“人工智能医生”来了
近日,门诊导诊机器人“小医”在河北省邯郸市中心医院东区门诊大厅正式上岗,呆萌外表和有趣互动吸引不少患者围观。郝群英摄
制图:蔡华伟
如今,人工智能早已不再是科幻小说中的专有名词,它已经突破了从“不能用、不好用”到“可以用”的技术拐点,进入了爆发式增长的时期。在医疗领域,人工智能已可以快速诊断疾病、做手术、开展健康监测等。2018年4月,国务院办公厅发布《关于促进“互联网+医疗健康”发展的意见》,明确提出推进“互联网+”人工智能应用服务。这意味着“人工智能+医疗”将实质性地改变人们的就医模式,助力健康中国建设。
――编 者
“医术”超过年轻医生
经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽
会“看”影像,会“读”病历,会“动”手术,会“做”检查,还会给出临床诊断建议;“医术”超过年轻医生,一些领域能与资深医生比肩。它,就是“人工智能医生”。
跟人类医生一样,“人工智能医生”也是通过望、闻、听等手段看病。
以肺部结节为例,小到1毫米的病灶,阅片医生需要一张张看CT影像图片来找,并推断出大小、密度。资深阅片医生平均10分钟读1张,大型医院每天片子超过10万张,阅片医生的工作紧张而繁重。如今,一些医院开始引入人工智能系统筛查,阅片时间降至1分半。
“人工智能医生”不仅效率很高,在诊病方面更加精细、全面。在华中科技大学同济医学院附属协和医院,由依图医疗开发的人工智能系统不仅可以检测肺结节病灶,还能对病灶性状进行多维度描述,包括大小、体积、密度、CT值,结节表征可涵盖6种常见的良恶性征象――分叶、毛刺、胸膜凹陷、空洞、空泡、钙化。阿里健康开发的系统则将周边病症一起筛查,包括肺道泡、动脉硬化、淋巴带化、肺密度增高、索条等。
人工智能装上“眼睛”,可以阅读标准化的图像,筛查出病灶。华中科技大学同济医学院附属协和医院临床考验了这名“人工智能医生”,发现其检出率达95.78%,误报率却仅有2.63%。2018年,该院60名影像科医生通过AI系统判读影像病例超过了15万份。
除此之外,“人工智能医生”还能查食管癌、糖尿病视网膜病变、结直肠肿瘤、乳腺癌等疾病,甚至还可以查儿童骨龄,技术水平不亚于资深医生。
人工智能还有灵敏的“耳朵”。在安徽省合肥市庐阳区,科大讯飞智医助理已于2018年在社区卫生服务机构上岗,在医患交流过程中,智医助理通过大数据和智能语音技术,生成并自动提取病历,医生还可查询相似病例、临床指南以及对症药品。目前,该系统已完成7000余人次的辅助诊断建议。
最近,“人工智能医生”还装上了“大脑”。在广州妇儿中心,人工智能系统学会“读懂”病历,然后像人类医生一样,给出诊断。医生将患者主诉、症状、个人疾病史、检查检验结果、影像学检查结果、用药情况等信息输入病历文本,系统自动将自由病历文本转换成规范化、标准化和结构化的数据。人工智能系统“读懂”病历后,再给出诊断结果。
“人工智能医生”诊断准确率高吗?以呼吸系统疾病为例,该人工智能对上呼吸道疾病和下呼吸道疾病的诊断准确率分别为89%和87%,对不同类型哮喘的诊断准确率在83%到97%之间。
经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽,包括临床助理、辅助诊疗、医学影像、基因检测、健康管理等。
人工智能靠海量数据
各个学科数据的标准化程度,影响着人工智能的应用程度。各个医院设备不一样,数据维度也不一样
医生长本事,一靠医学专业院校学习,二靠临床经验积累。“人工智能医生”靠什么?靠海量数据、云计算能力。“吃”完数据之后,经过不断训练临床思维,系统就可以像人类医生一样看病了。
“吃”了海量数据后,机器不仅可以当医生,而且可以做科研、教学、管理等,帮助医生和医院提升科研水平,提高诊疗能力。
在四川大学华西医院,依图医疗纳入该院2009年至今收治的肺癌患者的全维度脱敏临床数据,打通临床门诊、住院、病历、病理等多个系统数据,建立了国内首个肺癌临床科研智能病种库。有了这个病种库,医院多个与肺癌诊疗相关的科室研究能力大大提升,其他医联体机构也受益匪浅。
阿里健康人工智能医疗升级到了2.0版本,除了临床,还有文本科研、影像科研平台功能,提供虚拟病人、VR模拟手术用于教学。
在河南郏县任庄村卫生室,记者看到了微医人工智能辅诊系统――全科辅助诊疗系统、悬壶台中医智能诊疗系统。村医张巧芬简单输入患者的基本症状、病史等,马上就能看到相关危重病、常见病可能提示。“我们平时很少接触到危重病,但心里还是担心万一误诊了,会耽误村民治疗。”
