博舍

墨芯人工智能王维:引领AI 20算力进化,稀疏计算加速大模型落地 人工智能的进化速度是多少秒

墨芯人工智能王维:引领AI 20算力进化,稀疏计算加速大模型落地

0分享至本文系网易新闻•网易号特色内容激励计划签约账号【智东西】原创内容,未经账号授权,禁止随意转载。

编辑|GTIC

智东西4月6日报道,在刚刚落幕的GTIC2023中国AIGC创新峰会上,墨芯人工智能创始人兼CEO王维进行了主题为《AIGC时代,算力如何“进化”》的演讲。

AIGC与通用人工智能要发展,作为基础设施的算力必须先行。随着大模型参数日益攀升,算力需求激增,算力供需缺口巨大、费用昂贵等难题,已成为AIGC发展亟需解决的首要问题。

王维说:“单纯靠硬件难以满足指数级的算力增长需求,必须通过软硬融合。在这个方向上,稀疏计算是公认的最有潜力发展和落地的方向。”相比稠密计算,稀疏计算可以达到1-2个数量级的性能提升。

通过在176B开源大模型BLOOM上的实测,墨芯S30计算卡在仅采用中低倍稀疏率的情况下,就可以达到25tokens/每秒的生成速度,并以4张S30超过8张A100的生成速度,大幅加速推理速度。

同时,墨芯预计在5月中旬开放大模型的开发套件,可以在1700亿参数模型中实现每秒40-50tokens的推理效果,去助力各个AIGC的应用场景发展。

他认为:“大模型的快速发展,给AI芯片初创公司带来了向巨头玩家发起挑战的机会,拥有了全新的展示舞台,用颠覆式创新带来数量级性能突破。”

以下为王维的演讲实录:

大家上午好!我今天讲的是算力和模型的发展,以及算力进化的问题。

讲算力的话,我们就要先了解一下今天的算力是从哪里来的?过去算力是处在什么情况和状态下?未来,我们的算力走向何方去支持生成式AI巨大爆炸式的应用?

我们希望能量化地看待从供给侧和需求侧之间有多大的GAP,然后再看现在我们手上有什么样的手段、什么样的技术、什么样的可以融合创新的方向去寻找新的算力。

一、人类数字文明建立在半导体集成电路之上

算力从哪里来?人类过去接近一个世纪的数字文明都是建立在硅基半导体制造的芯片之上。

我简单带大家回顾一下算力发展历史过程。历史上最重要的一个人是肖克利博士,他是麻省理工固体物理学博士,加入了贝尔实验室。1947年,他在贝尔实验室发明了人类第一个晶体管。1955年他回到家乡SantaClara(圣克拉拉)。这也有很多巧合因素,为什么SantaClara变成了现在的硅谷?为什么伟大的科学家或者商业家会从那个地方开始启蒙?

肖克利博士在圣克拉拉建立了第一家半导体公司。源于他在学术界的威望,这家公司吸引了一大批能人志士加入。但因为他是科学家,所以在管理层面上出现了一些问题。

1957年,硅谷出现了“硅谷八叛徒”,这个称号是肖克利博士对他们的称号。原因在于这八个人由于不满肖克利的管理方式而从这家公司“出逃”,创建了著名的仙童半导体。

我认为仙童半导体是集成电路发展史上开拓性或具有宗师级意义的企业,1961年仙童半导体推出第一块集成电路,把晶体管集成在硅基的集成电路上,就是集成二极管、三极管、电阻、电容,才有了集成电路的发展。

50年代到60年代间,整个半导体行业发展非常迅速,那么为什么又出来英特尔这些公司?原因在于,当时仙童半导体公司的投资人菲尔柴尔德家族占有了其绝大部分股份,把公司产品的利润和所有的资金挪到东岸其它产业方面。而在半导体产业里很有理想的工程师、科学家们对此十分不满意,1968年八叛徒中的戈登·摩尔和罗伯特·诺伊斯离开了仙童半导体,成立了今天大家熟知的英特尔。

还有一点大家可能不太熟悉的是,1969年杰里·桑德斯从仙童半导体出走,成立了今天的AMD公司,ADM的发展历史也很传奇。

后面大家都知道了,我们的计算、算力都是遵循着摩尔定律在CPU的基础上发展。

当时,摩尔提出摩尔定律的背景是,1965年,摩尔给《电子学》期刊做35周年观察家评论报告时,他发现过去这几年集成电路的发展基本每两年出一代新产品,并且每代新产品晶体管的数量翻了一番,他就在这个图上画出了著名的摩尔定律,就是今天所知的每18-24个月,晶体管的数量翻一番,或者从经济学的角度说,每过两年,每1美元可以买到的算力翻一番,成本降低一倍。

从1971年第一块4位CPU英特尔4004,1972年8位CPU8008,再到今天熟知的大半个世纪的发展,都遵循着摩尔定律。

和我们的生活和应用场景相关的这几十年,在最早的Wintel联盟时代,英特尔提供芯片,Windows做操作系统。当时有一句话说,英特尔每两年提供算力double一下,比尔盖茨把它给用掉。再后来到移动互联网时代,边缘端手机侧和云端的云计算等算力都在不断演进。

