博舍

从制度看中国在人工智能发展中的现状 人工智能的工作机制

从制度看中国在人工智能发展中的现状

中国超过一半以上人工智能初创企业的融资是来自国外,这是非常重要的一个特点。不仅仅中国的研究跟改革开放高度相关,跟国际间的融合高度相关,即便在融资方面也跟国际的融合与开放是高度相关的

图/Pixabay

文|许成钢

第四次产业革命正在快速兴起。人工智能是这次产业革命的核心内容之一。构成产业革命的创新都是革命性创新。这类的创新具有特别高的不确定性。人工智能前沿工作的发展,包括基础研究、应用研究、初创企业,都属于这类性质。

这类创新的未来酝酿在大量的研究成果和初创企业成果里。最后通过市场优胜劣汰的过程,产生出来技术上和市场上最好的结果。在此之前,即便是在相关领域里成功的专家和企业家,也很难预测未来的结果。因此,了解未来,最重要的在于了解学术界在研究什么、初创企业在做什么,以及数量。

为了了解中国人工智能的现状和展望未来,我们构建的人工智能指数,集中在三个方面,对比中国和国际前沿国家。这三个方面是,人工智能的初创企业、学术成果、开源软件的应用。从初创企业这个维度,可以勾勒出人工智能作为一个产业的现状和最近的未来。通过初创企业不同发展阶段的国际对比,我们可以看到中美人工智能企业之间的差异。以融资机制为例,融资机制本身就是初创企业的发展机制。融资机制其实是优胜劣汰机制的核心。中国过去是计划经济,现在仍然还保留着相当一部分计划经济的制度。所以,中国和美国在制度上的差别是,中国有两大类不同的机制,一大类是优胜劣汰的市场机制,另一大类是命令式的机制,即自上而下的命令或者计划。

因为我们的主要目的是从产业革命的角度来看人工智能,因此在学术领域,我们关心的是产业长远的未来发展。今天的学术工作就是明天的人工智能产业。在这个维度,我们观察的是学术论文的定量和定性的指标。

第三个维度是开源软件的开发和应用,这是学术与产业高度连接的部分。从应用研究的角度讲,这是一个非常重要的指标。

人工智能与制度

绝大部分的人工智能方面的开创性研究,都是从学术上开始的。学术研究和应用研究是产生革命性创新的必要条件,没有它们就没有后来的一切。所以学术研究的成果是最重要的。但仅仅是学术研究的成果仍然并不充分。比如专利。看上去非常优秀的项目是不是最后能够在商业化的过程中成功?在商业上没有实现之前,没有人能回答这个问题。所有在学术上和专利上非常优秀的内容,在商业实现之前仍然都面临着巨大的挑战和非常高的不确定性。因此,人工智能这个行业是不是能成功,整个行业在一个国家在一个地区是不是能够成功,除了取决于当地的学术和应用的研究成就之外,还一定取决于当地的制度。与创新技术发展相关的最重要的具体制度,就是所谓的硬预算约束的制度。

面对高度的不确定性,在没有人知道某一个项目是不是能成功的情况下,必须有大量的创新想法在最早期的时候就能获得投资。需要强调的是,是不是能获得投资和是不是获得大规模投资是两回事。这是第一点,即是不是有大量的新想法能获得投资。第二点,获得投资的这些项目,当被发现没有前途的时候,是不是能够及时地被中断。硬预算约束指的就是是否能被及时地中断。因为硬预算约束决定了不在失败的项目上浪费资源,使得更多创新项目可以得到试一试的机会。

在中国,特别需要认识到,跟计划经济相关的软预算约束,缺少停止不成功项目的能力。因此在软预算约束下,被迫依赖在没有投资之前的、事先的审查项目,用这个方法来减少投资创新项目。这是计划经济的一个重要特点。但是,一旦事先减少了投资的项目,就减少了最终成功的机会。

当说到融资制度,风险投资是行之有效的非常重要的基本制度,它的核心是阶段性的硬预算约束。阶段性的投资,最重要的就在于它能够及时地中断这些不成功的项目;或者换句话说,它是硬预算约束,用这个方式来降低失败的风险。风险资本制度高度依赖股市和独立的司法制度。

中国人工智能初创企业规模及国际对比

2021年5月21日,2021RoboCup机器人世界杯中国赛暨亚太机器人世界杯天津国际邀请赛在天津空港体育中心举行。图/中新

在人工智能的初创企业方面,中国的投资不仅数量巨大,而且从增长速度来看,在过去几年里,初创企业的增长速度是世界上最快的。特别是从2014年以后,投资急剧加速。从总投资额来看,位居于全世界第一的是美国,第二就是中国。创新具有高度不确定性,其中非常重要的一个机制是投资的数额要大,这个数额指的不仅仅是投资的总量,而是指项目的总量。

第一个特点,从项目看,无论是初创企业的总数还是交易总数(所谓交易总数指的是有的企业可能有不止一个项目,它有不同的阶段,因此交易总数和企业总数不是一回事,交易数字会更大)。从这两个方面来看,中国的总投资额排名世界第二,但是企业总数或者交易总数,那么中国不是世界第二,而是世界第三,和居于世界第二的英国距离不是很大。更详细的信息我们在后面来介绍。