据介绍,这一全科辅助诊疗系统通过学习超过500万份文献、千万份病历和健康档案,目前已覆盖2000多个病种、5000多个症状,命中率达到90%。悬壶台中医智能诊疗系统累计辅助开方量已超过200万张。
“基层医生服务能力不强,人工智能辅助诊疗能弥补资源不足的问题,提升医生服务水平。”中国社科院人口与劳动经济研究所社会保障研究室主任陈秋霖认为,医疗人工智能可以提高医疗诊断的精准程度,也可以替代一些高精尖手术中的操作,还可以在一些医疗服务中替代部分人力资源,从而降低医疗费用。
人工智能学习的数据从临床来,还得转换成结构化格式,然后做出模型,按照临床诊疗思维训练、学习,算出结果。数据是关键,各个学科数据的标准化程度,影响着人工智能的应用程度。
依图医疗总裁倪浩告诉记者,医疗数据不标准是一个普遍性的问题。虽然影像是标准化较好的一批数据,但不同医院还是差别很大。各个医院设备不一样,数据维度也不一样。高质量的数据非常少见,需要花费更多的算法,先将数据结构化才能使用。
2018年,中国工程院院士、上海交通大学医学院附属瑞金医院副院长宁光带领团队与阿里健康人工智能实验室共同研发“瑞宁助糖”人工智能医生。在推进过程中,宁光也发现了数据的问题,如标准数据缺乏,疾病诊断标准不统一,随访数据散落在各个医院,数据普适性较差等。
数据标准化程度与学科成熟程度、诊断所需外部条件有关。比如影像领域从起步就是统一标准,数字化发展程度也比较高;皮肤科诊断比较依赖于图片和视频识别病灶等等,这些学科人工智能发展较快。
机器与医生协同看病
医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用
人工智能医用,是否会代替医生?可以肯定,目前还不会。
2017年,国务院新一代人工智能规划提出,“开发人机协同的手术机器人、智能诊疗助手”“研发人机协同临床智能诊疗方案”。这意味着,人工智能只是医生的助手。
一些人工智能研发人员提出,只有了解医生的心理和临床思维,让人工智能学会这种思维,才是真正的医疗人工智能。然而,这个难点似乎不好突破。
“我对完全由机器来进行诊断,持一定的怀疑态度,未来还需要进一步检验。因为医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用。”陈秋霖说。
未来,“人工智能医生”也许与人类医生一起上岗工作。记者体验了这种服务模式。在北京影像云平台上,人工智能系统对基层医院上传的30名患者近9000张肺结节CT影像进行智能检测和识别,将第一轮筛查出的疑似结节标记出来,作为辅助诊断结果,提供给4名放射科医生进行审查。医生审查后认为可以采纳,即对报告签字。
在这种新的服务模式中,仍由医生来做最终决策。一些临床医生表示:首先必须确保人工智能产品技术过硬,给出合理的诊断建议;其次还要进行培训,转变观念,适应新的服务模式。医生的认可和引导,将提高患者对人工智能系统的信任度。
目前,医疗人工智能行业的发展还面临问题。“医疗各个领域数据没有互联互通,最后形成的只是数据大,而不是大数据。医疗人工智能既需要医疗人才,也需要人工智能人才。目前,发展比较好的企业或者非常好的一些项目,都由这两方面的人才来推进。”陈秋霖说,因涉及个人隐私的保护,有必要界定医疗数据的产权,产权清晰有利于实现互联互通。
可以预见,未来人类将离不开“人工智能医生”。那时的医疗不再是“排队医疗”,而是“秒医疗”“精准医疗”“个性医疗”。
(责编:蒋琪、仝宗莉)
分享让更多人看到
人工智能“沃森医生”来上海为肿瘤患者看病了
医生向“沃森医生”输入患者的年龄、性别、体重等基本情况和癌症分期、局部复发、化疗方案、病理分期、癌症转移等多项具体情况后,只要短短十多秒,“沃森医生”就会给出治疗方案,这些方案包括:推荐使用方案、可考虑使用方案、不推荐使用方案。
沃森肿瘤智能联合会诊系统
那么“沃森医生”是如何做到这点的呢?原来,在上岗执业之前,它学习了美国纪念斯隆-凯特琳肿瘤中心的大量肿瘤病例、300种以上的医学专业期刊、250本以上的医学书籍、超过1500万页的资料和临床指南,而且它每月还在学习最新的研究成果。
目前,“沃森医生”给出的治疗方案已经可以覆盖乳腺癌、肺癌、直肠癌、结肠癌、胃癌、宫颈癌、卵巢癌、前列腺癌8个癌种,预计2017年年底将扩展到12到14个癌种。
“沃森医生”有哪些强项?