我创立墨芯之前,曾有幸参与英特尔2012年22nm第五代酷睿处理器,一直到2019年做到英特尔第十代10nmCPU。英特尔每一代CPU里面我很骄傲地设计了这些芯片里面的核心高速链路架构设计和电路设计。

对于我个人来说很有成就感,每每想到全球每个角落、每个用户敲一个键盘、动一下鼠标,每一个字节0和1都通过我做过的电路实现,这是我人生事业一个非常大的成就。

二、AI1.0向2.0进化,硬件层面找不到满足算力解法

刚刚回顾了一下算力发展的历程,我们仍然还是沿着摩尔定律发展,在物理层面上我们摆脱不了摩尔定律。从需求侧我们看一下发生了什么样的根本性变化。

这张图大家非常熟悉,这就是过去十年AI的发展历程。我相信AlexNet是第一个深度学习非常有代表性的且开拓了深度学习的纪元,今天以GPT-3.5生成式AI作为一个爆点,可以看到AI从1.0转向2.0,之所以会引起社会这么大的关注和影响力,更多的是因为,从1.0到2.0,小模型或者之前的模型从分析式变为今天的生成式。

生成式给大家打开了应用的想象空间和大门,商业化不再被担心,唯一担心的是我如何能够赶上这个潮流,以及多快能够赶上的问题,这也是为什么今天会成为一个爆炸性的时刻。

从算法角度来看,我们把1.0时代归纳为小模型时代,2.0时代就是以Transformer为基础的大模型时代。正是因为1.0到2.0的变革,才导致对算力提出了根本性的挑战和变革。

小模型时代,有AlexNet、ResNet、CNN模型、RNN模型,这些小模型的特点是,在每个细分场景会用场景数据去训练小模型,并且研发和部署的周期很短,是以周和月为单位去部署,对算力的要求更多是通用性和易用性,在这个基础上其实对成本、功耗的要求在大部分应用场景下不是痛点,是痒点而已。

原因在于,英伟达GPU平台可以做矢量和张量并行计算,它很早做了CUDA工具包,对科学计算到底层并行架构在软件链路的积累,使得这一平台很好用且通用。所以在小模型时代,大家会更多选用GPGPU。

但是回到大模型时代,对算力的需求完全不一样。模型结构不再多样化,我们通过Transformer做大模型预训练,所有的模型结构统一化,对算力的需求更多在于扩展性。从GPT-1到GPT-3、GPT-4,Transformer模型需要“暴力出奇迹”。

ChatGPT应该是在训练方面找到了更聪明的方法,使得它在生成式上产生突破。但从模型角度来说,仍然是暴力出奇迹。其实所有的深度学习都是特征提取器,当你学的东西越多,你就需要更大的空间矩阵、张量空间承载信息,所以它的模型是暴力增长。

预训练正是因为需要它先把所有东西学一遍,再到细分场景上精调,因此算力需求不仅仅看中通用性、易用性,更看重的是算力能不能跟上模型的增长速度、跟上算力需求速度,使得我可以更大规模拓展模型,用更先进、更聪明的方法训练出更厉害的预训练模型或者场景应用等。

总的计算算力增长和在应用层面上的推理速度就变成了绝对的痛点。而又因为生成式AI基本上都是在线应用,所以系统的反应速度一定是痛点。训练层面上,需要很多GPU,训练很长时间,那么高算力也一定是痛点。

这种情况下,通用性问题就可以被容忍。因为底层都是Transformer架构的注意力机制,在模型的算子层面慢慢固化,这个就是我们算力的需求在发生变化。

那么,提供算力的人怎么去满足它?我们可以看到Transformer模型参数每两年增长275倍,对算力的需求是每3.5个月翻一番。而摩尔定律是每两年翻一番,参数是275倍和2倍的增长速度,这中间是两个数量级的GAP。

所以,仅从硬件层面上,我们找不到完美的答案。

现在解决这个痛点的手段包括做存内计算、光子计算、量子计算等。存内计算的局限性在于它很难做浮点高精度计算,不支持先进制程,使得其应用距离解决目前的问题还有很大差距。光子、量子计算的生态体系和现有的软硬件生态也有很大距离。我承认,它们在实验室里有很大发展前景,但未来五到十年内仍需要依靠硅基半导体。

三、在算法里找“聪明办法”,稀疏计算最具潜力

软硬融合就是在算法方面寻找更聪明算力的一大方法,软硬融合的稀疏计算就是整个业界、学术界公认的最有发展潜力,并且可以落地的方向。

借用模型的增长曲线,图中橘黄色的线是整个产业界、学术界发表的稀疏计算研究论文数量。

大家可以发现在小模型时代GPU很好用,并行化加速、成本、速度都可以被企业接受。因此,这一时期对于稀疏计算的研究更多是在算法层,而突然到了大模型指数级增长时代,大家发现,大规模矩阵张量运算中有很多稀疏特性,不能再暴力把零元素、噪音元素都进行计算,我们需要做更聪明地计算,只计算真正有用的计算,这也正是稀疏计算的本质。

