博舍

医疗是什么AI医疗概念解析AI ai医疗图像诊断是什么

医疗是什么AI医疗概念解析AI

随着人工智能逐渐渗透我们的生活,最近AI医疗在当下兴起。那么,AI医疗是什么呢?顾名思义,就是利用最先进的人工智能技术,达到患者与医疗工作者、医疗机构以及医疗设备之间的信息化。解析AI医疗的概念,我们可以发现这是AI技术在医疗领域的一项深度发展和突破。下面我们一起来聊聊AI医疗的概念、意义和运用。

医疗是什么?

1、AI医疗的概念

AI医疗是以互联网为依托,通过基础设施的搭建及数据的收集,将人工智能技术及大数据服务应用于医疗行业中,提升医疗行业的诊断效率及服务质量,更好的解决医疗资源短缺、人口老龄化的问题。根据权威网站的定义,可以简化为“人工智能+医疗”是人工智能技术对于医疗相关领域应用场景的赋能现象。具体来说,AI特别适用于医学影像诊断、慢性病管理和生活方式指导、疾病排查和病理研究、药物开发等领域,并在精准医学方面帮助填补基因型与表现型的区别。

2、AI医疗的意义

我们可以先来看看当下的医疗背景,大致来讲就是医疗健康行业供需关系严重失衡。医疗资源少比如,优秀的医疗资源稀缺,好的医生和医院稀少。大城市医院多且好,小城市医院少且差,而且院内诊中环节就诊工作量大。总的来讲就是医疗资源少,地域割裂性强,医疗效率低。从患者的角度来分析,他们的医疗需求多,且不分地域需求均等,对高效治愈期望强烈。因此,AI医疗就是为了解决这样的供需矛盾应用而生。相信用好了AI技术,就能提升医生群体业务能力,从而对医疗效率和诊疗规范性有一个整体的提升,让更多的民众享受到技术进步的福利。

3、AI医疗的实现

(1)影像学

AI医疗的应用主要体现在影像学。以胸部CT诊断为例,每一位患者做一次检测将产生200-300张切片图像,传统方式单片解读通常要花医生将近10分钟,因此对医生来讲工作量和压力都十分大,而通过计算机视觉技术的AI医疗可有效解决这个问题。而在院内医疗环节中,放射学科掌握80%以上的医疗大数据,是疾病诊断的关键入口之一。AI医疗介入该环节就相当于介入了医疗诊断的关键入口环节,其中累积的大数据也可以为后续AI医疗产品的持续优化提供源动力。

(2)辅助诊断

AI医疗的另一个重点就是可以帮助医生辅助诊断。以肺癌这个病种为例,AI医疗需要跨多学科的介入临床场景,病种库跨系统需集成数万甚至数十万例例肺癌患者全周期数据、百万份临床文档和报告、千万份原始医学图像,收录了肺癌患者的影像、病理、基因检测、病历文本等多维数据。来实现结节筛查等初级功能,同时结合国际、国内最新临床肺癌诊疗指南,来实现肺癌全类型病灶的诊断覆盖,综合多学科临床信息作出诊断,从而减少该病种的误诊、漏诊情况,提升诊疗效率。目前市面上主流的AI辅助诊断系统已覆盖了包括儿科、肿瘤科、心脑血管科等主流科室,相信在未来,AI辅助诊断系统将会逐步落地到更多的临床科室中。

(3)科研大数据平台

目前国内各科室医学协会、医院、医学院等,缺乏更有效的科研大数据平台,在科研场景中常需要到各个地方检索多个离散的信息后再人工聚合,效率不高,无法将精力全部放在科研业务探索上。AI医疗基于强大的大数据能力,可在医院临床大数据的基础上,有效构建科研大数据平台,为医生做好科研工具的服务,让医生将全部精力放到科研业务中来。

综上对AI医疗概念的解析,我们可以看到AI医疗依托互联网,在医疗领域采取人工智能技术,从而极大地提升医疗质量和效率。相信假以时日,随着AI技术在医疗领域的逐步落地,在未来我们可以享受到更多AI医疗实质性福利,让我们拭目以待吧!

免费分享一些我整理的人工智能学习资料给大家,包括一些AI常用框架实战视频、图像识别、OpenCV、NLQ、机器学习、pytorch、计算机视觉、深度学习与神经网络等视频、课件源码、国内外知名精华资源、AI热门论文、行业报告等。

为了更好的系统学习AI,推荐大家收藏一份。

下面是部分截图,点击文末名片关注我的公众号【AI技术星球】发送暗号321领取(一定要发暗号321)

一、人工智能课程及项目

二、国内外知名精华资源

三、人工智能论文合集

四、人工智能行业报告

学好人工智能,要多看书,多动手,多实践,要想提高自己的水平,一定要学会沉下心来慢慢的系统学习,最终才能有所收获。

点击下方名片,扫码关注【AI技术星球】发送暗号321免费领取文中资料。

AI与医学辅助诊断

人工智能一词越来越频繁的出现在日常生活中。一种事物的时髦,必然有其背后的原因。而对于这样一个大的话题,从整体上来叙述总显得有些不接地气。作为跟AI沾过一些边的博主将以自己接触的方面来发表一点看法。首先介绍一下,博主在研究生期间从事医疗数字影像研究和医疗系统开发,期间跟临床医生也有过一些交流,研究生课题也是智能辅助诊断的研究。因此,文章可能会实际工程使用为主要的着眼点,来表述一下对是否加入AI这一浪潮发表一点个人看法。