上海市第十人民医院肿瘤科主任、同济大学癌症中心常务副主任许青教授向记者介绍说:在信息爆炸的当下,与人脑相比,人工智能在医疗文献的储存学习、对个体患者大量临床数据与某些特定肿瘤规范指南条款以及最新研究结果的计算分析匹配方面,具有超强的优势。
人工智能的应用对肿瘤医生在选择治疗方案,特别是对相对早期肿瘤患者治疗方案的制定与选择上,具有极大的应用价值。
据国外报道:“沃森医生”是美国纪念斯隆凯特琳肿瘤中心多年训练而成的,拥有极强的学习能力,它给出的治疗方案和顶级专家组所给出的治疗方案已经达到了百分之九十以上的符合度,已逐渐成为肿瘤专家的重要智能助手。
沃森人工智能给出的诊疗计划
不过,“沃森”目前还只是医生的助手,医生还是会结合沃森出具的诊断方案,为患者量身定制个性化的治疗方案。
“电脑+人脑”造福更多肿瘤患者
我国每年有近430万新发生的癌症患者,每年有约280万人死于癌症,我国肿瘤患者的平均五年存活率只有30%左右。
五年存活率不高的原因主要在于:一方面是体检还不是很完善,不少肿瘤都发现得比较晚;另一方面是肿瘤的平均治疗水平有限,有条件的患者可能到北京、上海等大城市甚至国外的大医院进行会诊,但一些普通患者由于资金、资源等条件所限,难以接触到国际一流的肿瘤治疗专家。
未来,人工智能将为肿瘤患者与一流的医生、医院搭建直通桥梁,为肿瘤带来了更好更多的解决方案。
上海市第十人民医院院长、同济大学癌症中心主任秦环龙教授表示:沃森肿瘤人工智能联合会诊中心的建立不仅将成为医院新的特色,成为医院在智慧医院建设与提升肿瘤治疗水平的里程碑,更重要的是,对肿瘤复发和转移的患者而言,人工智能可以给出更全面和更新的综合方案以备医生选择,为肿瘤患者尤其是晚期和转移的肿瘤患者带来新的希望。
(文内图片由上海市第十人民医院提供)
题图来源:视觉中国责任编辑:许莺图片编辑:项建英
作者:陈俊珺返回搜狐,查看更多
人工智能先驱IBM沃森成了先烈IBM卖沃森,AI真败了吗
曾几何时,人工智能医疗诊断先驱IBMWatson(一般简称沃森)被称为是人工智能在现实领域最大的创新,被多少AI专家奉为人工智能的圭臬,然而就是这个AI先驱在毅然挺立多年之后却被传出要被IBM出售的消息,让人不禁想问连IBM都要把沃森给卖了,难不成人工智能真的要败了吗?
一、IBM要把沃森卖了?
2月20日,一个消息的出现引爆了整个互联网科技圈,这就是著名的IBM要把其人工智能的明星沃森给卖了!根据科技媒体品玩的报道,据《华尔街日报》援引知情人士报道,IBM正在考虑出售WatsonHealth业务,可能的方案包括出售给私募股权公司、医疗行业企业或者与一家特殊目的收购公司(SPAC)合并。
WatsonHealth部门主要负责将AI用于帮助医院、保险公司和制药企业处理数据。《华尔街日报》援引知情人士报道,该部门年收入大约为10亿美元,但目前仍未盈利。
根据雷锋网的报道,这项交易是IBMCEOArvindKrishna聚焦AI、云计算等更高利润业务计划的一部分。据IBM第四季度财报显示,包括WatsonHealth在内的认知应用(cognitiveapplications)营收为15亿美元,同比下降2%。去年10月,IBM宣布计划将其全球技术服务部门的托管基础设施服务部门拆分成一家新的上市公司。此外,IBM另一举措是专注于包括RedHat在内的混合云业务。在完成托管基础设施公司分拆后,IBM将由一家服务收入仅占公司营收一半的公司转变为一家经常性收入(recurringrevenue)占比达到50%以上的公司。
而根据36氪的梳理,2011年,IBM的认知计算系统Watson在问答节目中首次击败了人类,斩获冠军。第二天,IBM就宣布了Watson新的职业方向:成为一名人工智能医生。随后身价大涨的Watson逐渐成为了IBM乃至全球AI项目的代表。IBM首席执行官称这是IBM的“登月计划”,人们一直祈盼着IBM的人工智能彻底给医学界带来一场革命。为了成功进行商业化,IBM随后开始了大举宣传。IBM承诺,Watson将在18~24个月内推出首个用于医疗保健的商业产品。
自2011年,IBM将Watson引入医疗保健行业起,截止到2019年,IBM已宣布近50项合作计划,旨在开发新的人工智能医疗工具,但遗憾的是,这些合作中的许多还没有带来商业产品,成功的案例还很少。
二、人工智能是真的败了吗?
说实在看到IBM把沃森卖掉的时候,让人有一些沮丧,因为到目前为止,人类已经经历了好多次人工智能的大潮,每次都是潮起的时候大家期待巨大,但是潮落的时候一切又都归于沉寂,连IBM都要卖沃森了,难不成这次人工智能大潮是真的要失败了吗?
首先,沃森的失败不在AI而在人类。其实,我们纵观大多数报道,可以得出一个结论,这次之所以IBM要抛弃沃森并不是因为沃森不够出色,原因在于IBM的人工智能虽然很强大,但是美国的医疗数据系统却是各自为战的孤岛,虽然沃森可以阅读海量的医学论文,但是却非常难以接触到真正的海量病例,病例信息都是个性化信息,无法真正有效梳理,这就导致了整个沃森难以真正获得其足够成长的数据来喂养,让人最大的感觉就是沃森像是一个喂不饱的孩子,缺乏足够的数据最后让其失去了成长的潜能。另一个重要原因则是沃森不能赚钱?对于IBM这样的公司,或者美国这样的资本大国,不能赚钱就是最大的过错,沃森的问题是已经10年了,沃森都没能找到一个足够赚钱的商业模式,最终成为了IBM的弃子。