最近在学术界以及产业界的头部公司,比如最近混合专家模型MoE架构就是用了稀疏计算思路,不需要每次都激活所有的专家子模型,只会在通过某些通道的时候激活有必要的专家子模块,这样的话,在有限的算力情况下模型还可以继续拓展。这是稀疏计算的核心思路之一。

最近谷歌和OpenAI同时发布了一篇论文,该论文比较了稠密计算和稀疏计算的性能和加速,稠密计算的模型计算速度能在CPU上跑到3.61秒。

如果以稠密计算作为基准的话,把所有的Transformer大模型每一层,如FF、QKV和loss全部都用等效稀疏计算的话,稀疏计算可以提升37倍。也就是说,真正有效的计算通过稀疏计算可以达到一到两个数量级的性能提升,这也向我们展示了稀疏性确实存在于模型里面,关键的问题是你能不能找到它,要用什么样的方法实现它。

2018年,我在硅谷创立墨芯,2019年回到深圳的时候,最开始我们就看到了稀疏性,并且看到了它一个数量级、两个数量级上的性能增长空间,我们这三四年来也一直笃定坚持做稀疏计算平台。

微创新技术是大公司做的事情,以非常高成本的Chiplet为例,它是在硬件层面解决倍数问题,而不是解决数量级问题的技术。创业公司要做的是要看到数量级增长的技术空间,只要你笃定地去做,即使前面难一点,但只有这样,未来的空间才能突破、才没有上限。

四、以人脑为灵感,稀疏计算已成产学界重点研究方向

对于墨芯来说,作为业界稀疏计算的引领者,我们做了什么事情?所谓的稀疏计算到底是什么意思?我们的AI芯片和英伟达的GPGPU有什么区别?

英伟达基于V100的TensorCoreGPU是4×4矩阵并行加速单元,通过几万个、十几万个并行单元去加速矩阵运算、张量运算等。

之后,英伟达也同样知道模型有稀疏性,稀疏是未来。到了A100的时候,英伟达在原有架构基础之上,在模型矩阵层做了4拖2,也就是说4个里面有2个加速,理论上就可以加速一倍。

对于GPGPU公司,稀疏计算是它们的“意外收获”,可以在原有性能上提升一倍,但墨芯要做的事是超过它10倍甚至100倍。

墨芯采用的SparseTensorCore是64×64的矩阵空间,2个Tensor矩阵空间里均支持高达32倍的稀疏率。2个矩阵空间分别代表计算模型层的矩阵空间和激活层、神经元层的矩阵空间。

在模型层,并不是所有的矩阵里都是有用的元素,当我们把这么多有用的信息提取出来放到一个巨大的矩阵空间里,它的表现形式就是滤波器,滤波器之间的距离就是表示特征之间的特性。所以这个巨大的矩阵空间是稀疏的,随着模型越大、学的东西越多、特征区别越细粒度时,模型按指数级增长,稀疏率也会按指数级或者更高的速度增长,这就是模型稀疏。

激活稀疏,我们的大脑学习、理解都是激活稀疏,人有百亿级神经原,大脑的功耗只有几十瓦左右,当我们处理不同的事情、思考不同问题时,对眼睛、耳朵反应激活的神经原层面不一样,只有局部激活。包括混合专家模式也是一样的,对于不同模态、不同专家系统只需要激活部分模块。这就是墨芯底层的张量和支持大规模稀疏的矩阵和矩阵并行加速。

五、12nmVS4nm,墨芯S30性能是英伟达H1001.2倍

那么,稀疏计算在效果上到底怎么样?

我们研发了三年,2022年初墨芯第一颗高稀疏率的稀疏计算芯片Antoum流片成功回片,而且在几秒钟之内就点亮,不到24小时跑通了ResNet、BERT。

基于Antoum芯片,我们制作出了三款AI加速卡S4、S10、S30。因为墨芯的客户是云计算客户,不是直接用芯片,而是需要用GPU这样的AI加速卡。

国际上最权威、影响力最大的AI基准测试性能平台MLPerf,是由图灵奖得主大卫·帕特森联合谷歌、斯坦福、哈佛大学顶尖学术机构,还有英伟达、英特尔、微软云、谷歌云等发起成立,这一平台每年有两次性能的评比和提交。

去年8月,墨芯带着第一款S30在MLPerf2.1推理性能上与其他产品上台竞技,结果是基于12nm的S30单卡算力超越英伟达4nm的H100,ResNet性能是它的1.2倍。12nmVS4nm,在工艺上墨芯落后英伟达三代,中间还有10nm、7nm,除此以外,H100采用SXM模式,是700瓦大芯片,不是PCIe板卡。墨芯的S30不到300瓦。也就是说墨芯的工艺落后英伟达三代,功耗接近其1/3,但性能可以做到1.2倍。

如果大家说你只是做一个CNN模型,Transformer怎么样?墨芯的BERT-Large做到单芯片超3800SPS,仅次于英伟达H100,H100大概为7000、8000SPS左右。

