵高的油画作品拍卖价格达1000万美元,显然普通画家作品价格难以望其项背。因此,人工智能创作效率的确很高,但其作品价值却不一定高(特别是在技术发展的初期),因此不能以创作效率高低来划分权利保护期限的长度。

第三,作品经济价值应由市场评判,不应由法律直接划分保护期限的长短。著作权之所以能够发挥激励创新的作用,与著作权作为财产权能够为权利人带来经济利益密不可分,权利人最终获利多少取决于该作品的社会需求和评价。作品社会需求大和评价好,对应的价值和收益也高,反之亦然。权利人获取著作权经济利益,基本遵循市场经济理论。如果人工智能作品体现了较高的科学、文化、艺术价值,市场会给予权利人对等的经济收益;反之,人工智能作品无相应价值,最终的结果自然是无人问津,权利人也可能是颗粒无收,创作效率再高也是枉然,为人工智能作品设立过短的权利保护期,亦属多余之举。正如工业革命背景下机器替代人类更好更快地完成工作一样,如果为了保护人类纯手工商品的利益,法律禁止交易机器生产的产品或者为其设定一个不合理的低价格,那么我们的科学技术进步将会受到严重阻碍。同样地,如果人工智能确实能够又快又好地创作,其生成物与人类作品无异,甚至更好,我们就不能刻意为其设定过短保护期,否则,就是不恰当地违背了激励创新的目的和阻碍了社会生产效率的提高。笔者认为,妥善的做法应该是将人工智能生成物价值交与市场评价、淘汰和选择,这体现了法律的公平原则,也能发挥知识产权激励创新的立法宗旨。

人工智能是人类技术革命上的一次跨越,这次跨越给人类生活带来了极大的便利,同时也因为科学技术的跨越,将人类带到了由人工智能产生的法律迷雾区,由此发生对于人工生成物著作权保护的相关争议。今天,人们已然能够利用人工智能完成作品,但本质上人工智能仍是工具,人工智能生成物所体现的独创性来源于开发者所付出的创造性劳动。人工智能如此高效的创作,正是科技进步之价值所在,正如工业机器人替代产业工人那样,与其限制对人工智能生成物的保护,不如给予其著作权保护并交给市场评判其价值,以免人为地阻碍人类创新与进步的步伐。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