其次,人工智能的应用空间其实很大。弄明白了沃森失败的原因之后,我们再来看人工智能到底有没有失败?沃森可能是败了,但是并没有败在技术上,而是败在了人类的系统和资本上。然而,我们从人工智能的角度来说,其实人工智能并没有失败:
一是人工智能在医疗领域依然空间广阔。从沃森这些年的表现来看,人工智能虽然不能完全替代人类医生,但是其本身强大的搜索和诊断能力已经足够成为人类医生的助手了,其实我们很多时候对于人工智能的理解是有问题的,对于当前来说其实人类医疗并不是需要人工智能医生全面击败人类医生,而是能够成为人类医生的助手,举例来说,就像中国这样的人口大国,我们的人均医生数量是严重不足的,在很多社区、乡镇的基层卫生医疗场所中医生的经验也是非常不足的,却需要负担海量的病人看病,在这样的情况下完全可以借助沃森这样的人工智能助手,实现人工+智能,由人工智能帮助人类医生进行诊断、识别、搜索、处置,从而帮助医生更有效率地治疗病人,只要搭配的好,一个经验不足的年轻医生+人工智能助手甚至可以发挥出不少经验丰富的老医生的水平,这无疑对于医疗的普及具有极其重要的作用。当然,这仅仅是一方面,人工智能在帮助医生进行诊断,进行处置,提升治疗效率方面将会有极其广阔的空间,这其实就是当前人工智能的最大的价值,不是人工智能取代人类医生,而是人工智能帮助人类医生效率更高、诊断更准确。
二是人工智能的数据孤岛难题需要更有力的组织力破除。对于美国来说,各个州都是相互独立的体系,在这个独立的医疗体系之中,各家医疗机构想要实现诊断数据和病例数据的共享是非常困难的,但是这一点如果放到中国其实都不是问题,在中国强大的公立医疗体系和强悍的组织能力面前,想要让中国各大医院的数据形成一个规范的数据库至少不是一个完全天方夜谭的事情,数据孤岛问题在中国其实比美国至少在制度层面容易解决的多,这是人工智能难题在中国被解决的优势所在。
三是人工智能的盈利问题其实需要大规模应用解决。当前,人工智能最大的难题是前期投入巨大,回报周期相对较长,但是其优势在于一个成熟的人工智能医疗应用可以同时服务众多使用者,这其实就是可以降低成本的优势所在,对于人工智能来说只要能把应用和用户体验做好,那么完全可以探索出一条足够支撑其发展的商业模式。比如说,构建起一个多级化的用户体系,对于普通个人用户进行医疗保健服务,对于医生进行医疗助手服务,根据不同按需付费,这就有可能把海量的成本分担出去。
沃森败了,但人工智能医疗并没有失败,IBM出现的问题不在技术而在商业模式,希望更多的公司可以吸取IBM的教训,真正找到一条可以走得通的道路,只有这样才能不会重蹈IBM的覆辙。
“人工智能医生”来了
当前所在位置:首页》软件服务“人工智能医生”来了中国电子报|2019-03-2208:49:12作者:李红梅来源:人民日报近日,门诊导诊机器人“小医”在河北省邯郸市中心医院东区门诊大厅正式上岗,呆萌外表和有趣互动吸引不少患者围观。郝群英摄
“医术”超过年轻医生
经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽
会“看”影像,会“读”病历,会“动”手术,会“做”检查,还会给出临床诊断建议;“医术”超过年轻医生,一些领域能与资深医生比肩。它,就是“人工智能医生”。
跟人类医生一样,“人工智能医生”也是通过望、闻、听等手段看病。
以肺部结节为例,小到1毫米的病灶,阅片医生需要一张张看CT影像图片来找,并推断出大小、密度。资深阅片医生平均10分钟读1张,大型医院每天片子超过10万张,阅片医生的工作紧张而繁重。如今,一些医院开始引入人工智能系统筛查,阅片时间降至1分半。
“人工智能医生”不仅效率很高,在诊病方面更加精细、全面。在华中科技大学同济医学院附属协和医院,由依图医疗开发的人工智能系统不仅可以检测肺结节病灶,还能对病灶性状进行多维度描述,包括大小、体积、密度、CT值,结节表征可涵盖6种常见的良恶性征象——分叶、毛刺、胸膜凹陷、空洞、空泡、钙化。阿里健康开发的系统则将周边病症一起筛查,包括肺道泡、动脉硬化、淋巴带化、肺密度增高、索条等。
人工智能装上“眼睛”,可以阅读标准化的图像,筛查出病灶。华中科技大学同济医学院附属协和医院临床考验了这名“人工智能医生”,发现其检出率达95.78%,误报率却仅有2.63%。2018年,该院60名影像科医生通过AI系统判读影像病例超过了15万份。
除此之外,“人工智能医生”还能查食管癌、糖尿病视网膜病变、结直肠肿瘤、乳腺癌等疾病,甚至还可以查儿童骨龄,技术水平不亚于资深医生。
人工智能还有灵敏的“耳朵”。在安徽省合肥市庐阳区,科大讯飞智医助理已于2018年在社区卫生服务机构上岗,在医患交流过程中,智医助理通过大数据和智能语音技术,生成并自动提取病历,医生还可查询相似病例、临床指南以及对症药品。目前,该系统已完成7000余人次的辅助诊断建议。
最近,“人工智能医生”还装上了“大脑”。在广州妇儿中心,人工智能系统学会“读懂”病历,然后像人类医生一样,给出诊断。医生将患者主诉、症状、个人疾病史、检查检验结果、影像学检查结果、用药情况等信息输入病历文本,系统自动将自由病历文本转换成规范化、标准化和结构化的数据。人工智能系统“读懂”病历后,再给出诊断结果。