不过,墨芯仍然超过了现在经常断供、缺货的A100。墨芯在BERT的性能上是A100的2倍。在BERT上输给H100的原因是,H100加入了新的数据类型FP8,但墨芯的第一代芯片只支持FP16。如果我们的下一代芯片支持FP8,那我们的性能也会翻倍,这样性能就和H100差不多,这些都是我们看得见的可以实现的优化,只不过是什么时候可以实现的时间问题。

六、“稀疏计算方向是对的!”,推理效果超A100

正是由于MLPerf的打榜,给行业揭示了一件事情,软硬件设计的稀疏计算潜力有多大,三代半导体工艺的差距,性能差距会达到八倍,三个数量级,同时功耗会是它的1/3,简单乘一下那就是24倍。

如果我也做4nm、做700瓦的功耗,那这个性能就会再往上提20倍。

我们默默无闻做这一件事做了三四年,就是想告诉大家,这个是对的方向。大模型时代到来,就是我们开始发挥的时候。

之前,你的客户可能会问,通用性怎么样?算子支持度怎么样?易用性怎么样?当然,我们任何一家AI芯片公司在生态上都无法和英伟达匹敌,但是今天我们走上了快车道。大模型的发展和算法的发展速度,给了今天的AI芯片公司一个全新的舞台和展示机会,使得它们可以在一个更高的维度上和过去的霸主进行竞争和挑战。

在大模型领域的实践和突破中,我们拿不到ChatGPT的模型参数,因此我们选用了学术界最知名的BLOOM开源库,176B的开源大模型。

在这样一个开源模型下,墨芯目前做到的推理效果是在中低稀疏倍率下,同样是176B大模型,用4卡的S30对标英伟达8卡的A100。

生成式AI对于时延的要求非常高,因为它需要一个一个token去算,因此对速度的要求是未来大模型上线的第一个痛点,也是最明显的痛点。

墨芯测试时1700亿的参数模型,A100每秒可以产生20左右个token。因为墨芯做了模型压缩,因此墨芯在实验室使用4卡,不需要用8卡,其可以做到稍微比A100好一点的性能,也就是每秒钟25个token。不过,我们的目标是在1700模型中做到每秒50个token。大家作为开发者的话,可以知道这个性能和速度已经到了极致。

七、5月中旬开放开发套件,坚持“科技向善”

大家很关心的一件事情就是什么时候可以试?我们预计在5月中旬去释放大模型的开发套件,在1700亿参数模型中做到40-50token/秒,去助力各个AIGC的应用场景发展。

我们作为一个科技工作者,看到生成式AI和AGI到来的突然性和其未来的进化速度,不禁让我们既兴奋又惊恐。

我拿人的大脑和ChatGPT做一个类比,ChatGPT是1750亿参数,对应人的大脑是千亿级的神经原,神经原之间的连接关系Synapse是100万亿。如果对应深度学习模型,我们需要拿连接关系和它的模型参数做比较,1700亿到100万亿,中间相差三个数量级,也就是至少差1000倍。

人脑的计算速度大概是硅芯片计算速度的1/1000,差三个数量级,人脑耗电大概在20瓦左右,数据中心千瓦级。我们会遐想,看到AI在知识领域的进化速度,人类能够超越或者不被机器取代的领域已经非常少了。

前两天我看到一个非常有意思的漫画,以前我招一个人给他配一台电脑,今天我招一台AI电脑给它配一个人,这个就是我们对于未来的担忧。

考虑到算法进化速度,当然前提是你有多少算力,因此我们是参与其中的。

如果今天的AI模型从1700亿进化到100万亿,和大脑相当的时候,它的计算速度是我的1000倍,同时也是稀疏计算的时候,并且当我们的训练方法越来越聪明,我们在知识领域能干的事还会剩下多少?最恐怖的是,如果我们新的训练方法使得它有了自我的进化意识,这会让我们非常担忧。

作为AI前沿浪潮的参与者,我们都在关心一件事情,不仅仅是技术,更是AI发展的伦理、法治和道德层面。

所以,我在公司成立的时候就想好了这件事情,墨芯的使命和价值观一定是科技向善、照顾弱小、利他利社会。

你可以想象,如果未来我们的社会掌握在一小群极致聪明的人手上,我们的生活被他们照顾,甚至我们的下一代的教育,这也是我非常担心的问题,以后孩子们要学哪些东西?尤其应试教育比较多的方面,以后人要往哪方面发展?

最后,回到这个基础之上,微软说要做负责任的AI,保证安全性、可控性,这也是OpenAI不开源大模型的原因之一。谷歌的口号是“我们不作恶”。

墨芯的口号是“科技向善”,我们去赋能和支持AI的发展,但是一定要做善事,把技术应用于善待人类、照顾人类。有一段时间我们自嘲地说,AI芯片就是类似于这场AI战争的“军火商”,“军火商”大部分是贬义,这也迫使我们去确立我们的使命和价值观,也就是只能把“军火”用在做善事上。

墨芯是一家稀疏计算公司,我们开拓和引领稀疏计算,谢谢大家!

以上是王维演讲内容的完整整理。

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.

