博舍

知识表示方法简介 人工智能表示方法有哪些方面的特征

知识表示方法简介

1基本概念1.1知识Feigenbaum认为知识是经过削减、塑造、解释和转换的信息。简单地说,知识是经过加工的信息。Bernstein说知识是特定领域的描述、关系和过程组成。Hayes-Roth认为知识是事实、信念和启发式规则。信息关联后所形成的信息结构:事实&规则。1.2人工智能系统所关心的知识

一个智能程序高水平的运行需要有关的事实知识、规则知识、控制知识和元知识。

事实:是有关问题环境的一些事物的知识,常以“…是…”的形式出现。如事物的分类、属性、事物间关系、科学事实、客观事实等,在知识库中属于低层的知识。如雪是白色的、鸟有翅膀、张三李四是好朋友。规则:是有关问题中与事物的行动、动作相联系的因果关系知识,是动态的,常以“如果…那么…”形式出现。特别是启发式规则是属于专家提供的专门经验知识,这种知识虽无严格解释但很有用处。控制:是有关问题的求解步骤,技巧性知识,告诉怎么做一件事。也包括当有多个动作同时被激活时应选哪一个动作来执行的知识。元知识:是有关知识的知识,是知识库中的高层知识。包括怎样使用规则、解释规则、校验规则、解释程序结构等知识。1.3知识表示定义维基百科:是认知科学和人工智能两个领域共同存在的问题。在认知科学里,它关系到人类如何储存和处理资料。在人工智能里,其主要目标为储存知识,让程式能够处理,达到人类的智慧。知识表示是研究用机器表示知识的可行性、有效性的一般方法,是一种数据结构与控制结构的统一体,既考虑知识的存储又考虑知识的使用。知识表示可看成是一组描述事物的约定,以把人类知识表示成机器能处理的数据结构。1.4知识特性相对正确性。一定条件下/某种环境中不确定性。中间状态/为真程度/随机性/模糊性/经验性/不完全性可表示性。语言/文字/图像/视频/图形/音频/神经网络/概率图1.5知识的分类范围。常识性知识/领域性知识作用。事实性知识/过程性知识/控制知识确定。确定性知识/不确定性知识表现。逻辑性知识/形象性知识抽象。零级知识/一级知识/二级知识2一阶谓词表示(FirstOrderPredicate)2.1谓词公式表示知识的步骤定义谓词及变元变元赋值连接词连接谓词,形成谓词公式2.2谓词逻辑的推理规则取式假言推理拒式假言推理P规则(在推理的任何步,引入前提)T规则(在推理的任何步,引入永真蕴涵的公式)CP规则(对任意引入的命题R和前提集合能推出S,则前提集合能推出S)反证2.3举例

2.4优缺点优点:精确,自然,严密,易于实现缺点:表示和处理分离,组合爆炸导致效率低3产生式表示(Production)3.1产生式规则基本形式

对于规则是表示事物间的因果关系,以下列形式表示:condition->action。一般使用三元组(对象,属性,值)或(关系,对象1,对象2)来表示事实。

如事实“老李年龄是35岁”,便写成(Lee,age,35)事实“老李、老张是朋友”,可写成(friend,Lee,Zhang)

3.2常用结构原因→→结果:天下雨,地上湿条件→→结论:将冰加热到0度以上,冰会融化成水前提→→操作:如果能找到合适的杠杆和支点,则可以翘起地球事实→→进展:夜来风雨声,花落知多少情况→→行为:手机开机了,则意味着可以收到别人发我的信息了3.3产生式系统的组成

多数较为简单的专家系统(ExpertSystem)都是以产生式表示知识的,相应的系统称作产生式系统。

产生式系统,由知识库和推理机两部分组成。其中知识库由规则库和数据库组成。规则库是产生式规则的集合,数据库是事实的集合。

规则是以产生式表示的。规则集蕴涵着将问题从初始状态转换解状态的那些变换规则,规则库是专家系统的核心。规则可表成与或树形式,基于数据库中的事实对这与或树的求值过程就是推理。

数据库中存放着初始事实、外部数据库输入的事实、中间结果事实和最后结果事实。

推理机是一个程序,控制协调规则库与数据库的运行,包含推理方式和控制策略。

3.4产生式系统的推理方式正向推理:从已知事实出发,通过规则库求得结论,或称数据驱动方式反向推理:从目标(作为假设)出发,反向使用规则,求得已知事实,或称目标驱动方式双向推理:同时使用正向推理又使用反向推理。3.5举例

4语义网络表示(SemanticNetwork)4.1发展过程

奎廉的认知实验:

4.2基本语义关系包含或聚类关系属性关系时间关系位置关系/相似关系/推论关系二元关系/多元关系4.3举例

例:陈骏是南京大学的校长;南京大学在南京;陈骏专业是地球科学。陈家骏是陈骏聘用的教授,陈家骏专业是计算机科学。

4.4语义网络下的推理

语义网络表示法是依匹配和继承来进行推理的。1.继承。把对事物的描述从抽象节点传递到具体节点,通常沿着类属关系ISA,AKO等具有继承关系的边进行。2.匹配。把待求解问题构造为网络片段,其中某些节点或边的标识是空的,称为询问点。将网络片段与知识库中的某个语义网络片段进行匹配,则与询问点相匹配的事实就是该问题的解。

如求解以下问题(匹配例子):

4.5优缺点

优点:

结构性、联想性、自索引性、自然语言的转换性善于处理结构性的知识

缺点:

不严格性、处理复杂本质和谓词演算等价5框架表示(Framework)5.1什么是框架

5.2框架的定义

框架是描述对象(一个事物、一个事件、一个概念)属性的一种数据结构。在框架表示法中,框架被认为是知识表示的最基本单元。框架是由若干结点和关系(统称为槽slot)构成的网络。是语义网络一般化形式化的一种结构,同语义网络没有本质区别。将语义网络中结点间弧上的标注也放入槽内就成了框架表示法。

5.3框架的表示

框架名、槽名(描述某一方面的属性)、侧面(描述属性的某一方面)、值组成。

5.4举例

5.5框架表示下的推理

框架表示法没有固定的推理机理。但框架系统的推理和语义网络一样遵循匹配和继承的原则,而且框架中如if-needed、if-added等槽的槽值是附加过程,在推理过程中起重要作用。

5.6优缺点

优点:

结构性(不同于语义网络的结构性)、继承性、自然性是语义网络的重要扩展面对对象语言OO的产生

缺点:

缺乏过程性知识表示

人工智能何以促进未来教育发展

原标题:人工智能何以促进未来教育发展

自工业革命以来,人类社会的发展总是在技术与教育的角逐互动中前行。技术作为推动人类历史发展的核心推进力,与教育这一“人力资本发动机”竞相成为推动经济社会发展的主力。人工智能作为第四次工业革命的显著标签,其飞速发展正在逐步塑造社会、经济、生活等领域的业务新形态,也不断带来颠覆性、丰富性、创新性的新业态。面对人工智能技术对整个社会发展的刺激,教育如何发展,成为值得思考的重要问题。

人工智能凸显创新人才发展挑战

作为引发第四次科技革命的核心技术,人工智能促进社会经济和科技的指数级发展,对人力资本的质量与供给产生了新的需求,人工智能与人力资源之间的相互依存关系产生了前所未有的张力,教育的超前性更是受到前所未有的挑战。第一,知识增长的指数发展使得未来人才需要哪些方面的准备具有极大的不确定性。第二,智力劳动者比重增加,创新人才成为时代发展的刚需。人工智能技术与生产过程的深度融合,会极大压缩生产领域的从业者需求,特别是那些人工智能胜出的领域。第三,人工智能技术的兴起引发高技术产业、新兴产业、新型服务行业更广阔的发展空间,从而使得创新型人才、复合型人才、高技术人才等在劳动力结构中需求激增。人工智能技术无法取代的创造性、灵活性、人文性等能力将成为智能化时代人才竞争的关键。教育肩负培养创新人才、为未来人才提前布局的使命。回溯历史,我们可以得到的经验是,只有教育领先于技术的发展步伐,为技术推进的社会提前做好人力资源的布局,社会的发展才有后劲。因此,在人工智能推进社会更飞速发展的今天,必须回答好什么样的教育才能承载提前布局人力资源的使命,以应对未知社会的人才挑战这一问题。

人工智能催生新的知识生产方式

在人工智能的影响下,人类知识生产加剧变化,知识增量呈现指数级态势。教育的传承性发展将不再局限于知识的传授与继承,而强调知识创造与创新,人工智能的介入更是催生了新的知识生产方式。其一,人工智能强大的知识发现能力缩短了知识生产周期。随着深度学习、强化学习等新的机器学习算法的发展,人工智能除了可以加快知识的生产、访问和利用,还可以从数据中提取隐含的、未知的、潜在的、有用的信息(知识),从而扩展知识创造的能力。其二,人机协同的智能模式扩大了知识创造的机会与可能性。人工智能技术不仅促进人的群智协同创新,而且可以实现人类与人工智能代理协同,后者所具有的超强计算能力,可以极大加速知识生产,催生知识的众创,以及人机协同知识创新。人工智能催生的新的知识生产方式对教育的挑战是,教育不再局限于知识传承,而更是知识的创新。未来学校教育必须教会学生如何与人工智能技术协同合作,呵护学习者“能学”,以及高度重视学生辨析知识能力的培养,召唤学习者“会学”,促进学习者在人机交互中实现知识更新与创造。

人工智能变革学习方式带来创造力与活力释放可能

人工智能已经引发了诸多领域与行业的深刻变革,对教育的系统性变革更是呼之欲出,为学习方式的变革带来了可能。首先,人工智能技术带来规模化教育的个性化可能。人工智能构建的智慧学习环境不仅创造灵活的学习空间,还能感知学习情境、识别学生特征,为学生提供个性学习支持。其次,人工智能技术带来标准化教育下的适应性可能。人工智能通过动态学习诊断、反馈与资源推荐的自适应学习机制,可以适应学生动态变化的学习需求,从而打破标准化的教育限制,释放出学生的创造力与活力。最后,人工智能改善结构化的授导方式,释放教师的创造力与教学活力而专注于人性化的学习设计。教师烦琐重复性的工作能够被智能机器所替代,智能分析技术能为教师精准定位学生的学习问题与需求,教师的角色将转向更加优秀的学习设计师,专注于“如何让学生学好”,注重培养学生的能力和思维,将更多时间用于学习活动设计以及与学生的个性化互动交流,为学生提供个性化学习支持服务。人工智能的发展以及与教育教学的深度融合,给教育的改革创新带来了更多选择,教育需要发挥技术的赋能、增能、使能优势满足教育的功用性追求,也要坚守教育的育人初心和使命传递人文性价值,以学生的成长发展为前提探索可以实践的学习方式、学习设计,通过人工智能释放出教育的更大活力。

人工智能引发领域与行业变革催生教育生态升级

人工智能对其他领域与行业的变革影响也会延伸到教育领域,因为教育是关乎社会发展全局的事业。一方面,人工智能所发挥的增强、替代、改善、变革等作用,突出体现在对社会生产和生活各个领域所产生的行业重塑作用,以及对人力的释放。另一方面,这些重塑作用和人力的释放,引发了社会领域与行业的变革,促使了社会人才需求的转向;而教育是社会人才资源输出的重要领地,需要为此作出有力回应,从而催生教育生态升级。人工智能加速了教育深化改革的进程,推动了系统内部的更新再造。数字技术已经对教师学生、课程、教学方式、学习体验、评价、管理等教育要素产生了深刻影响,并通过逐步的再造教育流程,变革着教育生态。而人工智能则在进一步加速这一过程,以一种颠覆性创新的态势,拓展系统内各要素的内涵,改善和延展系统内部关系,重塑教育系统功能与形态。人工智能拓展了教育边界,助推未来学校建设。未来学校将借助技术的力量,把校外学习场所(如科技馆、博物馆)和线上学习场所都纳入“学校”的范畴,整合社会各领域的教育资源,形成一种全新的育人环境。同时,数字孪生等新技术促进现实空间与虚拟空间的交互融合,通过创建人、物、环境数字孪生体,实现物理空间与数字空间的双向映射、动态交互和实时连接。对教育系统内部的升级改造以及空间资源的拓展,能够使其更好地与社会领域衔接,更好地提供适应未来生活和工作的创新人才成长场所。

人工智能关乎强国战略目标实现

教育应服务于国家战略布局,为抢占人工智能发展先机,构筑先发优势;为国际竞争、社会发展输出创新人才,支持科学技术的自主研发。当前,世界各国纷纷把发展人工智能上升到国家战略的高度,以抢占新一轮科技革命的机遇高点以及全球竞争中的主动权。《新一代人工智能发展规划》提出我国要“成为世界主要人工智能创新中心”的战略目标,全局部署了经济、教育、科技、社会发展和国家安全等重要方面。教育强国战略是科教兴国战略、人才强国战略和创新驱动发展战略等重要战略的逻辑起点,人工智能对教育的人才培养能力提出更高要求。近年来,世界各国在发展人工智能的同时也面临巨大挑战,如创新人才问题、高新技术自主可控问题等。人工智能的国际竞争本质是人才的较量,这需要教育从战略层面予以回应。因此,教育在战略上起引领作用,就要既充分发挥智能技术优势推动教育生态系统升级,又谋篇布局为国家发展提供人才支撑。立足技术与教育在角逐中互为塑造的视角,对人工智能促进未来教育发展的探索,更需要在战略上把握先机,通过教育为社会各领域输出创新人才,支撑社会各领域转型升级以及人工智能等高新科技的创新发展,为强国战略注入持续活力与能量。

教育在与技术的角逐中共同推动社会的发展。教育具有超前性、人文性、传承性、战略性及生态性等特点。在人工智能技术的指数式发展面前,教育的超前性变得难以维系;需要慢工出细活的人文性与满足社会用人需求的工具性之间呈现时空拉锯和矛盾;对人类知识的传承则变身为历史传承、人际共创以及人机共创的多重特征。随着人工智能技术推动的发展加速,教育的发展战略、前瞻性谋划,是一个时不我待、任重道远的重要课题。

(作者:顾小清,系国家社科基金重大项目“人工智能促进未来教育发展研究”首席专家、华东师范大学教育信息技术学系教授)

(责编:郝孟佳、孙竞)

分享让更多人看到

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