“人工智能医生”诊断准确率高吗?以呼吸系统疾病为例,该人工智能对上呼吸道疾病和下呼吸道疾病的诊断准确率分别为89%和87%,对不同类型哮喘的诊断准确率在83%到97%之间。
经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽,包括临床助理、辅助诊疗、医学影像、基因检测、健康管理等。
人工智能靠海量数据
各个学科数据的标准化程度,影响着人工智能的应用程度。各个医院设备不一样,数据维度也不一样
医生长本事,一靠医学专业院校学习,二靠临床经验积累。“人工智能医生”靠什么?靠海量数据、云计算能力。“吃”完数据之后,经过不断训练临床思维,系统就可以像人类医生一样看病了。
“吃”了海量数据后,机器不仅可以当医生,而且可以做科研、教学、管理等,帮助医生和医院提升科研水平,提高诊疗能力。
在四川大学华西医院,依图医疗纳入该院2009年至今收治的肺癌患者的全维度脱敏临床数据,打通临床门诊、住院、病历、病理等多个系统数据,建立了国内首个肺癌临床科研智能病种库。有了这个病种库,医院多个与肺癌诊疗相关的科室研究能力大大提升,其他医联体机构也受益匪浅。
阿里健康人工智能医疗升级到了2.0版本,除了临床,还有文本科研、影像科研平台功能,提供虚拟病人、VR模拟手术用于教学。
在河南郏县任庄村卫生室,记者看到了微医人工智能辅诊系统——全科辅助诊疗系统、悬壶台中医智能诊疗系统。村医张巧芬简单输入患者的基本症状、病史等,马上就能看到相关危重病、常见病可能提示。“我们平时很少接触到危重病,但心里还是担心万一误诊了,会耽误村民治疗。”
据介绍,这一全科辅助诊疗系统通过学习超过500万份文献、千万份病历和健康档案,目前已覆盖2000多个病种、5000多个症状,命中率达到90%。悬壶台中医智能诊疗系统累计辅助开方量已超过200万张。
“基层医生服务能力不强,人工智能辅助诊疗能弥补资源不足的问题,提升医生服务水平。”中国社科院人口与劳动经济研究所社会保障研究室主任陈秋霖认为,医疗人工智能可以提高医疗诊断的精准程度,也可以替代一些高精尖手术中的操作,还可以在一些医疗服务中替代部分人力资源,从而降低医疗费用。
人工智能学习的数据从临床来,还得转换成结构化格式,然后做出模型,按照临床诊疗思维训练、学习,算出结果。数据是关键,各个学科数据的标准化程度,影响着人工智能的应用程度。
依图医疗总裁倪浩告诉记者,医疗数据不标准是一个普遍性的问题。虽然影像是标准化较好的一批数据,但不同医院还是差别很大。各个医院设备不一样,数据维度也不一样。高质量的数据非常少见,需要花费更多的算法,先将数据结构化才能使用。
2018年,中国工程院院士、上海交通大学医学院附属瑞金医院副院长宁光带领团队与阿里健康人工智能实验室共同研发“瑞宁助糖”人工智能医生。在推进过程中,宁光也发现了数据的问题,如标准数据缺乏,疾病诊断标准不统一,随访数据散落在各个医院,数据普适性较差等。
数据标准化程度与学科成熟程度、诊断所需外部条件有关。比如影像领域从起步就是统一标准,数字化发展程度也比较高;皮肤科诊断比较依赖于图片和视频识别病灶等等,这些学科人工智能发展较快。
机器与医生协同看病
医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用
人工智能医用,是否会代替医生?可以肯定,目前还不会。
2017年,国务院新一代人工智能规划提出,“开发人机协同的手术机器人、智能诊疗助手”“研发人机协同临床智能诊疗方案”。这意味着,人工智能只是医生的助手。
一些人工智能研发人员提出,只有了解医生的心理和临床思维,让人工智能学会这种思维,才是真正的医疗人工智能。然而,这个难点似乎不好突破。
“我对完全由机器来进行诊断,持一定的怀疑态度,未来还需要进一步检验。因为医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用。”陈秋霖说。
未来,“人工智能医生”也许与人类医生一起上岗工作。记者体验了这种服务模式。在北京影像云平台上,人工智能系统对基层医院上传的30名患者近9000张肺结节CT影像进行智能检测和识别,将第一轮筛查出的疑似结节标记出来,作为辅助诊断结果,提供给4名放射科医生进行审查。医生审查后认为可以采纳,即对报告签字。
在这种新的服务模式中,仍由医生来做最终决策。一些临床医生表示:首先必须确保人工智能产品技术过硬,给出合理的诊断建议;其次还要进行培训,转变观念,适应新的服务模式。医生的认可和引导,将提高患者对人工智能系统的信任度。
目前,医疗人工智能行业的发展还面临问题。“医疗各个领域数据没有互联互通,最后形成的只是数据大,而不是大数据。医疗人工智能既需要医疗人才,也需要人工智能人才。目前,发展比较好的企业或者非常好的一些项目,都由这两方面的人才来推进。”陈秋霖说,因涉及个人隐私的保护,有必要界定医疗数据的产权,产权清晰有利于实现互联互通。
可以预见,未来人类将离不开“人工智能医生”。那时的医疗不再是“排队医疗”,而是“秒医疗”“精准医疗”“个性医疗”。
【欢迎关注官方微信(微信号:中国电子报)】