第二个特点,中国人工智能初创企业的融资高度依赖对外开放的。我们的发现是中国总投资额全世界第二,那么这些投资从哪里来的?从统计数字来看,将近40%的交易是来自国内的,而其他的超过46%是完全来自国外的,还有超过14%是国内外联合的。这组数据可以很清楚地看到,超过一半以上人工智能初创企业的融资是来自国外,这是非常重要的一个特点。不仅仅中国的研究跟改革开放高度相关,跟国际间的融合高度相关,即便在融资方面也跟国际的融合与开放是高度相关的。

中国人工智能初创企业的投资主体是风险资本,而不是中国传统的金融机构。前面我们讲硬预算约束,硬预算约束主要来自于风险资本。在中国,74%的交易来自风险资本,将近16%的交易是来自私募,私募股权的性质跟风险资本是高度相近的,所以我们把这两者合并在一起。也就是说,将近90%的人工智能初创企业的投资来自于风险投资。这是极端重要的一个信息。

前面讲到2014年以后,中国加速了人工智能初创企业的投资,而且投入早期项目的资金总量非常之巨,但是有个重要的特点是值得关注的。虽然投入的资金量非常的大,但是投入的初创企业的总数字以及总的交易数字,没有相应的那么大,导致了一个初创企业的早期,平均获得的投资额非常高。不同的人对此可以有不同的解释,我们的解释留待最后的分析之中。

初创企业融资情况的统计数字,来源于VCExperts和Crunchbase这两个数据库。这两个是世界上最大的风险投资融资的数据库。两个合并在一起,基本上概括了全世界的所有的风险投资的融资情况。中国跟世界的对比数据,全部从这里获得。

我们首先关心是跟IT相关的领域,然后在数据库里搜索公司简介,使用了近20个与人工智能各个方面相关的关键词。如果这个企业涉及到这些方面,我们就把它定义为人工智能的初创企业。用这个方式,我们找到全世界所有初创企业的情况。美国的总数是4600多个,占全世界的比率超过45%;英国有846个,占全世界的8.2%,中国有730个排第三位,占全世界的7.11%。从初创企业的总数来看,中国在全世界是相当的领先,但是和美英相比,还有显然的差距。

融资方面,美国的融资额是1273亿美元,占全世界的59%。中国是487亿美元,占全世界近23%。从企业总数来对比,中国的比例远没有这么大,但是从投资总额上看,中国的投资总额已经快要接近美国的一半了,排到全世界第二。排到全世界第三位的是英国,跟中国相差很远。

平均每个初创企业获得的投资是多少?美国跟世界上其他的发达国家比,没有显著高很多,只是稍微高一点点。而中国自从2013年之后开始起步,2014年拉开距离,平均每个企业获得风险投资的数字远远高过世界上其他国家。这其中有两个可能性,一个可能性就是我们前面讲到的软预算约束机制。在面对高度风险、高度不确定性的项目的时候,尤其是在早期,投资的数字一定是非常小的,因为越小就越便宜。等到有相当的把握以后,扩大你的投资,这样才能保证你以最小的代价获得更大的成果。如果在早期投了很多钱进去,有相当的一部分可能是浪费,这个是从机制上的一个解释,另一方面也有一种可能的解释,早期阶段的初创人工智能企业,它的不确定性没有那么高。这一点我们的数据没有办法告诉我们,行业里面的同事们,可能会比我们更清楚。

在面对高度不确定性的时候,关键问题在于在最早期的时候是不是有足够多的探索性的项目。在探索性项目的数字这个方面(种子期的交易量),美国远远高于世界上所有其他国家。排名第二的是英国,排名第三的是中国和加拿大。在这个方面,中国只有英国的一半多一点,只有美国的大约七分之一。由于探索面对很高的失败的风险,有效配置资源的方法是,在启动探索的阶段,每一个项目投尽量少的钱。但是在这方面,中国的情况与发达国家非常不同。与发达国家相比,中国初创企业在种子期,对每个项目的投资量都很大。

到创业的晚期,从风险投资的角度,人们对项目的成功已经有相当的把握。从我们的数据来看,晚期的投资交易总额,也就是有多少项目获得了融资,美国排第一,中国排第二,英国排第三。从趋势上可以看到,从2016年之后,中国和其他国家之间拉开很大距离。就是说从2016年之后,晚期的投资额明显比其他发达国家要多,但是与美国相比还是有显然的差距,这个差距似乎有一点缩小的趋势但也不是很确定。但是比起其他发达国家来,中国显然是领先的。排第三的是英国。英国和其他发达国家之间的距离并不大,但是中国和美国之外的所有发达国家之间的距离拉开很大。

从晚期的平均投资额来看,平均每一个项目的投资,中国远远高于世界上的其他国家,美国排第二,英国排第三。中国比排第二的美国高很多,而美国和其他发达国家之间没有显然的距离,发达国家在平均的时候基本都差不多。这是一个很重要的信息,说明对发达国家来说有一些规律性的内容,这些规律性的内容决定了它们认为什么时候合算,基本上大家的做法都差不多。但是中国在讨论到平均的时候,明显的非常高。