/阅读下一篇/返回网易首页下载网易新闻客户端

透过chatGPT看人工智能带来的3D打印指数级进化发展与挑战

0分享至

2022年底,人工智能技术驱动的自然语言处理工具ChatGPT发布后迅速成为全球科技热点,也掀起了国内对各界对人工智能的高度重视。突飞猛进的人工智能技术将会在金融、医疗以及生活的方方面面给人们带来巨大的不确定性。这些不确定性既是挑战,也是机遇。

©3D科学谷白皮书

比尔.盖茨在近日发布的人工智能公开信中提到,目前,人工智能可以改变并可以专注改变的三个领域包括:生产力、医疗与教育。增材制造-3D打印作为一种新兴的数字化生产技术,与生俱来的具有与人工智能深度结合的基因。《3D打印与工业制造》一书谈到,3D打印由于其天然的数字化特征,且涉及到的海量数据难以通过人类的大脑来理解,人工智能将“主宰”3D打印的发展。根据《人工智能在3D打印领域的应用综述l人工智能赋能3D打印》一文,鉴于流程的复杂性,为了更好的理解在增材制造-3D打印中中应用AI-人工智能技术,3D科学谷将人工智能的应用领域分解为3D打印前处理、过程中处理和后处理阶段。

近日,期刊AdvancedIndustrialandEngineeringPolymerResearch刊登了由意大利学者发表的人工智能技术增材制造应用的最新研究文章“AssessingtheCapabilitiesofChatGPTtoImproveAdditiveManufacturingTroubleshooting(评估ChatGPT改进增材制造故障排除的能力)”。该研究探讨了使用聊天生成预训练转换器(ChatGPT)的潜力,以应对主要挑战并提高增材制造(AM)中Gcode生成过程的效率。

本期谷.专栏将分享这项研究中的核心内容,借此进一步了解有关ChatGPT性能的有效反馈,以及人工智能技术在增材制造领域的应用潜力。

Gcode生成过程控制3D打印机挤出材料的运动和逐层构建过程,是增材制造过程中的关键步骤,优化Gcode对于确保最终产品的质量和减少打印时间的浪费至关重要。

ChatGPT可以在现有的Gcode数据上进行训练,为特定的塑料材料、3D打印机和物体生成优化的Gcode,并根据打印温度、打印速度、床温、风扇速度、擦拭等各种打印参数分析和优化Gcode距离、挤出倍增器、层厚和材料流。

该研究展示了ChatGPT在执行与增材制造流程优化相关的复杂任务方面的能力。特别是进行了性能测试以评估ChatGPT在技术问题上的专业知识,重点是评估使用热塑性聚氨酯聚合物作为原料的熔丝制造(FFF)方法的打印参数和床层分离、翘曲和拉丝问题。这项工作提供了有关ChatGPT性能的有效反馈,并评估了其在增材制造领域的使用潜力。

使用ChatGPT进行增材制造流程优化有可能通过提供用户友好的界面并利用机器学习算法来提高Gcode生成过程和最佳打印参数的效率和准确性,从而彻底改变行业。此外,ChatGPT的实时优化功能可以节省大量时间和材料,使增材制造成为制造商和行业更容易获得且更具成本效益的解决方案。

开启指数级精益化能力时代

l3D打印Gcode的优化挑战

增材制造(AM),也称为3D打印,是一个快速发展的领域,有可能在工业4.0、生物医学、材料科学、航空航天和汽车等多个应用领域彻底改变传统制造工艺。增材制造最重要的优势之一是它提供的设计自由度。基于增材制造的方法使工程师、设计师和医生能够创建复杂的几何形状、定制以前使用传统制造无法制造的产品或医疗设备,并通过消除对专用工具的需求来降低生产成本。这导致各个行业的产品定制、功能改进和重量减轻达到了新的水平。此外,增材制造的设计灵活性和敏捷性也被证明是小批量生产中的宝贵工具,使公司能够生产少量高度定制化的产品,而不会产生高昂的加工成本。它已成为航空航天工业中必不可少的工具,在航空航天工业中,生产轻质、高强度部件的能力对于飞行效率至关重要。

近来,3D打印在个性化医疗领域也有着广泛的应用,包括牙科、假体部件、按需医疗器械、组织器官再生支架。制造患者专用设备、控制方向和孔隙率以及结合多种合成材料和生物材料的能力吸引了许多好奇心的关注,因为它可以改善患者的治疗效果和生活质量。此外,3D打印模型用于模拟手术,改善手术结果并降低风险。结果,这种技术的激增导致了许多突破性的治疗方法和设备的产生。

为了以多学科方式使用增材制造,迄今为止已经采用了多种增材制造技术,例如粉末床熔融(PBF)、立体光刻(SLA)、数字光处理(DLP)和熔丝制造(FFF)。

其中,FFF技术(也称为熔融沉积成型(FDM))在该研究中被选中,因为它是当今最流行的增材制造技术之一。FFF是一种材料挤压工艺,涉及逐层沉积细丝以生产三维部件。FFF技术的主要优势之一是成本低且相对易于使用。FFF技术的另一个优势是其使用的材料范围广泛。事实上,FFF技术允许使用各种类型的聚合物(例如,聚乳酸、聚对苯二甲酸乙二醇酯、聚丙烯、热塑性聚氨酯、聚己内酯、尼龙)、回收聚合物(例如,来自玉米的聚乳酸和聚对苯二甲酸乙二醇酯),以及复合材料(例如,聚酰胺碳充电),这使得生产具有不同化学物理和机械性能的零件成为可能。