一、什么是AI

AI的范围太广泛了,前几年机器学习活跃在学术研究和工程领域,于是机器学习好像就成了AI的代名词;而目前深度学习的火爆,又让我们觉得深度学习也是AI。然后回首模式识别等领域,我们就能感到AI真是无处不在。对于这样一个比较大的概念,有一句比较贴切的话能将其概括:AI就是让机器实现原来只有人类才能完成的任务。也就是说,下图中所有的标签都可以称得上是AI。

AI子标签回到我们的医疗辅助诊断AI中,以往只能通过医生的肉眼去看X光、CT、超声、MR等等的影像,才能给患者给出诊断结论。那么人工智能的目的就是简化甚至完全取代医生阅片这一过程,直接将患者的影像数据交给AI系统,由AI系统给出诊断结论。诊断的流程如下图所示,使用AI辅助就直接的替代了医生的工作。二、为什么AI这么火

一种事物的时髦,必然有其背后的原因。从上面谈到的辅助诊断中的应用就很容易想到为什么AI这么的火。原因很简单,因为AI直接将人从繁重的劳动中解放出来了。可能平时我们见到过诊断的阅片医生,觉得他们工作并不那么繁重。但实际上在规模比较大的医院(例如我见过的华西医院放射科),阅片医生的工作就是盯着屏幕仔细的看,极其的枯燥和无聊。医生的工作环境应该来说是非常好的,想想其他行业那些繁重的工作,是不是也可以用AI来将其解放呢?当然,这些都是比较理想化的状态。在实际中,人类的感知和认识是相当复杂的,就拿医学诊断的例子来讲,医生诊断的依据并不是有很强的规则可以描述的。也就是说,从原因来推导到结论,往往并不那么容易,反过来由结论再去寻求原因似乎还有些可靠(BP神经网络反向传播训练参数可以这样理解)。机器学习和基于数据得到模型似乎就是这个套路我们并不去追寻问题的实质,我们从大量的统计数据中去得到事物发展规律的套路。这也就是在规则“不可描述”的时候机器学习、深度学习这类算法能取得较好结果的原因。有了这么多美好的前景,AI好像有了他兴盛的道理。除了这些,实际应用上的成果其实更能让人看到希望。比如语音识别、智能聊天这些让人实实在在感受到的成果。在医疗上成果也相当多,特别是影像的辅助诊断。上海联影和七家三甲医院合作,上线一个早期肺癌的辅助诊断系统。这个系统应该是我国医学辅助诊断AI上比较有意义的一大步。

三、要不要为AI转型

其实“转型”我觉得是不太准确的一个表述。说靠近应该更为贴切。比如作为一个医学影像研究的工程师来讲,假设他要从事AI相关工作,那么他之前的研究经历应该是必不可少的部分,他需要做的就是学习AI的相关算法和知识,结合具体的应用场景,根据之前的研究经验来设计出更为智能的系统。其他行业,亦是如此。因为AI不可能单独的存在,它必须依附在具体的背景、应用之下。因此,作为研发人员,只要是能想到AI有用武之地,那么学习它还是很有必要的。

四、怎样进入AI领域

AI包含的范围太广泛了,涉及到的知识也太多。从一个医学影像研究和应用开发(图像识别也一样)的角度来看,主要的关注点就是在于机器视觉、机器学习以及深度学习。

如果是在校生,想毕业从事AI工作,那么理论就显得特别重要了。从找工作的角度看,李航的《统计学习方法》这类书是必备的理论基础,尤其是算法的推导,参数的设置等等来龙去脉再怎么熟悉也不为过。然后辅助几个典型的项目,这样就比较有竞争力了。当然,编程能力也是比不可少的部分。如果是工作者,我的观点是从应用的角度出发。尝试使用开源的框架(推荐OpenCV),从使用的过程中来了解背后的原理,这样可能效率上要高很多。

高大上的项目不是一天就能练成的,看似简单的东西,要想得到很高的准确度或精度也是不那么容易的。以一个我们常见的车牌识别来看,虽然目前已经广泛应用到了实际当中。但是想要开发出一个在任何场景下都能识别得到正确结果的系统还是很难的一件事情(可以参看EasyPR开源项目)。下图就是博主在学习《深入理解opencv实用计算机视觉项目解析》,然后借鉴EasyPR中的部分思想设计的,准确度并不高,只能达到毕业设计这样场合的要求。在这个编程实践过程中,能对算法有更深入的理解。

使用OpenCV、MFC编写的车牌识别(ANN)因此,我觉得AI并不是一个单纯理论的东西,它是一个相当工程性的事物。然而,对待工程性的事物,恐怕唯有实践才能让我们更能贴近真理一步。医学辅助诊断上来看,想要实现一个能用的系统,那么必不可少需要了解医学的基本知识,这是AI开发人员必须了解的。去年博主应导师的要求,带着自己开发的一个小软件跟华西医院的医生交流,从交流的过程发现,缺少医学背景,很难设计出符合医生要求的功能。所以医生给出的评价是:你们现在做的要想真的使用,我看还有很远的路要走。(附上博主的这个小软件:https://github.com/bzhou830/DiagnoseSystem)。RBDcm肺结节辅助诊断五、后记

博主在毕业前也尝试过去面试机器学习相关的岗位,由于理论知识欠缺。所以最后还是选择了软件开发,所以有此打算的师弟师妹,我觉得理论这一关一定要打牢。而且软件编程能力也一定要过硬。博主的态度是:技术的道路是无边无际的,永远抱着一颗学习的心,不畏所谓转型,只为业余增添乐趣。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