怎么解释这个现象呢?有两种可能的解释,一种可能的解释就是前面讲的软预算约束和硬预算约束。中国可能仍然存在着一定程度的软预算约束问题,因此导致它的平均投资额更高。另一种解释是,可能中国的市场规模超级的大,包括在人工智能相关的应用领域里。因此,即便在每个项目都投入很多,成本很高,总体上仍然能盈利。有可能这两个解释同时都成立,都是一部分的原因。

学术及开源软件的国际对比

从学术论文的发表量和论文被引用的指数来看,在最近几年里,中国整体上在世界上排名第二。在大体上,和美国的差距在缩小,但仍然有一些重要的方面,差距还是相当明显。

首先来看一下在期刊和会议论文的发表情况。在期刊和会议发表论文的总数方面,中国在世界上排名第二,其中包括最近20年里积累的总数,以及最近几年的年度的发表数字。很重要的一点是,自从2017年之后,中国年度发表的总数和美国的差距是在逐年缩小之中。如果我们把期刊跟会议分开、单独看期刊的话,中国在期刊发表的总数是世界第一。在期刊的被引用总数也是世界第一。所以,如果我们单纯看期刊的话,中国现在已经超过了美国,位居世界第一。这也是为什么有相当一些报告会认为中国在人工智能方面超过了美国成为世界第一,其实指的是在期刊发表的论文方面。但是,如果我们把这个引用分成类别,分成高引用的论文和普通引用的论文和低引用的论文,我们就会发现,如果我们看被引用1000次以上的,那么中国在期刊方面仍然是排得很高。

在会议论文方面,中国的排名就不太一样。如果看加总,中国在会议上发表的论文总数大体上是世界第二,被引用的总数也大体上是世界第二。如果我们看会议论文的引用次数,被引用千次以上的甚至百次以上的,中国都在世界上排名第二,但和世界第一的美国之间的差距没有清楚地缩小的趋势。

在开源软件的无论开发和使用方面,中国都跟美国有显然的差距。值得关注的一点是,与期刊和学术论文的情况非常不同,中国和美国在开源软件方面的差距是在扩大之中,而不是在缩小之中。这背后说明什么问题,还需要更深入的讨论。

我们的数据来源是Scope数据库,包括学术论文,期刊和会议的,全部都来自这个数据库。搜索方法基本上是和斯坦福大学制作的人工智能指数的搜索方法是相似的,使得我们和他们有高度的可对比性。

具体来看,积累的学术论文的总数,美国排第一,中国排第二,英国排第三。从积累的总数看,中国和美国之间差距还是相当大的。从时间的趋势变化来看,虽然中国仍然排第二,但是和美国的差距是在逐年缩小之中,尤其是在2016年、2017年之后。

排名第三的是英国,可能实际上排名第三的已经是印度了。英国和印度这两个国家处于不相上下的一个状态,和排名第二的中国的差距是很显然的,这是期刊和会议论文的总量。如果只看期刊的话,中国在2012年之后就已经超过了美国,是世界上在期刊上发表人工智能论文最多的国家。

从2012年之后,长期以来排名第二的是美国,但是现在也被印度超过。所以现在已经是印度排名第二,美国排名第三。这背后有一个重要的内容,就是由于人工智能这个领域本身在加速发展,使得很多的研究者为了快,更多地把论文发表在会议上,而不是在期刊上。这是为什么我们在期刊上见到这样应该状况的部分解释。一方面是中国的论文增速非常快,另一方面美国作为人工智能最发达的国家,在期刊上发表论文的数字不长进了,原因是大量的论文转移到会议上去了。

从会议论文加总的数字我们可以看到,美国排最前面,中国排第二,英国排第三。中国和美国之间的差距似乎有缩小的趋势,但不是很清楚。但是中国和其他发达国家之间的差距是在拉开。中国超过其他的发达国家,而且超过的越来越多。

只是看论文数字,可能还不能说明论文的质量。质量更多地反映在引用次数上。可以看到自从2014年以来,在引用的方面,中国超过美国,成为期刊论文被引用的总数在世界上排名第一的国家,而美国是仅次于中国排第二的,其他若干的发达国家合在一起排第三位。中国和美国跟其他的国家相比,后者是有显然的差距的。

从大型的人工智能学术会议论文的年度被引用情况来看,美国远高于其他国家排名第一,中国排名第二。中国和美国之间是不是差距在缩小,目前还不是很清楚,其他的发达国家和中国之间的差距似乎在拉开。

小型的、更专业的人工智能学术会议发表的论文,加总之后的年度被引用的情况,可以看到中国和发达国家之间已经没有清楚的优势了。美国排名世界第一,英国排名世界第二,德国曾经排世界第一,现在连第三也排不到了,现在排名第三的是法国。为什么会这样?这背后是什么原因?需要专家们来解释。