尽管3D打印技术具有巨大的潜力,但在它被认可为一种常见的制造技术之前,仍有许多重大问题需要克服。尽管具有众多优势,增材制造,尤其是FFF技术,仍然面临着一些需要解决的挑战,例如材料选择、过程控制、支撑结构、精加工、精度和效率。其中一个挑战是Gcode的优化,它是3D打印机用来逐层创建对象的指令代码。

研究团队评估了使用由OpenAI开发的一种大型语言模型(LLM)ChatGenerativePre-trainedTransformer(ChatGPT)来解决这些挑战的潜力。特别是床分离、翘曲和串线,从而提高Gcode生成过程的效率,针对特定材料优化打印参数。选择正确的打印参数(例如:打印温度、打印速度、床温、风扇速度、擦拭距离、挤出倍数、层厚度和材料流量)和Gcode生成过程是增材制造过程中的关键步骤,用于控制打印机挤出机的运动和逐层构建过程。

优化Gcode对于确保最终产品的质量和减少打印时间至关重要。然而,生成最佳Gcode是一项复杂的任务,需要增材制造、计算机科学和材料科学方面的专业知识。这就是ChatGPT或生成式AI-人工智能模型的优势,它提供了一个用户友好的界面,可用于应对打印材料的主要挑战并生成优化的Gcode,从而减少长时间的试错阶段以优化新材料的3D打印,从而节省材料和时间。事实上,ChatGPT可以在现有的“失败”或“未优化”Gcode数据上进行训练,并可以使用此信息为特定材料、打印机和对象生成优化的Gcode。此外,ChatGPT可用于根据打印速度、层厚度和材料流(仅举几例)等各种参数分析和优化Gcode。通过使用机器学习算法,ChatGPT可以不断提高其性能,从之前的经验中学习以生成更高效的Gcode,从而将越来越多的内容集成到增材制造框架中,提高制造效率和设计与性能之间的关系,并最大限度地减少成本。此外,与传统的疲劳测试方法一起,使用ChatGPT或其他生成AI模型的数据驱动方法可用于研究和预测3D打印结构的疲劳寿命和断裂行为。

使用ChatGPT进行Gcode优化的另一个优势是可以在打印过程中进行实时优化。ChatGPT可以监控打印过程并对Gcode进行实时调整,以提高最终产品的质量。这可以显着节省时间和材料,并提高印刷过程的准确性和可重复性。

鉴于此,该研究的目标侧重于在执行与增材制造流程优化相关的复杂任务时对ChatGPT进行详细分析。这包括但不限于回答开放式格式问题和调查ChatGPT在与3D打印相关的技术问题上的表现,重点是FFF打印参数的评估。此外,研究团队的分析包括对优化和生成从头Gcode所需的ChatGPT技能的测试,以确保最终产品的质量并减少时间和打印浪费。为此,设计了一种全面的测试方法来评估ChatGPT的输出,包括“失败”或“未优化”的Gcode数据以强制使用ChatGPT的功能模型。

总体而言,此工作旨在提供有关ChatGPT性能的有效反馈,并评估其在增材制造领域的使用潜力。根据研究团队的知识,ChatGPT可以通过提供用户友好的界面和利用机器学习算法,显著提高增材制造方法和Gcode生成过程的效率和准确性。此外,ChatGPT的实时优化功能可以节省大量时间和材料,使增材制造成为制造商和行业更容易获得且更具成本效益的解决方案。

▲图1.常见的增材制造挑战,例如层粘附、翘曲、拉丝、悬垂、打印速度和材料兼容性,以及以分层方式呈现的可能的ChatGPT解决方案,从最有效和最简单的解决方案开始,逐步介绍不太常用的方法。

l结论

该研究展示了ChatGPT在执行与增材制造流程优化相关的复杂任务方面的能力。进行了性能测试以评估ChatGPT在技术问题上的专业知识,重点是FFF打印参数的评估。结果发现,ChatGPT在其响应中提供了卓越的准确性、正确性和组织性,其解决问题的方法在解决障碍方面提供了宝贵的见解。特别是,对于翘曲、床分离和拉线等具体技术问题,ChatGPT展示了其在考虑给定信息和约束的同时提供分层和逻辑组织响应的能力。此外,它还能够微调不同类型TPU长丝的打印参数,显示其将长丝材料的机械性能与打印参数相关联的能力。

此外,ChatGPT在现有的“未优化”Gcode数据上进行了培训,以提供优化的Gcode生成过程,以避免翘曲、床分离和拉线问题。最后,进行了一项评估AI可以处理的增材制造问题深度的实验,要求ChatGPT从头开始生成重新优化的Gcode。