关于中国电子报中国电子报社是工业和信息化部主管的传媒机构,创建于1984年。目前,中国电子报社已经形成集报刊、网站、移动媒体、内参专报、图书出版、会议活动等于一体的立体化、多介质文化产品生产传播体系,成为电子信息产业凝聚行业力量、服务产业发展的载体和平台。“人工智能医生”来了(健康焦点)
如今,人工智能早已不再是科幻小说中的专有名词,它已经突破了从“不能用、不好用”到“可以用”的技术拐点,进入了爆发式增长的时期。在医疗领域,人工智能已可以快速诊断疾病、做手术、开展健康监测等。2018年4月,国务院办公厅发布《关于促进“互联网+医疗健康”发展的意见》,明确提出推进“互联网+”人工智能应用服务。这意味着“人工智能+医疗”将实质性地改变人们的就医模式,助力健康中国建设。
——编 者
“医术”超过年轻医生
经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽
会“看”影像,会“读”病历,会“动”手术,会“做”检查,还会给出临床诊断建议;“医术”超过年轻医生,一些领域能与资深医生比肩。它,就是“人工智能医生”。
跟人类医生一样,“人工智能医生”也是通过望、闻、听等手段看病。
以肺部结节为例,小到1毫米的病灶,阅片医生需要一张张看CT影像图片来找,并推断出大小、密度。资深阅片医生平均10分钟读1张,大型医院每天片子超过10万张,阅片医生的工作紧张而繁重。如今,一些医院开始引入人工智能系统筛查,阅片时间降至1分半。
“人工智能医生”不仅效率很高,在诊病方面更加精细、全面。在华中科技大学同济医学院附属协和医院,由依图医疗开发的人工智能系统不仅可以检测肺结节病灶,还能对病灶性状进行多维度描述,包括大小、体积、密度、CT值,结节表征可涵盖6种常见的良恶性征象——分叶、毛刺、胸膜凹陷、空洞、空泡、钙化。阿里健康开发的系统则将周边病症一起筛查,包括肺道泡、动脉硬化、淋巴带化、肺密度增高、索条等。
人工智能装上“眼睛”,可以阅读标准化的图像,筛查出病灶。华中科技大学同济医学院附属协和医院临床考验了这名“人工智能医生”,发现其检出率达95.78%,误报率却仅有2.63%。2018年,该院60名影像科医生通过AI系统判读影像病例超过了15万份。
除此之外,“人工智能医生”还能查食管癌、糖尿病视网膜病变、结直肠肿瘤、乳腺癌等疾病,甚至还可以查儿童骨龄,技术水平不亚于资深医生。
人工智能还有灵敏的“耳朵”。在安徽省合肥市庐阳区,科大讯飞智医助理已于2018年在社区卫生服务机构上岗,在医患交流过程中,智医助理通过大数据和智能语音技术,生成并自动提取病历,医生还可查询相似病例、临床指南以及对症药品。目前,该系统已完成7000余人次的辅助诊断建议。
最近,“人工智能医生”还装上了“大脑”。在广州妇儿中心,人工智能系统学会“读懂”病历,然后像人类医生一样,给出诊断。医生将患者主诉、症状、个人疾病史、检查检验结果、影像学检查结果、用药情况等信息输入病历文本,系统自动将自由病历文本转换成规范化、标准化和结构化的数据。人工智能系统“读懂”病历后,再给出诊断结果。
“人工智能医生”诊断准确率高吗?以呼吸系统疾病为例,该人工智能对上呼吸道疾病和下呼吸道疾病的诊断准确率分别为89%和87%,对不同类型哮喘的诊断准确率在83%到97%之间。
经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽,包括临床助理、辅助诊疗、医学影像、基因检测、健康管理等。
人工智能靠海量数据
各个学科数据的标准化程度,影响着人工智能的应用程度。各个医院设备不一样,数据维度也不一样
医生长本事,一靠医学专业院校学习,二靠临床经验积累。“人工智能医生”靠什么?靠海量数据、云计算能力。“吃”完数据之后,经过不断训练临床思维,系统就可以像人类医生一样看病了。
“吃”了海量数据后,机器不仅可以当医生,而且可以做科研、教学、管理等,帮助医生和医院提升科研水平,提高诊疗能力。
在四川大学华西医院,依图医疗纳入该院2009年至今收治的肺癌患者的全维度脱敏临床数据,打通临床门诊、住院、病历、病理等多个系统数据,建立了国内首个肺癌临床科研智能病种库。有了这个病种库,医院多个与肺癌诊疗相关的科室研究能力大大提升,其他医联体机构也受益匪浅。
阿里健康人工智能医疗升级到了2.0版本,除了临床,还有文本科研、影像科研平台功能,提供虚拟病人、VR模拟手术用于教学。
在河南郏县任庄村卫生室,记者看到了微医人工智能辅诊系统——全科辅助诊疗系统、悬壶台中医智能诊疗系统。村医张巧芬简单输入患者的基本症状、病史等,马上就能看到相关危重病、常见病可能提示。“我们平时很少接触到危重病,但心里还是担心万一误诊了,会耽误村民治疗。”
据介绍,这一全科辅助诊疗系统通过学习超过500万份文献、千万份病历和健康档案,目前已覆盖2000多个病种、5000多个症状,命中率达到90%。悬壶台中医智能诊疗系统累计辅助开方量已超过200万张。
“基层医生服务能力不强,人工智能辅助诊疗能弥补资源不足的问题,提升医生服务水平。”中国社科院人口与劳动经济研究所社会保障研究室主任陈秋霖认为,医疗人工智能可以提高医疗诊断的精准程度,也可以替代一些高精尖手术中的操作,还可以在一些医疗服务中替代部分人力资源,从而降低医疗费用。