再来看一下最高的被引用论文是怎么分布的。首先我们来看期刊上最高的被引用论文,也就是在人工智能领域里影响最大的论文,美国曾经高度领先,到了最近几年,中国、美国、以色列似乎是不相上下。

再来看会议论文的加总情况,可以看到美国在最有影响力的论文方面遥遥领先,其他几个国家中国、英国、德国,在最近几年里不相上下,可以认为并列第二。

对于影响力比较低的论文,我们分成几个等级:被引用1000次和以上的、几百次到几十次的、几十次到十次的、个位数的以及零引用的。限于篇幅,我着重介绍低引用率论文的情况。在期刊论文上,低引用率的论文,中国一直是世界最高的,美国是世界第二的。但是如果我们看低引用率的会议论文,跟高引用率论文的情形相似,美国遥遥领先。中国和英国并列第二,但是和美国相差甚远,和其他发达国家相差无几。

最后我们来看一下中国和美国研究者使用人工智能开源软件平台的相关情况。从加总的数据来看,从2015年到现在,我们可以看到中国和美国在使用和开发人工智能开源软件方面都在增长,但是美国的增长速度更快。2019年,美国使用开源软件平台的总量已经多达十几万,中国的数字是3万左右。为什么是这样?留给专家们去讨论、去分析。

小结一下这份报告的核心发现。首先我们看到在人工智能初创企业方面,中国的总投资仅次于美国,大体上相当于美国规模的五分之二。趋势上来看,中国跟美国总投资额的差距在缩小。如果我们集中看项目晚期的投资情况,中国和美国的差距缩小的更快。这是第一个总结的内容。

第二个总结的内容就是人工智能作为一个全新的行业还正在兴起,还没有真正建立起来,具有非常高的不确定性。当面对如此高的不确定性的时候,它的种子期和早期的数量,即包括项目数量和企业数量,是最终优胜劣汰出成果的关键。如果我们集中看种子期和早期的话,无论是企业的总数还是交易量的总数,中国都在英美之后,而且和英美的差距不是在缩小,反而是在增大。这是值得高度关注的问题。

在学术方面,中国发表论文的总量仅次于美国。其中,在期刊发表的总量和引用量总量都是位居世界第一,超过了美国,而且早就超过了美国。而会议发表的总量排第二,和美国的差距仍然非常大,和英国德国等等的差距并不大。在会议论文中,高引用量特别是最高引用率的论文,中国和美国有显然的差距,而且这个差距没有清楚地缩小的趋势。

在人工智能开源软件方面,与美国的研究者相比,中国的人工智能的研究者开发和使用的要少很多。从趋势上看,这种差距在增加,而不是在缩小。

(作者为伦敦帝国理工学院客座教授、哈佛大学经济学博士(1991),2016年获得首届中国经济学奖,2013年获得孙冶方经济学论文奖。是美国科斯研究所(RCI)的理事、欧洲经济政策研究中心(CEPR)研究员;编辑:王延春)

责编|阮璐阳

本文为《财经》杂志原创文章,未经授权不得转载或建立镜像。如需转载,请在文末留言申请授权。

什么是人工智能 (AI)

虽然在过去数十年中,人工智能(AI)的一些定义不断出现,但JohnMcCarthy在2004年的文章 (PDF,127KB)(链接位于IBM外部)中给出了以下定义:"它是制造智能机器,特别是智能计算机程序的科学和工程。AI与使用计算机了解人类智能的类似任务有关,但不必局限于生物可观察的方法"。

然而,在这个定义出现之前数十年,人工智能对话的诞生要追溯到艾伦·图灵(AlanTuring)于1950年出版的开创性作品"计算机器与智能"(PDF,89.8KB)(链接位于IBM外部)。在这篇论文中,通常被称为“计算机科学之父”的图灵提出了以下问题:“机器能思考吗?” 他在这篇文章中提供了一个测试,即著名的“图灵测试”,在这个测试中,人类询问者试图区哪些文本响应是计算机做出的、哪些是人类做出的。虽然该测试自发表之后经过了大量的审查,但它仍然是AI历史的重要组成部分,也是一种在哲学中不断发展的概念,因为它利用了有关语言学的想法。

StuartRussell和PeterNorvig随后继续发表了“人工智能:一种现代方法 ”(链接位于IBM外部),成为AI研究方面的重要教材之一。在这本书中,他们深入探讨了AI的四个潜在目标或定义,基于理性、思考和行动来区分计算机系统:

人类方法:

像人类一样思考的系统像人类一样行动的系统

理想方法:

理性思考的系统理性行动的系统

艾伦·图灵的定义可归入"像人类一样行动的系统"类别。

以最简单的形式而言,人工智能是结合了计算机科学和强大数据集的领域,能够实现问题解决。它还包括机器学习和深度学习等子领域,这些子领域经常与人工智能一起提及。这些学科由AI算法组成,这些算法旨在创建基于输入数据进行预测或分类的专家系统。

目前,仍有许多围绕AI发展的炒作,市场上任何新技术的出现都会引发热议。正如Gartner在其hypecycle技术成熟度曲线(链接位于IBM外部)中指出的那样,自动驾驶汽车和个人助理等产品创新遵循“一个典型的创新周期,从欲望膨胀到期望幻灭、到最终了解创新在市场或领域中的相关性和作用。”正如LexFridman在2019年麻省理工学院演讲中指出的那样(01:08:15)(链接位于IBM外部),我们正处于欲望膨胀高峰期,接近幻灭的谷底期。 

随着对话围绕AI的伦理道德展开,我们可以开始看到幻灭谷底初见端倪。如想了解更多关于IBM在AI伦理对话中的立场,请阅读这里了解更多信息。

人工智能学院2023年学科竞赛工作方案

为进一步提升人工智能学院各专业的学科竞赛水平,使学生在学科竞赛中培养专业能力、创新能力以及团队合作精神,激励学生运用工程技术和专业技能来解决实际问题,激发大学生学习兴趣,培养大学生团队合作意识和挑战精神,达到“以赛促学、以赛促教、以赛促创”的目的,在2021学科竞赛工作的基础上制定2022学科竞赛工作方案。  

一、2021年学科竞赛成效

2021年,人工智能学院通过改革学科竞赛组织管理模式,通过设立学科竞赛组的形式创新学院学科竞赛管理。并以学科竞赛组为工作形态,通过采取进一步加强学科竞赛与实践类课程衔接紧密程度,进一步开放实验室为学科竞赛提供训练场地,进一步推进实习组织方式改革支撑学科竞赛参赛组织,进一步加大学科竞赛师资培训力度培训教室的工程实践能力,进一步加大学科竞赛的宣传动员力度扩大学生的竞赛参与度等多种措施,人工智能学院学科竞赛成效显著。2021年人工智能学科竞赛工作呈现“百花齐放,处处结果”的良好新气象。  

人工智能学院2021年学生学科竞赛获省部级以上奖项共128项,其中国家级奖项30项,省部级奖项98项。  

在全国大学生电子设计竞赛中时隔6年重新获得全国一等奖的好成绩,还包括自治区一等奖4项、二等奖3项、三等奖5项,是自2008年组织参加比赛最好成绩。在2021年第十二届全国软件和信息技术专业人才大赛获得国家级二等奖2项、三等奖5项,自治区级一等奖22项、二等奖7项、三等奖5项,获奖总数创历史新高。在2021年第二十届全国大学生机器人大赛获得国家级二等奖1项、三等奖1项。在2021年第四届中国高校智能机器人创意大赛获得国家一等奖1项、二等奖2项,参赛人员和获奖总数取得突破。首次参加中国大学生工程实践与创新能力大赛获得国赛三等奖。  

除了上诉所列的全国大学生电子设计竞赛、全国软件和信息技术专业人才大赛、全国大学生机器人大赛、中国高校智能机器人创意大赛、中国大学生工程实践与创新能力大赛外,人工智能学院2021年在多项关键赛事也取得了新的突破。  

在2021年第七届广西高校大学生创新设计与制造大赛获得一等奖2项、二等奖2项、三等奖2项的历史最好成绩。在第十四届全国三维数字化创新设计大赛中获得省赛特等奖1项、一等奖一项的好成绩。在2021年第五届广西高校无人机大赛中获得一等奖1项、二等奖1项、三等奖6项,获奖总数取得新的突破。在2021年全国大学生数学建模竞赛总获得省赛三等奖2项的突破,属于我院最好成绩。首次组织参加了华为中国大学生ICT大赛获得了省赛三等奖的突破。首次组织参加了全国大学生工程训练综合能力竞赛获得省赛一等奖2项、二等奖1项。  

二、2022年学科竞赛工作思路

2022年,人工智能学院学科竞赛工作以“教赛融合、覆盖广泛、突出重点、打造精品”为工作思路,进一步完善学科竞赛组的组织管理制度,推进“一专业一品”学科竞赛的组织、指导、管理、训练等工作,重点推进《中国高校创新人才培养暨学科竞赛评估结果》中纳入排行的竞赛项目和广西教育厅组织的学科竞赛。  

进一步完善学科竞赛组管理制度,使各系学科竞赛组起到学科竞赛的组织、协调、管理和训练工作。学院以系为单位组织3个学科竞赛组,分别按学科负责组织机械类、电子信息类、计算机类学科竞赛工作,并推进以学科竞赛为核心的课程体系、实践教学内容、教学改革方式改革。每一个学科竞赛设组长1人和秘书1人,成员由各主要学科竞赛组织教师、负责学科竞赛的系(副)主任、负责场地即资源支撑的实验管理教师组成,为学科竞赛提供竞赛场地、教学体系改革、实习实训等教学场地和教学改革支撑。  

进一步扩大学科竞赛的参与面和覆盖面。一方面,通过广泛发动和持续引导,将学科竞赛工作融入新生引导、专业导论、实践课程、实习实训等实践教学中,将各学科竞赛的特征和优势融入实践教学内容中,扩大各类学科竞赛的学生参与程度。根据各专业培养目标和课程体系,把学科竞赛融入课程教学中,在课程体系中明确各学科竞赛的支撑课程,由学科竞赛组负责这类实践类课程的教学安排和质量监控,使得学科竞赛工作成为教学的蛀牙内容。第二方面,各学科竞赛组不断更新学科竞赛名单,确保学科竞赛要覆盖人工智能的9个本科专业,使得各专业均有学科竞赛,打造“一专业一品”的竞赛项目。并以学科竞赛为契机,提升学生的工程实践能力和教师的工程教学水平。  

