博舍

简述人工智能的应用领域 简述人工智能的定义及应用领域

简述人工智能的应用领域

一、人工智能的应用领域

  1.博弈

   状态空间搜索的大多数早期研究都是针对常见的棋盘游戏来实现的,例如夕阳淘气,国际象棋等。

   博弈过程中可能产生惊人庞大的搜索空间,需要强大的技术来哦按段备择状态,搜索问题空间。这些技术被称为启发式搜索,是AI研究的一个重要领域。

   因为我们大多数人都有玩这些简单游戏的经历,所以我们可以很容易的设计出我们自己的启发性并测试其有效性。若是求解某些深奥领域(如医学或者数学领域)的问题就必须寻找并咨询该领域的专家。尽管博弈程序具有简洁性,但其中也有很多难题,比如不能确定性的预测出对手的走法,对手的出现使程序设计更为复杂,因为这加入了一种不可预测的因素,要求我们必须考虑博弈策略中的心理和战术因素。

  2.自动推理和定理证明

   自动定理证明是AI最古老的分支,其根源可从Newell和Simon的”逻辑理论家“以及”通用问题求解程序“追溯到罗素和怀海德关于”可以吧数学看成是从基本公式推导出定理的过程“的努力。

  其吸引力主要在于逻辑的严谨性和普遍性。因为他是一个正式系统,所以是逻辑使其自动化。它的基础是把问题描述和背景信息表示为逻辑公理,把问题的实例表示为要证明的定理。另外,这样的系统不一定要在离开任何人类的帮助的情况下独立求解非常复杂的问题,很多现代的定理证明程序往往是充当智能助手的,人类只需要让定理证明程序完成比较简单但仍需要一些技巧的任务,如证明引理,验证较小的推测并完成它的人类同事列出的证明要点等。

  由于任何具有一定复杂度的逻辑系统都不能产生无限数据,缺少强大的技术来引导搜索,为克服这种低效性,唯一可选的方法是依赖人类在求解问题时使用的非正式的特别策略(这就是开发专家系统的基本思想)。

  3.专家系统

  专家系统从人类专家那里获取专业知识,然后将其按照某种形式编码,式计算机可以用这些知识来求解类似的问题。领域专家提供问题域中的必要知识,AI专家(知识工程师)的任务是把知识实现为程序,程序不仅要搞笑,而且其行为又要具有明显的智能性。程序设计出来之后,必须通过求解样例问题来提炼他的技能,让领域专家来评判它的行为,并对程序的知识做出必要的修改和补充,重复这个过程直到这个程序已经满足了预定的性能要求。

  这个领域最早的系统之一是DENDRAL,它根据化学分子式和大光谱信息来推测有机分子的结构;MYCIN则奠定了当代专家系统方法的基础,使用专业的医学知识来诊断脊髓脑膜炎和血液传染病,并开具治疗处方;其他经典专家系统包括PROSPECTOR程序,他根据矿点的地理信息判断矿石储量的类型和可能位置;INTERNIST程序,可进行内科诊断;DipmeterAdvisor可用来解释油井钻探记录的结果等等。

  但专家系统也有一些不足:难以表征问题域的深层知识,缺乏灵活性,不能提供深入的解释,正确性难以验证,根据经验学习的能力差。但它依然在很多领域证明了它的价值。

  4.自然语言理解和语义建模

  AI中一个经久不衰的目标就是开发出可以理解并产生人类语言的程序。自然语言理解自动化的主要问题就是完成以下的任务:采集和组织这种背景知识,以及如何以一种有助于领悟语言的方式来组织这些知识。

  最早开拓这种”微小世界“方法的程序之一是Winograd的SHRDLU,这个系统可以”谈论“不同形状和颜色的积木的简单布局。但是它不能从积木世界中推广到其他情况。用在这个程序中的表示技术过于简单,以至于无法表征更丰富而且更复杂领域的语义结构。对语言的全面理解依然是目前尚无法实现的。

  5.对人类表现建模

  设计可以显示的模拟人类表现的某些特征的系统,一直是AI和心理学中的重要研究领域。

  6.规划和机器人

  对规划的研究起始于设计机器人的努力,也就是设计出具有一定灵活性并对外界具有响应性的机器人。很多原因导致规划成为一种复杂的问题,比如让一个机器人在充满障碍的房间里移动,可能产生大量的移动序列,在这些序列中智能的发现最佳路径,而不被强大的可能性所淹没。

  人类在规划中使用到的一种方法是层次化的问题分解。比如你规划一段旅行,将分别处理准备机票、到达机场、转机等问题,每个步骤都是整体计划的一部分,也需要进行分别处理。这些步骤还可被分解为更小的子问题。这种方法不仅有效的限制了必要的搜索的空间的大小,也可把经常使用的子规划保存起来以备将来使用。

  规划研究目前已经原因超出了机器人领域的范围。包含了协调任何复杂的任务或目标集合,现代规划程序已经被应用到主体以及粒子束加速器的控制之中。

  7.人工智能的语言和环境

  AI研究的最重要副产品就是促进编程语言和软件开发环境的发展。很多原因迫使AI程序员去开大一组强大的编程语言,编程环境包括各种组织知识的技术,比如面向对象编程和专家系统框架。

  8.机器学习

  学习一直是AI中最具挑战的领域。大多数专家系统都被其问题的求解策略的死板性和修改大量代码的艰难性所阻碍。解决这些问题最明显的做法就是让程序去自己学习。这是一个很难得领域,但很多程序证明这是可行的。一个惊人的程序就是被设计用来发现数学定律的AM(Lenat),在被赋予集合理论的概念和公理后,AM能推导出很多重要的数学概念,比如集合的基数,算数整数等。

  9.另类表示:神经网络和遗传算法

 神经结构是实现智能的一种有力机制,传统AI程序比较脆弱而且对于噪声过于敏感。人类智能则要灵活的多,而且善于解释有干扰的输入,比如光线很暗的房间里的面容或者嘈杂聚会中的对话。因为神经结果使用分布在网络中精密组织的大量单元来捕捉只是,所以它似乎更善于模糊的匹配带有干扰的和不完整的数据。

 神经结构和遗传算法都提供可一种并行化的自然模型,因为每个神经元或解得片段都是一个独立的单元,从神经或遗传的角度处理职能问题具有某种固定的吸引力。

  10.AI和哲学

二、人工智能的概括

 前面的浏览向我们展示了AI这个年轻充满希望的研究领域,其宗旨是寻找一种有效的方式来把只能的问题求解、规划和通信技巧应用到更广泛的实际问题中。有很多重要的特征是这个领域所有分支共有的:

 1.使用计算机来惊醒推理、模式识别、学习或其他形式的推断

 2.集中于不存在代数解的问题

 3.致力于那些需要利用不精确、有残缺或没有明确定义的信息来求解的问题

 4.推理目标是问题域的显著定性特征

 5.除了处理语法形式的问题,还要试图处理予以含义的问题

 6.答案可能既不精确也不最优,但从某种意义上来说是”充分的“

 7.使用大量针对某一领域的知识来求解问题

 8.使用元层次的知识来实现对问题求解策略的更周密控制

  

   

人工智能发展现状及应用

导读:

人工智能(ArtificialIntelligence),英文缩写为AI。人工智能被认为是第四次科技革命的核心驱动力,目前许多领域都在探索AI技术的应用,可谓方兴未艾。那么什么是人工智能,它经历了怎样的发展历程,现阶段发展状况如何,它有哪些应用。本篇文章就为大家做个简单分享。同时也会为大家详细介绍一下百度的AI技术体系。

 

本文主要内容:

1.人工智能概念

①智能

②人工智能

2.人工智能的发展

①人工智能的发展历程

②AI是中国的机遇

3.AI与百度

①百度AI的发展历程

②百度AI的技术体系

③百度AI的场景化应用

 

 

1.人工智能概念

1.1智能

谈到人工智能,需要首先理解“智能”一词的具体含义。智能是指人类才具有的一些技能。人在进行各种活动的过程中,从感觉到记忆再到思维产生了智慧,智慧产生了人类本身的行为和语言,行为和语言统称为能力;智慧和能力结合在一起就是人工智能中的智能一词。

比如,人类的语言表达能力就是一种智能(语言智能);人类进行复杂数学运算的能力也是一种智能(数字逻辑智能);人类的交往能力也是一种智能(人际智能),人们对音调、旋律、节奏、音色的感知能力,也是一种智能(音乐智能)。他们都属于智能的范畴。

1.2人工智能

把智能的概念与人的逻辑理解相结合,并应用到机器中,让机器能更好的模拟人的相关职能,这就是人工智能。人工智能就是要让机器的行为看起来就像是人所表现出的智能行为一样。

人工智能概念,最早可以追溯到上世纪90年代初,这个时候需要提到一位科学家:图灵。

艾伦·麦席森·图灵(英语:AlanMathisonTuring,1912年6月23日—1954年6月7日),英国数学家、逻辑学家,被称为计算机科学之父,人工智能之父。

图灵最早定义了什么是人工智能,怎样去界定一个机器(或一个设备)是否具备智能。他最早提出了图灵测试(即:一个人在不接触对方的情况下,经过某种特殊的方式和对方进行一系列的问答,如果在某些时间之内,他无法根据这些问题判断对方是人还是计算机,那么我们就认为这台机器具备智能化的思维)。直到2000年左右,才真正有计算机通过了图灵测试,才实现了一个突破。在2014年图灵测试大会上,出现了一个通过图灵测试的机器(或者称为智能聊天的机器人)。这两年人工智能的高速发展,也印证了最早的图灵测试,这也让我们反向看到了图灵在人工智能定义方面做出的突出贡献。

现今,在做图灵测试时,判断这个设备是否具备人工智能,更多的还是从模拟人的角度来考量。但在当前科技背景下,人工智能需要涵盖更广的内容,它不仅仅要模拟人本身的职能,还需要具备一些扩展、替代甚至延伸的职能。

举个例子,在医疗领域,需要经常在实验室进行病毒化验,人处这样的实验环境下会比较危险,经常会出现一些事故,如果能够用机器替代人来做这些实验,这些事故就可以避免。此时,这台机器就不仅仅是在模拟人,而是在替代人,机器本身就具备了替代人的能力。

当前,很多人在担忧:人工智能的发展会不会对人类造成威胁。其实,目前人工智能还处于早期的阶段(或者称之为婴幼儿阶段),我们还处于弱人工智能时代。

当然,随着时间的推移,将来我们可能会把弱人工智能时代推进到强人工智能,甚至再往前推进到超人工智能和智能爆炸时代。但至少目前,我们离这样的时代还有非常远的距离,要实现这样的目标,需要非常多的时间积累,可能要通过几代人甚至十几代人的努力。所以大家不要有过多的担心,人工智能现在更多的还是用于服务人类,用来提高人们的工作效率。

上图引自MIT大学一位教授。

针对人工智能所覆盖的领域,这位教授提出一个观点:“我们要尽可能避免做这些容易“进水”的工作,以免被日后所淘汰掉”。

这张图水平面以下的工作,如存储,计算、甚至象棋活动等,已经被海平面淹没。在海平面边缘的工作,如翻译、驾驶、视觉和音频等,很有可能在未来的一段时间,随着技术的进步也会被淹没。再来看图上高海拔地区的工作,如艺术创新、科学研究,文学创作等,让人工智能替代人类去做这些工作,在现阶段是比较困难的。要让人工智能实现像人一样具备主观能动性,还需要比较长的时间。我们在选择工作,或者在做技术探索的时候,应该从更高的层面布局,而把那些可以被人工智能替代的工作交给计算机去做,这样我们就可以从一些重复性、冗余性的工作中抽离出来,去专门从事创造性的工作(比如艺术创作等)。

2.人工智能的发展2.1人工智能的发展历程

我们回顾一下人工智能发展的历程。

人工智能并不是特别新鲜的词,在计算机出现后不久,大家就已经开始探索人工智能的发展了。

1943到1956年这段时间,为人工智能的诞生期,期间有很多人尝试用计算机进行智能化的应用,当然此时不能称为人工智能,只是有类似的概念。

人工智能的分水岭是1956年达特茅斯会议,在本次会议上正式提出了AI这个词。

1956到1974年这段时间,是人工智能发展的黄金时代,是人工智能的第1个高速发展期,通常把这段时间称之为人工智能大发现时代。

1974到1980年这6年的时间里,进入了人工智能发展的第1个低谷,在这个低谷期,出现了非常多的问题,比如计算上的问题、存储上的问题、数据量的问题,这些问题限制了人工智能的发展。

1980到1987年这段时间是人工智能的第2个繁荣期。期间诞生了大量的算法,推动了神经网络的高速发展,同时出现了许多专业的科研人员,发表了许多创造性的论文。

1987到1993年这段时间是人工智能的第2个低谷期,期间有个词叫“AI之冬”。有大量的资本从AI领域撤出,整个AI科研遇到了非常大的财政问题,这是导致”AI之冬”的主要原因。

1993年之后,人工智能又进入到高速发展期,期间出现了许多经典案例,比如1997年IBM公司的深蓝案例,2001年IBM的沃森案例,2016年谷歌AlphaGo案例。这些案例是人工智能在应用层面的体现。

上图概括了人工智能的发展历程。

可以看到,从1956年达特茅斯会议AI这个词诞生,一直发展到现在,人工智能共经历了60多年的跌宕起伏,并不是仅在2016、2017这两年间才出现了人工智能这个概念。

从宏观上看,AI的发展历程经历了三次比较大的起伏。

第1次起伏是从1943年到1956年,首次出现了神经网络这个词,把人工智能推到一个高峰,期间出现了许多大发现。而第1次低谷使人工智能进入到了反思的阶段,人们开始探讨人工智能的应用。

第2次起伏是在上世纪80年代,期间BP算法的出现,神经网络新概念的普及,推动了人工智能又进入第2次高峰和发展。然而从1987年到1993年又进入到了了第2次低谷,这主要因为一些财政原因导致。

第3次起伏从2006年开始,由辛顿提出了深度学习的概念,把神经网络往前推动了一大步,也把人工智能推到了高速发展阶段,尤其是近几年在非结构化领域取得了许多突破(例如在语音与视觉方面),给人工智能进入商业化应用带来许多的基础性技术沉淀。

人工智能为什么会在前面的发展过程里遇到了那么多的坎坷?为什么在最近这几年会进入一个高速发展期?

我们归结了近几年人工智能高速发展的三点原因:

①算力飞跃

人工智能(尤其是深度学习),对底层计算能力的要求非常高。早期的计算受到了极大限制,从CPU发展到了GPU,使得算力几乎能达到几倍甚至十几倍量级的增长。再从GPU到TPU,计算速度能达到15~30倍的增长,使得在算力层面不断取得突破。此外,大量云资源的出现将我们计算的成本压到了最低,我们在处理海量计算的同时,也可以享受比较低的成本。再者,芯片技术的发展,使得端处理能力持续提高,这些都帮助我们在算力层面取得了很大的突破。

②数据井喷

从PC互联网时代到移动互联网时代,再到可穿戴设备的应用,都产生了大量的数据。这两年,每年产生的数据量可以达到50%左右的增长。2017年到2018年,这段时间内基本上每个月产生的数据量可以达到几十个亿的量级,数据量已经非常高。物联网的连接,能帮助我们把更多的数据采集回来,帮助我们在数据层面做更多的积累,这是数据井喷带来的积极影响。

③算法突破

近几年来,从机器学习到深度学习,算法不断取得突破。使得我们可以处理更多的大规模、无监督、多层次等复杂业务。

算法、算力、数据是人工智能的三要素,算力是骨骼,数据是血液和食物,算法就是大脑,三者不断取得突破,才能促进人工智能高速发展。

2.3AI是中国的机遇

人工智能技术的发展也促进了很多产业的发展。中国目前有非常好的历史机遇,不仅仅是在技术上有大量的积累,同时,国家也为人工智能的发展提供了非常好的政策环境。此外,市场空间、资金支持、人才储备,也都为人工智能的发展提供了非常好的条件。

通过上图可以看到,人工智能的研发人才目前还比较短缺。图上数据来源于领英在2017年所做的全球AI人才报告。以2017年的数据来看,全球人工智能专业的人才数量超过190万,在这190万人才中,美国处于第一梯队,有85万+;而中国在人工智能领域的人才积累比较少,从数据上来看,目前国内人工智能方面的专业技术人才可能只有5万+,当然这是2017年的数据,现在可能会有一些增长,但是量级也没有达到我们想象的那么大。

所以从国内目前来看,这约5-10万的AI技术人才,对比AI产业的高速发展需求,两者之间有巨大矛盾。那怎样更好的用这些人才作为突破,把人工智能方面的技术人才储备提高到百万级别。这正是整个百度(包括百度的教育合作与共建,包括百度所有对外输出的体系,包括我们今天所做的课程)所努力的方向,我们期望通过百度的技术赋能,真正的帮助人工智能取得更好的人才积累,真正培养一些在未来对人工智能行业有巨大贡献的专业人才,这是百度现在的定位目标。

AI浪潮已然到来,行业人工智能时代已经到来。目前,人工智能已经大量应用在2c和2b领域,怎么让人工智能跟具体行业有更好的接触,产生更多的积累,是我们正在重点探索的方向。

比如百度的搜索引擎,已经融入了很多AI元素。模糊匹配、拍照识图、深度挖掘检索等都应用到了大量的人工智能技术。

再如推荐系统,他会基于个人的一些喜好和历史阅读习惯来给用户做一些内容的推荐和匹配,这是很典型的结合大数据做的精准应用,实际上也属于人工智能的范畴。

再如人脸识别技术、语音技术、智慧交通和无人驾驶等,都是AI技术与行业应用的融合,并且这些技术正在不断取得突破。百度现在L4级别的无人驾驶车已经初步实现了一些小规模的量产,未来会有更多的人将真正的体会到无人驾驶给生活带来的便利。

3.AI与百度

3.1百度AI的发展历程

上图为百度在人工智能领域的发展轨迹,早在2009年,百度就开始尝试探索人工智能相关技术,直到2019年,百度用了近十年的时间布局人工智能。

2009年尝试性布局人工智能,2013年发布IDL,2014年成立硅谷实验室以及百度研究院,2015年首次发布DuerOS,2016年发布百度大脑1.0版本,同年,百度的自动驾驶技术进入试运营状态,2017年是百度人工智能技术高速发展的一年,不仅成立了深度学习国家实验室,同时也成立了硅谷第二实验室以及西雅图实验室,并且Apollo平台开始运行并对外推广,在2018年到2019年,DuerOS和Apollo平台发展到3.0版本,百度大脑发展到5.0版本。经过近十年的发展和积累,百度的人工智能技术目前处于相对领先的位置。

百度在人工智能领域领域取得的进展有目共睹,比如,百度成立了首个国家级AI实验室;2016年被美国《财富》杂志评选为深度学习领域四大巨头之一;百度的刷脸支付、强化学习、自动驾驶等技术入选MIT2017年全球十大突破性技术;在AI领域,百度的中国专利申请超过2000项。

3.2百度AI的技术体系

百度的技术体系非常全面,覆盖了计算体系、大数据技术体系以及人工智能技术体系等,在机器学习、深度学习、区块链、知识图谱、自然语言处理、量子计算等领域均有雄厚的技术积累。这些技术可以按内容划分成三个板块,第一是A板块(即AI技术板块),第二是B板块(即大数据板块),第三是C板块(即云计算板块)。这就是百度在2016年提出的ABC概念。从一开始的1.0版本,发展到如今的3.0版本,代表着百度在人工智能领域的整体布局。在人工智能领域的布局中,百度的探索不仅停留在最核心的技术上,也同时将核心技术与更多的领域相结合,如边缘计算、物联网(InternetofThings,IoT)和区块链等,得到了如ABC+区块链、ABC+DuerOS、ABC+Apollo等对外输出模式,向各行各业提供解决方案。

在A板块中,将百度大脑分成了不同的层次。最底层是算法层,包含机器学习和深度学习算法,使用百度的PaddlePaddle深度学习框架提供算法层的基础支撑;算法层之上为感知层,感知层可分为对声音的感知和对光的感知,其中,对声音的感知主要是语音技术板块,对光的感知主要是图像技术、视频技术、AR/VR等技术板块;在感知层之上是认知层,认知层更多的是处理人类听到和看到的内容,对其进行深度理解,深度理解需要自然语言处理(NLP/NLU)、知识图谱等技术作为支撑,同时也需要积累大量用户画像数据,这些技术能帮助人们快速的理解和分析人类听到和看到的内容,并对内容进行有效的反馈,这是认知层面的技术;在认知层之上是平台层,平台层将底层的内容进行融合、封装,对外提供开放、完整的AI技术,并引入大量的生态合作伙伴,共同探讨人工智能产业的布局。

百度人工智能整体技术体系,最底层是深度学习框架飞桨PaddlePaddle,作为底层计算框架,飞桨PaddlePaddle支撑着上层场景化能力与平台中的全部板块。在场景化能力与平台中,包含了诸多场景大板块,每个大板块下又细分为多个技术板块,比如语音板块包含了语音合成以及语音唤醒等技术板块;计算机视觉技术中的OCR技术,包括传统通用OCR识别,以及垂直领域OCR的识别,可以对30多个OCR识别领域进行精准识别,比如票据识别、证件识别以及文字识别等;在人脸/人体识别板块,同时也会引入图像审核以及图像识别方面的技术;在视频板块,有视频比对技术,视频分类和标注技术,以及视频审核技术;在自然语言处理板块,有机器翻译技术;知识图谱板块,有AR/VR技术。这些板块构成了人工智能体系的技术蓝图。

近两年来,人工智能技术在各行各业中的应用不断加深,实践证明,单一的技术在落地时会受到诸多限制,所以现在人工智能在落地时可能不仅仅用到某一个单独的技术板块,而是需要先把这些板块进行融合,然后再进行实际应用,比如在拍照翻译的应用场景下,既需要用到OCR技术,同时也用到NLP技术。因此在实际应用中,需要综合各个板块的技术,把不同的技术体系和技术内容有机地融合起来,再去解决行业中面临的痛点。

 

3.3百度AI的场景化应用

2014年到2015年期间,在计算机视觉领域的部分场景下,计算机视觉识别准确率已经超过了人眼识别。而利用深度学习技术的计算机听觉识别,在2017年左右也已经超过人耳听力极限。

人工智能业务场景化不仅依赖底层的硬件资源,也需要超大规模的标注数据,这是监督学习的特点,所以在人工智能早期研究中,有评论说“有多少人工就有多少智能”,这句话在特定角度来看是具有一定意义的。在监督学习中,训练模型需要庞大的标注数据,再结合GPU强大的数据处理能力去训练特定模型,也就是从算法的层面去做更多的工作,在训练模型的过程中需要发挥人的主观能动性,更好的解决在行业应用中出现的一些痛点,构建出行业专属的模型。

比如,将人体分析技术应用到实际行业场景中时,需要结合人脸识别技术和人体识别技术。可以通过基础手势识别,识别一个人在开车时有没有系安全带、是不是在打电话等。

利用人体分析技术,可以做到行为识别,首先设定特定区域,然后对区域内的人员行为进行识别,比如人群过密、区域越界、人员逆行、徘徊以及吸烟等,在特定场景下,行为识别能够帮助用户避免安全隐患。

自然语言处理有很多相关技术,比如说词法分析、词向量表示、语义相似度、短文本相似度、情感相似度分析等。这些技术用在不同的应用场景下。

在公检法系统应用中,为了避免出现非常严重的问题,如同案不同判,具体解决方案是当诉讼呈递给法官时,根据当前诉讼内容在公检法系统中寻找历史上类似的案件,参考历史类似案件的判决,给法官提供判案依据。

在媒体领域应用中,对基础的财经类新闻,可以由机器进行新闻文章的编写,即机器写作。这些技术都是基于NLP在相应领域做的智能化应用,可以让编辑或记者从重复性的工作中解脱出来。

人工智能从广义上来看,也包括大数据及云计算相关技术,这些技术也都涵盖在百度AI技术体系中。在大数据领域,主要包括数据采集、数据存储、数据分析以及数据可视化等,利用这些技术,我们在进行模型训练的时候,对数据进行科学的管理可以帮助我们提高模型训练效率。

百度AI技术体系也提供算力层面的支持,通过GPU服务器以及FPGA服务器提供的算力,更好的解决应用层面的问题。

百度AI就是这样一个从基础层,到感知层、认知层的完整体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

回顾

本篇文章,我们和大家分享了人工智能的相关概念,人工智能的发展历程,从中也可以看出AI是我们的历史机遇。同时本文也为大家详细介绍了百度的AI技术体系,经过10余年的努力,百度AI已经形成从基础层,到感知层、认知层的完整技术体系,为多行业、多场景提供“一站式解决方案”,力求实现“多行业、多场景全面赋能”。

人工智能现阶段应用的领域有哪些

人工智能(简称:AI)对于很多人来说是一个很模糊的概念,只是知道这是很高大上的东西,其实我们现阶段已经经常和它在打交道了,下面我们一起来看一下我们生活中无时无刻不在的人工智能吧!

人工智能的定义:

人工智能它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等,人工智能可以对人的意识、思维的信息过程的模拟。人工智能研究的一个主要目标是使机器能够完成一些通常需要人类智能才能完成的复杂工作。

人工智能主要应用领域

1、农业:农业中已经用到很多的AI技术,无人机喷撒农药,除草,农作物状态实时监控,物料采购,数据收集,灌溉,收获,销售等。通过应用人工智能设备终端等,大大提高了农牧业的产量,大大减少了许多人工成本和时间成本。

2、通信:智能外呼系统,客户数据处理(订单管理系统),通信故障排除,病毒拦截(360等),骚扰信息拦截等

3、医疗:利用最先进的物联网技术,实现患者与医务人员、医疗机构、医疗设备之间的互动,逐步达到信息化。例:健康监测(智能穿戴设备)、自动提示用药时间、服用禁忌、剩余药量等的智能服药系统。

4、社会治安:安防监控(数据实时联网,公安系统可以实时进行数据调查分析)、电信诈骗数据锁定、犯罪分子抓捕、消防抢险领域(灭火、人员救助、特殊区域作业)等

5、交通领域:航线规划、无人驾驶汽车、超速、行车不规范等行为整治

6、服务业:餐饮行业(点餐、传菜,回收餐具,清洗)等,订票系统(酒店、车票、机票等)的查询、预定、修改、提醒等

7、金融行业:股票证券的大数据分析、行业走势分析、投资风险预估等

8、大数据处理:天气查询,地图导航,资料查询,信息推广(推荐引擎是基于用户的行为、属性(用户浏览行为产生的数据),通过算法分析和处理,主动发现用户当前或潜在需求,并主动推送信息给用户的浏览页面。),个人助理(小爱、siri)等

未来领域期待

人工智能技术也是国家主导的八大高新领域之一,也是国家主导的发展方向,通过国家和各位科学家的科研成果不断创新,越来越多的分支领域一定会快速发展。医疗、教育、金融、衣食住行、航空航天、环境治理等等涉及人类生活息息相关的各个方面都会达到一个新的高度。时代更新跌替,顺应未来发展大势,让我们所有人应具备应对未来发展环境的能力,这就是现阶段我们应该考虑的点,让我们共创更美好的国。

人工智能的主要算法与应用

MongoDB用户管理操作

隔壁de老樊:文章不错,nice

scrapy爬虫爬取完整小说

shiyi123_:为什么我的只能爬取第一章的调试发现不能自动点击下一章循环求大佬分析

代理服务器搭建

wuyuer1027:新的云都有限制了不行了,6核以上才能绑定3个公网10个要tmd48核

代理服务器搭建

为谁攀登:我能用啊,你自己水平不行怪谁???

scrapy爬虫爬取完整小说

Rookie23:如果我从第一页开始爬取,那么下一章的标签不是a[3]

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