人工智能学习的数据从临床来,还得转换成结构化格式,然后做出模型,按照临床诊疗思维训练、学习,算出结果。数据是关键,各个学科数据的标准化程度,影响着人工智能的应用程度。
依图医疗总裁倪浩告诉记者,医疗数据不标准是一个普遍性的问题。虽然影像是标准化较好的一批数据,但不同医院还是差别很大。各个医院设备不一样,数据维度也不一样。高质量的数据非常少见,需要花费更多的算法,先将数据结构化才能使用。
2018年,中国工程院院士、上海交通大学医学院附属瑞金医院副院长宁光带领团队与阿里健康人工智能实验室共同研发“瑞宁助糖”人工智能医生。在推进过程中,宁光也发现了数据的问题,如标准数据缺乏,疾病诊断标准不统一,随访数据散落在各个医院,数据普适性较差等。
数据标准化程度与学科成熟程度、诊断所需外部条件有关。比如影像领域从起步就是统一标准,数字化发展程度也比较高;皮肤科诊断比较依赖于图片和视频识别病灶等等,这些学科人工智能发展较快。
机器与医生协同看病
医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用
人工智能医用,是否会代替医生?可以肯定,目前还不会。
2017年,国务院新一代人工智能规划提出,“开发人机协同的手术机器人、智能诊疗助手”“研发人机协同临床智能诊疗方案”。这意味着,人工智能只是医生的助手。
一些人工智能研发人员提出,只有了解医生的心理和临床思维,让人工智能学会这种思维,才是真正的医疗人工智能。然而,这个难点似乎不好突破。
“我对完全由机器来进行诊断,持一定的怀疑态度,未来还需要进一步检验。因为医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用。”陈秋霖说。
未来,“人工智能医生”也许与人类医生一起上岗工作。记者体验了这种服务模式。在北京影像云平台上,人工智能系统对基层医院上传的30名患者近9000张肺结节CT影像进行智能检测和识别,将第一轮筛查出的疑似结节标记出来,作为辅助诊断结果,提供给4名放射科医生进行审查。医生审查后认为可以采纳,即对报告签字。
在这种新的服务模式中,仍由医生来做最终决策。一些临床医生表示:首先必须确保人工智能产品技术过硬,给出合理的诊断建议;其次还要进行培训,转变观念,适应新的服务模式。医生的认可和引导,将提高患者对人工智能系统的信任度。
目前,医疗人工智能行业的发展还面临问题。“医疗各个领域数据没有互联互通,最后形成的只是数据大,而不是大数据。医疗人工智能既需要医疗人才,也需要人工智能人才。目前,发展比较好的企业或者非常好的一些项目,都由这两方面的人才来推进。”陈秋霖说,因涉及个人隐私的保护,有必要界定医疗数据的产权,产权清晰有利于实现互联互通。
可以预见,未来人类将离不开“人工智能医生”。那时的医疗不再是“排队医疗”,而是“秒医疗”“精准医疗”“个性医疗”。
“人工智能医生”来了,正式亮相河北
近日,门诊导诊机器人“小医”在河北省邯郸市中心医院东区门诊大厅正式上岗,呆萌外表和有趣互动吸引不少患者围观。如今,人工智能早已不再是科幻小说中的专有名词,它已经突破了从“不能用、不好用”到“可以用”的技术拐点,进入了爆发式增长的时期。在医疗领域,人工智能已可以快速诊断疾病、做手术、开展健康监测等。2018年4月,国务院办公厅发布《关于促进“互联网+医疗健康”发展的意见》,明确提出推进“互联网+”人工智能应用服务。这意味着“人工智能+医疗”将实质性地改变人们的就医模式,助力健康中国建设
医术”超过年轻医生经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽,会“看”影像,会“读”病历,会“动”手术,会“做”检查,还会给出临床诊断建议;“医术”超过年轻医生,一些领域能与资深医生比肩。它,就是“人工智能医生”。
跟人类医生一样,“人工智能医生”也是通过望、闻、听等手段看病。以肺部结节为例,小到1毫米的病灶,阅片医生需要一张张看CT影像图片来找,并推断出大小、密度。资深阅片医生平均10分钟读1张,大型医院每天片子超过10万张,阅片医生的工作紧张而繁重。如今,一些医院开始引入人工智能系统筛查,阅片时间降至1分半。“人工智能医生”不仅效率很高,在诊病方面更加精细、全面。在华中科技大学同济医学院附属协和医院,由依图医疗开发的人工智能系统不仅可以检测肺结节病灶,还能对病灶性状进行多维度描述,包括大小、体积、密度、CT值,结节表征可涵盖6种常见的良恶性征象——分叶、毛刺、胸膜凹陷、空洞、空泡、钙化。阿里健康开发的系统则将周边病症一起筛查,包括肺道泡、动脉硬化、淋巴带化、肺密度增高、索条等等人工智能装上“眼睛”,可以阅读标准化的图像,筛查出病灶。华中科技大学同济医学院附属协和医院临床考验了这名“人工智能医生”,发现其检出率达95.78%,误报率却仅有2.63%。2018年,该院60名影像科医生通过AI系统判读影像病例超过了15万份。
除此之外,“人工智能医生”还能查食管癌、糖尿病视网膜病变、结直肠肿瘤、乳腺癌等疾病,甚至还可以查儿童骨龄,技术水平不亚于资深医生。人工智能还有灵敏的“耳朵”。在安徽省合肥市庐阳区,科大讯飞智医助理已于2018年在社区卫生服务机构上岗,在医患交流过程中,智医助理通过大数据和智能语音技术,生成并自动提取病历,医生还可查询相似病例、临床指南以及对症药品。目前,该系统已完成7000余人次的辅助诊断建议。最近,“人工智能医生”还装上了“大脑”。在广州妇儿中心,人工智能系统学会“读懂”病历,然后像人类医生一样,给出诊断。医生将患者主诉、症状、个人疾病史、检查检验结果、影像学检查结果、用药情况等信息输入病历文本,系统自动将自由病历文本转换成规范化、标准化和结构化的数据。人工智能系统“读懂”病历后,再给出诊断结果。“人工智能医生”诊断准确率高吗?以呼吸系统疾病为例,该人工智能对上呼吸道疾病和下呼吸道疾病的诊断准确率分别为89%和87%,对不同类型哮喘的诊断准确率在83%到97%之间。经过不断训练的“人工智能医生”,“眼睛”“耳朵”“大脑”日益发达,涉及病种越来越多、领域越来越宽,包括临床助理、辅助诊疗、医学影像、基因检测、健康管理,人工智能靠海量数据各个学科数据的标准化程度,影响着人工智能的应用程度。各个医院设备不一样,数据维度也不一样,医生长本事,一靠医学专业院校学习,二靠临床经验积累。“人工智能医生”靠什么?靠海量数据、云计算能力。“吃”完数据之后,经过不断训练临床思维,系统就可以像人类医生一样看病了。“吃”了海量数据后,机器不仅可以当医生,而且可以做科研、教学、管理等,帮助医生和医院提升科研水平,提高诊疗能力。
在四川大学华西医院,依图医疗纳入该院2009年至今收治的肺癌患者的全维度脱敏临床数据,打通临床门诊、住院、病历、病理等多个系统数据,建立了国内首个肺癌临床科研智能病种库。有了这个病种库,医院多个与肺癌诊疗相关的科室研究能力大大提升,其他医联体机构也受益匪浅。阿里健康人工智能医疗升级到了2.0版本,除了临床,还有文本科研、影像科研平台功能,提供虚拟病人、VR模拟手术用于教学。在河南郏县任庄村卫生室,记者看到了微医人工智能辅诊系统——全科辅助诊疗系统、悬壶台中医智能诊疗系统。村医张巧芬简单输入患者的基本症状、病史等,马上就能看到相关危重病、常见病可能提示。“我们平时很少接触到危重病,但心里还是担心万一误诊了,会耽误村民治疗。”
据介绍,这一全科辅助诊疗系统通过学习超过500万份文献、千万份病历和健康档案,目前已覆盖2000多个病种、5000多个症状,命中率达到90%。悬壶台中医智能诊疗系统累计辅助开方量已超过200万张。
“基层医生服务能力不强,人工智能辅助诊疗能弥补资源不足的问题,提升医生服务水平。”中国社科院人口与劳动经济研究所社会保障研究室主任陈秋霖认为,医疗人工智能可以提高医疗诊断的精准程度,也可以替代一些高精尖手术中的操作,还可以在一些医疗服务中替代部分人力资源,从而降低医疗费用。人工智能学习的数据从临床来,还得转换成结构化格式,然后做出模型,按照临床诊疗思维训练、学习,算出结果。数据是关键,各个学科数据的标准化程度,影响着人工智能的应用程度。如果你有梦想,渴望通过互联网创业实现财富梦想改变命运加创业导师微信15914785590带你实现创富梦想。2018年,中国工程院院士、上海交通大学医学院附属瑞金医院副院长宁光带领团队与阿里健康人工智能实验室共同研发“瑞宁助糖”人工智能医生。在推进过程中,宁光也发现了数据的问题,如标准数据缺乏,疾病诊断标准不统一,随访数据散落在各个医院,数据普适性较差等。数据标准化程度与学科成熟程度、诊断所需外部条件有关。比如影像领域从起步就是统一标准,数字化发展程度也比较高;皮肤科诊断比较依赖于图片和视频识别病灶等等,这些学科人工智能发展较快。
机器与医生协同看病
医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用人工智能医用,是否会代替医生?可以肯定,目前还不会。2017年,国务院新一代人工智能规划提出,“开发人机协同的手术机器人、智能诊疗助手”“研发人机协同临床智能诊疗方案”。这意味着,人工智能只是医生的助手。一些人工智能研发人员提出,只有了解医生的心理和临床思维,让人工智能学会这种思维,才是真正的医疗人工智能。然而,这个难点似乎不好突破。我对完全由机器来进行诊断,持一定的怀疑态度,未来还需要进一步检验。因为医疗并不只是诊断和治疗,还涉及医生和患者之间的互动,尤其是医生对患者的安慰具有不可替代的作用。”陈秋霖说。未来,“人工智能医生”也许与人类医生一起上岗工作。记者体验了这种服务模式。在北京影像云平台上,人工智能系统对基层医院上传的30名患者近9000张肺结节CT影像进行智能检测和识别,将第一轮筛查出的疑似结节标记出来,作为辅助诊断结果,提供给4名放射科医生进行审查。医生审查后认为可以采纳,即对报告签字。
在这种新的服务模式中,仍由医生来做最终决策。一些临床医生表示:首先必须确保人工智能产品技术过硬,给出合理的诊断建议;其次还要进行培训,转变观念,适应新的服务模式。医生的认可和引导,将提高患者对人工智能系统的信任度。目前,医疗人工智能行业的发展还面临问题。“医疗各个领域数据没有互联互通,最后形成的只是数据大,而不是大数据。医疗人工智能既需要医疗人才,也需要人工智能人才。目前,发展比较好的企业或者非常好的一些项目,都由这两方面的人才来推进。”陈秋霖说,因涉及个人隐私的保护,有必要界定医疗数据的产权,产权清晰有利于实现互联互通。可以预见,未来人类将离不开“人工智能医生”。那时的医疗不再是“排队医疗”,而是“秒医疗”“精准医疗”“个性医疗”。