三、重点组织的学科竞赛基础和竞赛目标

2022年,人工智能学院学科竞赛工作以“教赛融合、覆盖广泛、突出重点、打造精品”为工作思路,进一步完善学科竞赛组的组织管理制度,推进“一专业一品”学科竞赛的组织、指导、管理、训练等工作,重点推进《中国高校创新人才培养暨学科竞赛评估结果》中纳入排行的竞赛项目和广西教育厅组织的学科竞赛。  

(1)全国大学生机械创新设计大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第9项,由教育部高等学校机械学科教学指导委员会主办,机械基础课程教学指导分委员会、全国机械原理教学研究会、全国机械设计教学研究会、北京中教仪人工智能科技有限公司联合著名高校共同承办。  

本项赛事周期举办为2年,在上一个比赛年2020年,我校获得自治区二等奖奖项。2022年,人工智能学院将把本次赛事作为突破重点,计划组织20队参加此项比赛,力争获得国家二等奖以上的奖牌。  

(2)蓝桥杯全国软件和信息技术专业人才大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第33项,十年来,包括北大、清华在内的超过1300余所院校,累计40万余名学子报名参赛,IBM、百度等知名企业全程参与,成为国内始终领跑的人才培养选拔模式并获得行业深度认可的IT类科技竞赛。我院指导学生经验丰富,有较强的师资水平和教学指导团队,在2021年共组织38名学生参赛,获得国家二等奖2项、三等奖5项,自治区一等奖22项、二等奖7项、三等奖5项。  

2022年,学院将继续组队参加本项竞赛,规模与2021年相当。工作目标是省一等奖不少于20项,确保获得国家二等奖,力增国家一等奖。  

(3)全国大学生电子设计竞赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第6项,教育部和工业和信息化部共同发起的大学生学科竞赛之一。  

2021年,我校在全国大学生电子设计竞赛中时隔6年重新获得全国一等奖的好成绩,还包括自治区一等奖4项、二等奖3项、三等奖5项,是自2008年组织参加比赛最好成绩。  

本项赛事周期举办为2年,下一个比赛年是2023年。人工智能学院把2022年作为本项比赛的准备年,做好广西大学生电子设计竞赛的工作,力争组织30队参加广西大学生电子设计竞赛,并取得省赛一等奖奖项。  

(4)中国大学生计算机设计大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第26项,由教育部计算机相关教指委独立或联合主办,是全国普通高校学科竞赛排行榜榜单赛事之一。2021年,我校获得省赛3枚三等奖。  

2022年,学院将继续组队参加本项竞赛,力争国赛二等奖以上的突破。  

(5)全国大学生工程训练综合能力竞赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第16项,我院2021年首次组织学生参加本次赛事,首次参赛成绩骄人,获得自治区一等奖2项、二等奖1项。  

本项赛事周期举办为2年,下一个比赛年是2023年。人工智能学院把2022年作为本项比赛的准备年,做好师资培养和校内选拔工作,力争在2023年组织10队参加本项比赛。  

(6)全国大学生机器人大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第29项,由共青团中央、全国学联联合主办,大赛分为四项Robocon赛事、RoboMaster赛事、Robotac赛事、机器人创业赛。2021年,我校学生获得国家二等奖1项、三等奖1项。  

由于本次赛事设备成本高,考虑到学科竞赛限制和学科竞赛的连续性,学院将在2022年组织1队参加本项比赛,争取获得国赛二等奖以上的成绩。  

(7)中国大学生程序设计竞赛  

中国大学生程序设计竞赛(ChinaCollegiateProgrammingContest,CCPC)是由中国大学生程序设计竞赛协会主办的面向世界大学生的国际性年度赛事,旨在激励当代大学生运用计算机编程技术和技能来解决实际问题,激发其学习算法和程序设计的兴趣,培养其团队合作意识、创新能力和挑战精神。我校自2018年参加本项比赛,每年均可以通过网络赛获得1个参赛资格,但因全国总决赛竞赛激烈,仅在2019年获得国家三等奖。  

2022年,人工智能学院将继续组织学生参加网络选拔赛。工作目标是在全国总决赛中获得1枚奖牌。  

(8)ICPC国际大学生程序设计大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第4项,我校自2017年以来多次参加ICPC竞赛的网络选拔赛,并获得现场赛资格。在2020年,我校学生获得区域赛一等奖,2021年因学生参赛现场发挥失常而没有获得奖牌。  

2022年,人工智能学院将继续组织学生参加网络选拔赛,力争获得1个现场赛资格。工作目标是在全国区域赛中获得1枚奖牌。  

(9)全国大学生数学建模竞赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第5项,我校组织大学生数学建模大赛以有多年,主要是数学专业参赛。我院电子信息工程和通信工程专业分别从2018年开始组织学生参赛,2021年取得突破性成绩,获得自治区三等奖2项。  

人工智能学院将继续组织参加2022年的比赛,并把数学建模大赛作为重点赛事,结合教学内容改革和课程考核方式改革,力争获得更好的成绩。  

(10)全国大学生物联网设计竞赛  

本赛项是由全国高等学校计算机教育研究会主办,由教育部高等学校计算机类专业教学指导委员会及物联网工程专业建设研究专家组创办,以促进国内物联网相关专业建设和人才培养为目标,鼓励参赛者利用物联网为代表的新一代信息技术设计并实现一个完整物联网系统,激发物联网相关专业学生的创造、创新、创业活力,推动高校创新创业教育而举办的面向大学生的学科竞赛。  

人工智能学院将把本次赛事作为2022年重点培养的赛事,首次组织参加本次赛事,力争奖牌突破。  

(11)中国高校智能机器人创意大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第57项,是中国武术、竞技运动与人工智能、机器人等技术结合,融技术性、对抗性、挑战性、观赏性于一体,参赛队伍进行一对一,多对多等不同项目的角逐,大赛分统一部件组及开放部件组两大类别。  

2021年,我校学生获得国家二等奖1项、三等奖2项,国赛获奖数创历史新高。2022年,学院将重点支持本赛项,并计划组织20队以上学生参加,争取获得国赛二等奖以上奖项。  

(12)华为中国大学生ICT大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第55项,是华为面向全球大学生打造的ICT人才竞技交流赛事,旨在增长学生的ICT相关知识,提升其实践、应用技能和创新意识,促进ICT人才生态健康发展。  

2021我院首次组织学生参加本项赛事,并获得三等奖。虽然只有三等奖,但是仅有的两个赛道中,获奖高校仅有桂林电子科技大学、桂林理工大学和北部湾大学。2022年,学院将继续组队参加本项竞赛,争取国赛奖牌突破。  

(13)中国大学生工程实践与创新能力大赛  

中国大学生工程实践与创新能力大赛是列入《教育部评审评估和竞赛清单(2021年版)》的重要赛事,是全国大学生工程训练综合能力竞赛的升级和完善。  

2021年,我院首次组织参加本项比赛,获得国家级三等奖1项。2022年,人工智能学院将总结参赛经验,继续组织学生参加本次比赛,争取国家二等奖以上奖牌突破。  

(14)全国三维数字化创新设计大赛  

本赛项位列《中国高校创新人才培养暨学科竞赛评估结果》第48项,由3D动力发起,联合国家制造业信息化培训中心、全国三维数字化技术推广服务与教育培训联盟(3D动力)、光华设计发展基金会等单位共同主办,北京昆仑三迪科技发展有限公司与国家制造业信息化培训中心3D办联合承办,以“三维数字化”与“创新设计”为特色,突出体现科技进步和产业升级的要求,是大众创新、万众创业的具体实践。  

2021年,我校获得省赛特等奖1项、一等奖1项。2022年,学院将扩大本项比赛的参赛人数,力争获得2项省赛一等奖。  

(15)广西大学生程序设计大赛  

本赛项由广西教育厅主办,广西大学生程序设计大赛竞赛由广西区教育厅主办,广西高校计算机类专业教学指导委员会协办,桂林电子科技大学承办,中国大学生程序设计竞赛委员会(CCPC)提供技术支持。我校在2019年和2018年均参加本次大赛并获得金奖,其中2018年获得亚军,2019年获得冠军。2021年,共组6队参赛,获得自治区二等奖3项、三等奖3项。  

2022年,人工智能学院组织学生规模与2021年相当。工作目标是至少1项自治区一等奖。  

(16)广西高校无人机大赛  

本赛项由广西教育厅主办,2021年我校获得一等奖1项,二等奖1项,三等奖6项,获奖奖项创新高。  

据悉,本项比赛将在2022年增加无人机设计类赛项类别,该类别属于我校优势竞赛。人工智能学院将继续组织参加2022年的比赛,并把无人机设计作为比赛的突破点,力争省赛一等奖2项。  

(17)广西高校大学生创新设计与制造大赛  

本赛项由广西教育厅主办,大赛的宗旨在于培养大学生的创新思维能力、设计制造能力与团队协作精神;加强大学生工程实践能力、实际动手能力和工艺创新能力的训练;吸引和鼓励广大学生积极参加课外科技活动,为强能力、高素质的优秀人才脱颖而出搭建平台。我院重视本次比赛,并把本项竞赛作为全国工训大赛和全国机创大赛的选拔赛项。  

2021年,我校共组织20队参加比赛,共获一等奖2项、二等奖2项、三等奖2项的好成绩。2022年,学院将扩大本项比赛的参赛人数,力争取得更好的成绩。  

(18)其他竞赛  

人工智能学院将把其他学科竞赛工作综合统筹推进,特别是中国“互联网+”大学生创新创业大赛、“挑战杯”全国大学生课外学术科技作品竞赛、“挑战杯”中国大学生创业计划大赛3项比赛。  

