博舍

【技术】GPU为何是人工智能的核心利器 什么是人工智能框架结构设计的核心

【技术】GPU为何是人工智能的核心利器

原标题:【技术】GPU为何是人工智能的核心利器?

图形处理器(英语:GraphicsProcessingUnit,缩写:GPU),又称显示核心、视觉处理器、显示芯片,是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。

用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一。显卡作为电脑主机里的一个重要组成部分,承担输出显示图形的任务,对于从事专业图形设计的人来说显卡非常重要。

GPU是为了能够更快处理图像而诞生

在九十年代,一批工程师意识到:在屏幕上进行多边形图像渲染,本质上是个能并行处理的任务--每个像素点的色彩可以独立计算,不需要考虑其它像素点。于是GPU诞生,成为比CPU更高效的渲染工具。简而言之,由于CPU在图像渲染方面的能力不足,GPU被发明出来分担这部分工作,此后就成了专门搞这方面的硬件。有了上千个更加简单的核心,GPU能高效地处理让CPU十分吃力的任务。只要有合适的代码配合,这些核心就能处理超大规模的数学运算,实现逼真的游戏体验。

GPU作为显示卡的“大脑”决定了该显卡的档次和大部分性能,同时GPU也是2D显示卡和3D显示卡的区别依据。2D显示芯片在处理3D图像与特效时主要依赖CPU的处理能力,称为软加速。3D显示芯片是把三维图像和特效处理功能集中在显示芯片内,也就是所谓的“硬件加速”功能。显示芯片一般是显示卡上最大的芯片。时下市场上的显卡大多采用NVIDIA和AMD-ATI两家公司的图形处理芯片。NVIDIA公司在1999年发布GeForce256图形处理芯片时首先提出GPU的概念。从此NV显卡的芯就用这个新名字GPU来称呼。GPU使显卡削减了对CPU的依赖,并实行部分原本CPU的工作,更加是在3D图形处理时。

GPU能将3D模型的信息转换为2D表示,同时添加不同的纹理和阴影效果,所以GPU在硬件里也是比较特殊的存在。从3D建模到最终显示在屏幕上,GPU渲染场景使用的是流水线操作。早些时候流水线操作是固定不能作任何改动的,整个操作由读取三角形的顶点数据开始,接着GPU处理完后进入帧缓冲区(framebuffer),准备发送给显示器。GPU也能对场景进行某些特定效果的处理,不过这些都是由工程师设计固定好的,能提供的选项很少。

展开全文

GPU设计之初非针对深度学习而是并行计算

GPU关键性能是并行计算。这意味着可以同时处理运算,而不是一步步进行。复杂问题可被分解为更简单的问题,然后同时进行处理。并行计算适用于HPC和超算领域所涉及的许多问题类型,比如气象、宇宙模型和DNA序列。并不是只有天体物理学家和气象学家才能充分利用并行计算的优点。事实证明,许多企业应用能从并行计算获得超出寻常比例的好处。这包括:数据库查询、密码学领域的暴力搜索、对比不同独立场景的计算机模拟、机器学习/深度学习、地理可视化。

在GPU设计之初,并非针对深度学习,而是图形加速,在NVIDIA推出CUDA架构之前,GPU并无太强对深度学习运算能力的支持。而如今,NVIDIA可以提供基于其GPU的从后端模型训练到前端推理应用的全套深度学习解决方案,一般的开发人员都可以非常容易地上手使用GPU进行深度学习开发,或者高性能运算。而CUDA架构的开发,耗费了NVIDIA巨大的人力物力。可以说,是CUDA这个中间层(computingframework)的优化,才使得开发者真正爱上了GPU,NVIDIA胜在软件。而CUDA还不能称之为算法,它只是计算硬件与算法之间的桥梁。

目前来看,NVIDIA作为人工智能计算平台的领导者,但事实是,一开始并非NVIDIA选择了人工智能,而是人工智能的研究者选择了GPU,进而成就了NVIDIA。在2012年,Alex利用深度学习+GPU的方案,一举赢得ImageNetLSVRC-2010图像识别大赛,并奇迹般地将识别成功率从74%提升到85%。NVIDIA敏锐地觉察到了这一趋势,并大力优化基于GPU的深度学习生态系统,并加速迭代开发,三年时间将GPU性能提升了65倍,从而奠定了目前的王者之位。

AI时代GPU将是数据爆炸时代的核心处理模块

对于人工智能计算架构来说,一般可以归结为三类模式:CPU+GPU,CPU+FPGA,CPU+ASIC(专用集成电路)。其中,应用于图形、图像处理领域的GPU可以并行处理大量数据,非常适合深度学习的高并行、高本地化数据场景,是目前主流的人工智能计算架构。

如果把科技产业划分为三个时代:PC时代、移动互联网时代和AI时代。目前,我们处于移动互联网时代的末期和下一个时代的早期,即以深度学习、无人驾驶为主的AI时代。

点击“阅读原文”了解百城会详情返回搜狐,查看更多

责任编辑:

什么是数据架构

数据架构利用数据服务和API,将来自原有系统、数据湖、数据仓库、sql数据库和应用程序的数据汇集在一起,提供对业务绩效的整体视图。与这些单独的数据存储系统相比,数据架构旨在为整个数据环境带来更大的流动性,应对数据存放和处理位置问题-数据量增长会提高迁移的难度。数据架构消除数据迁移、转换和集成中技术复杂性的抽象意义,让整个企业都可以使用数据。

数据结构架构围绕平台中的数据与需要它的应用程序松散耦合的想法进行操作。一个多云环境中的数据架构示例是,一种云(如AWS)管理数据采集,另一个平台(如Azure)负责监督数据转换和使用。然后可能有第三个供应商(如IBMCloudPakforData)来提供分析服务。数据架构将这些环境连接在一起,可以创建统一的数据视图。

以上只是一个示例。由于不同企业有不同需求,因此没有唯一的数据架构。不同企业有不同数量的云提供商,实施的数据基础架构也不尽相同。但使用这种数据框架的企业,其架构具有共性,这是数据架构独有的特点。Forrester(链接位于ibm.com外部)在"企业数据架构支持DataOps"报告中描述了数据架构的六个基本组件。这六层包括以下内容:

数据管理层:该层负责数据监管和数据安全。数据采集层:开始汇总云数据,寻找结构化和非结构化数据之间的联系。数据处理层:细化数据,以确保提取数据时只出现相关数据。数据编排层:为数据架构执行一些最重要的工作-转换、集成和清理数据,供企业内部团队使用。数据发现层:为集成不同数据源的数据提供新机会。例如,它可能找到在供应链数据市场和客户关系管理数据系统中连接数据的方法,为客户提供产品提供新的机会或提高客户满意度的方法。数据访问层:允许使用数据,确保一些团队拥有正确的权限,以遵守政府法规要求。此外,这一层还使用仪表板和其他数据可视化工具帮助发现相关数据。 

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