总之,该研究的贡献是多方面的:首先,提供了对增材制造使用的见解。已经表明,对于哪些类型的问题以及增材制造的哪些领域和技术问题,ChatGPT可能有用,以及如何将其集成到3D打印工作流程中。其次,ChatGPT能够提供分层和逻辑组织的解决方案,同时-从最有效和最简单的解决方案开始到不太常用的方法-考虑到3D打印原料的给定信息和限制。第三,该研究发现,尽管交互有限且边界条件明确,但ChatGPT能够生成与当前研究一致的准确和最新的3D打印配置文件,并为两种不同类型的打印参数微调具有不同肖氏值的TPU长丝。第四,它提供了在一系列不同的打印参数和约束条件下测试Gcode生成过程的洞察力。这可能有助于未来开发在增材制造领域表现更好的大型语言模型。最后,ChatGPT的技术专长展示了它如何能够解决与FFF打印时间节省相关的挑战(它能够在一小时内优化计算多个参数,这项任务在实验上需要大约三周才能完成)和材料,对于研究机构和行业的研发阶段都至关重要。

另一方面,重要的是要指出本案例研究的可能局限性,它仅关注FFF作为增材制造工艺,而没有研究其他增材制造工艺(例如选择性激光熔化、选择性激光烧结、立体光刻外观),这可能有不同的优化挑战。因此,未来的进一步研究可能会侧重于ChatGPT在其他增材制造工艺中的能力,以及更广泛的材料(即陶瓷、金属、复合材料),以评估其在不同场景中的性能。此外,将ChatGPT集成到增材制造软件平台中,为用户提供实时建议和优化,可以提高增材制造流程的效率和质量。否则,将ChatGPT的性能与其他AI模型进行比较,以确定其在增材制造流程优化方面的优势或互补性。

l以上来源:焊接科学《》

国内3D打印发展何去何从?

近年来,国际上新增的创业企业,以软件及材料企业居多,国内以设备企业居多,尤其是当行业中出现上市企业后,同质化模仿跟风的趋势十分猛烈,资本的驱动下,企业为获取订单表现出两败俱伤的价格厮杀,损伤的是长期发展所需要的核心能力建设和研发创新基础,短期来说这是国内3D打印企业发展的巨大挑战与威胁。中期来说,3D打印发展模式已经发生本质的改变,依赖经验为主的模式发展遇到产业化瓶颈,中期将淘汰大量同质化缺乏核心竞争力的企业。3D科学谷ChatGPT掀起了国内对人工智能时代的高度重视,根据3D科学谷的市场观察,如今,我们已经习惯于看到AI接管越来越多的任务——不仅在我们的日常生活中,而且在医疗应用或工业生产中。人工智能的发展取得了很大进展。现在可以通过人工智能预测生产中的组件故障或从图像中提取信息以在几分之一秒内执行干涉任务。复杂的人工智能开发的深度数字孪生如何推动3D打印进入生产,

©3D科学谷白皮书

让一台机器来接管AM中的一些质量保证任务,这听起来有些离谱,根据3D科学谷的市场观察,事实证明,在AM增材制造工作期间收集的监控数据的问题与离线测试(例如CT扫描或超声波测试)收集的数据有很大不同。离线测试数据表征最终AM增材制造零部件的特性,而监控数据仅表征构建的特定层的特性。

在增材制造中,仍然非常需要降低所生产零件的成本。这与可能由数十万个层层加工组成的过程的有关。根据3D科学谷的市场了解,离线CT测试不仅会增加总体成本,而且还会限制几何形状,因为零件必须具有适当的形状才能进行扫描和测试。如果通过智能过程中监控和测试来取代离线监测,这开辟了新的空间,并可能降低总体成本。

2023年3月20日,领先的3D打印行业质量保证软件供应商SigmaAdditive宣布扩大与3D打印软件和服务解决方案全球领导者Materialise的合作,通过集成SigmaAdditive的PrintRite3D®为增材制造(AM)用户提供自动化质量控制,质量保证解决方案,新的软件解决方案融入MaterialiseProcessControl。

Sigma的PrintRite3D®套件提供过程中数据,包括来自熔池的热数据、屈服层数据,使用户能够更快地找到缺陷的根本原因。

根据3D科学谷,国内目前的3D打印,尤其是金属方面依靠大量的试错来探索最佳的制造方案,这在进入到规模量产的时候遇到了极大的成本和发展速度挑战,而复杂的金属3D打印势必要“装上人工智能的大脑”才能获得真正意义上的产业化发展。

国内即使是头部的3D打印企业,尤其是复杂的金属3D打印领域,将面临巨大的发展挑战,3D打印设备将装上“人工智能的大脑”,而大脑从何而来?是用尚且不存在的“内脑”,还是用国际上已经持续十多年厚积薄发开发出的“外脑”?是否应该用更平和的心态去对待“外脑内用”?行业是否能继续前行,在人工智能驱动的指数化精益能力进化到来的前夕,3D打印进入到产业化发展将不仅取决于自主创新实力,更取决于如何弥补国内基础研究短板,包括建立与国内生态圈的合作能力,包括建立与国际软件企业的合作共赢能力。3D科学谷国际上通过AI来进行增材制造加工质量控制的商业化公司目前包括以色列的printsyst,美国的addiguru,德国的nebumind,以及瑞士的Nnaisense等。包括之前提到的Materilalise的MaterialiseProcessControl,这些将作为第一梯队3D打印设备的人工智能大脑,驱动实现首件即合格的进入产业化的范式转变。

©3D科学谷白皮书

那么下一步,是否国内目前的设备将大量的采用国际上的过程质量控制解决方案呢?一方面是人工智能在以指数级的进化速度改变3D打印现状,推进该技术成为智能制造的主流技术,一方面是国内欠缺的数据共享基础建设,在共享数据的基础上开发标准,在共享数据的基础上验证软件开发。

此外,还考验中华民族从传统上对大国重器在硬件层面上的重视切换到包括对软件的重视上,考验中华民族传统上商业文化中甲方乙方不平等的地位切换到生态圈平等同创的合作文化上。

软件的发展需要极度宽容的长期主义者文化,Sigma这样的软件解决方案企业目前还处于严重亏损状态。10年前,美国国家标准与技术研究院-NIST孵化和支持了Sigma这家企业,至今Sigma的市值约480万美金,每股0.45美金,每股亏损0.9美金。

在这方面,3D打印领域,国内发展自主软件产业,需要产业化基金的支持。

NIST支持的另外一家与数据和人工智能相关的企业是Senvol,Senvol最初于2019年11月发布了SenvolML机器学习作为一种分析工具,用于理解增材制造过程中产生的数据。它是一个模块化的集成计算材料工程(ICME)系统,可将数据分为四个模块:工艺参数、工艺特征、材料特性和机械性能。Senvol的机器学习有着雄厚的数据基础,3D科学谷尝试使用了Senvol数据库查找钛合金金属粉末3D打印材料供应商。系统给出的结果十分丰富,其中包括了每家主流厂商提供的材料牌号,加工工艺名称,该工艺所加工的零件所能达到的拉伸强度,拉伸模量,断裂伸长率等等。

满足严苛的适航部件需求,这意味着用户可以使用SenvolML机器学习的结果来预测材料或过程的性能,从期望的结果(如抗拉强度)查看哪些过程或材料将使他们达到目标,甚至建议用户应该收集哪些数据,以便更好地了解该过程。

总体来说,基础研究的重要性正在显现,业界将回归基础并找到重要的东西。譬如,也许可以找到更好的控制湿度或氧化的方法,这对铜来说更为重要,这重回归基础的需求将开始渗透到其他材料中,将把制造者带回科学,试图了解什么是真正重要的。

根据ACAM亚琛增材制造中心,3D打印-增材制造的发展将推动数字材料技术进步,多材料打印的进步,确保大幅减少增材制造新材料设计、开发和取得资格所需的时间和成本。该领域包括开发新的和新颖的计算方法,如基于物理及模型辅助的材料性能预测工具;开发对计算机预测进行验证所需的通用基准数据,以及针对材料性能表征的新思路,有助于为每一个新的增材制造材料-工艺组合开发设计循环。

根据3D科学谷,数据与算法的重要性正在掀起3D打印行业的自我革命,是增材制造走向智能制造的跨时代金矿与赋能工具。

知之既深l行之则远

>sparkTalk

参考论文原文链接:

https://doi.org/10.1016/j.aiepr.2023.03.003

谷.专栏

投稿邮箱:2509957133@qq.com

欢迎投稿

知之既深行之则远

三维世界|全球视角

白皮书下载l请申请3D科学谷QQ群:106477771

投稿或合作请加微信ldaisylinzhu

或将稿件发送至l2509957133@qq.com

更多关注请登陆www.3dsciencevalley.com

特别声明:以上内容(如有图片或视频亦包括在内)为自媒体平台“网易号”用户上传并发布,本平台仅提供信息存储服务。

Notice:Thecontentabove(includingthepicturesandvideosifany)isuploadedandpostedbyauserofNetEaseHao,whichisasocialmediaplatformandonlyprovidesinformationstorageservices.

/阅读下一篇/返回网易首页下载网易新闻客户端

人工智能的历史、现状和未来

2018年2月25日,在平昌冬奥会闭幕式“北京8分钟”表演中,由沈阳新松机器人自动化股份有限公司研发的智能移动机器人与轮滑演员进行表演。新华社记者李钢/摄

2018年5月3日,中国科学院发布国内首款云端人工智能芯片,理论峰值速度达每秒128万亿次定点运算,达到世界先进水平。新华社记者金立旺/摄

2017年10月,在沙特阿拉伯首都利雅得举行的“未来投资倡议”大会上,机器人索菲亚被授予沙特公民身份,她也因此成为全球首个获得公民身份的机器人。图为2018年7月10日,在香港会展中心,机器人索菲亚亮相主舞台。ISAACLAWRENCE/视觉中国

2018年11月22日,在“伟大的变革——庆祝改革开放40周年大型展览”上,第三代国产骨科手术机器人“天玑”正在模拟做手术,它是国际上首个适应症覆盖脊柱全节段和骨盆髋臼手术的骨科机器人,性能指标达到国际领先水平。麦田/视觉中国

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