四、竞赛的组织和保障工作

(1)加强学科竞赛组的管理工作  

为进一步推进人工智能学院学科竞赛工作,激发广大教师参与学科竞赛的动力,为学科竞赛的宣传、指导、训练和选拔工作提供制度保障,有效推动实践教学、实验室开放、第二课堂聚焦学科竞赛并形成合力,持续提高我院学生在各类学科竞赛中的成绩,推动形成“以赛促学、以赛促教”的良好教风学风,有力支撑我院应用型、复合型、创新型人才培养质量,人工智能学院在各系分别成立学科竞赛组。竞赛指导组制度明确了各学科竞赛的工作职责,负责所在系的主要学科竞赛的宣传、指导、训练和选拔工作。并负责电工电子技能训练、程序设计实训、电子设计与制作实战、机器人创新设计及制作实战等学科竞赛训练类实践课的课程安排、教学组织和质量控制。  

2022年,人工智能学院将继续完善学科竞赛组制度,并以学科竞赛指导和组织为抓手,同步推进实践课程的一流课程建设。  

(2)优化人才培养方案  

人工智能学院9个本科专业的2020级和2021级人才培养方案中,均针对学科各专业“一专业一品”学科竞赛设置了学科竞赛实践课程,其中“电工点钟技能训练”课程为全学院统一开设,机械设计及其自动化专业、智能制造专业、人工智能专业设置“机器人创新设计及制作实战”,电子信息工程专业、通信工程专业、物联网工程专业设置“电子设计与创新实战”,软件工程专业、网络工程专业、数据科学与大数据专业设置“程序设计实训”课程。这些课程的开设将进一步激发学生参加学科竞赛的热情,并以赛促学、以赛促教,提升人工智能专业学科竞赛取得优异成绩。  

(3)学院二次分配的制度保障  

在学院二次分配实施细则中,明确通过学院的激励机制促进学院学科竞赛。学院奖励的学科竞赛是指省部级及以上级别的下列竞赛:中国“互联网+”大学生创新创业大赛、“挑战杯”中国大学生创业计划大赛、“挑战杯”全国大学生课外学术科技作品竞赛、全国大学生数学建模竞赛、全国大学生电子设计竞赛、大学生物联网设计竞赛、全国大学生机械创新设计大赛、全国大学生工程训练综合能力竞赛、全国大学生机器人大赛、ICPC国际大学生程序设计竞赛、中国大学生计算机设计大赛、蓝桥杯全国软件和信息技术专业人才大赛。除前面二项不发补贴外,其中“挑战杯”、电子设计竞赛、机械创新设计大赛、机器人大赛按每组400元发放给指导老师组,其它类学科竞赛按每组200元发放。  

2022年,学院将持续加大对学科竞赛的保障力度,为教师开展学科竞赛组织和辅导工作提供制度支撑。 

(4)持续开放实验室  

人工智能学院《人工智能学院(现代产业学院)实验中心人员职责和工作安排》(人智院字〔2020〕14号)、《关于教学场地使用申请的通知》(人智院字〔2020〕30号)等实验室管理文件,明确学院实验中心对学科竞赛的训练、选拔、辅导、指导等工作的支持职责,为学院各个学科竞赛的组织和指导提供了场地保障和组织保障。2022年,人工智能学院将进一步推动开放实验室,提高实验室的利用率,让各个实验室在课余时间成为学生学科竞赛的战场和比赛场。  

(5)支持学生实习期间进行学科竞赛备赛  

为鼓励学生参加各类学科竞赛和互联网+大学生创新创业大赛,学院支持学生在实习期间从事学科竞赛和互联网+大学生创新创业大赛的备赛,为学生参加学科竞赛争取充足的准备和训练时间。学院在专业实习工作方案中明确支持学生在实习期间进行学科竞赛备赛,学院根据学生的专业,推荐实习单位和岗位,在完成学科竞赛后到实习单位开展实习活动。  

2022年,学院将进一步完善专业实习工作方案,动员和支持获得过国家级学科竞赛奖项的学生积极留校,抓住实习期间学科竞赛备赛的时机,让学生没有实习压力,提升竞赛水平。  

(6)暑期学科竞赛集训工作  

为把握好疫情防控时期学科竞赛的新机遇,充分利用暑假关键时期,人工智能学院在暑假期间组织学生留校集中开展学科竞赛训练和辅导,定点发力下半年学科竞赛备赛。  

2021年我院共组织165名学生留校参加大学生程序设计大赛、全国大学生机器人大赛、大学生电子设计竞赛、全国大学生数学建模大赛等学科竞赛的训练和辅导,各项竞赛的集训工作将在人工智能学院各对应的专业实验室开展。暑期集训有力地提升我院学生学科竞赛实力,形成相对优势,促进学生的竞赛水平。  

2022年人工智能学院将再次组织暑假期间学科竞赛的集训工作,并总结暑期学科竞赛集训的经验和不足,进一步做好暑期集训前的组织和宣传工作,并加强暑期集训教师指导的组织工作,促进学科竞赛再出新成绩。  

                        人工智能学院  

                        2021年12月25日  

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