博舍

“以智赋能”促进健康管理 人工智能与健康管理

“以智赋能”促进健康管理

转自:新安晚报

与会专家围绕癌症早筛、老年健康和人工智能领域的新政策、新理念、新技术同席论道。

 7月1日,“安徽省首届慢病健康管理——癌症筛查与早诊培训研讨会暨以智赋能·慢病健康管理技术创新与应用高峰论坛暨2023年老年健康管理前沿论坛”在合肥成功举办,吸引省内外近500名健康管理、癌症早筛领域的专家、学者到现场参会。会议由安徽省卫生健康委指导,中国科大附一院(安徽省立医院)承办。本次大会以“以智赋能”为主题,目的是发挥人工智能在健康管理服务中的能力提升和模式创新作用,打造具有影响力的科技赋能健康新范式,着力健康管理创新技术的应用推广。与会专家围绕癌症早筛、老年健康和人工智能领域的新政策、新理念、新技术同席论道。值得关注的是,癌症筛查与早诊培训的“安徽模式”备受关注,得到了与会专家和学员的一致肯定。

聚焦早癌筛查关键技术开展研究

对于恶性肿瘤患者来说,“早”,意味着生存下去的更多机会和生命延续的更多可能。如何更早地发现癌症?会议邀请了来自全国健康管理领域、以及中国科学技术大学、清华大学等机构的知名专家授课,向与会学员分享早癌筛查的前沿技术、人工智能在早癌筛查中的最新应用等。

近年来,中国科大附一院以“科大新医学”为引领,坚持“理工医交叉融合”,立足“一流医院”建设目标,高度重视和持续加强临床科研创新转化工作。来自中国科学技术大学的瞿昆教授、熊伟教授、魏玖长教授分别以《染色体外形DNA和癌症早筛》《代谢学组技术与肿瘤早筛》《管理学视角下的健康信息与行为干预研究策略》为题揭示了早癌筛查与行为干预的最新研究成果。“这些生物学技术有望在更早期发现癌症,并予以相应的健康干预。”谈起这些课题,中国科大附一院健康管理中心副主任张永亮并不陌生,几位教授正在与健康管理中心深度合作,致力于解决早癌筛查与行为干预的核心关键技术。

“中国科大附一院健康管理中心连续五年进入复旦版中国医院专科排行榜前十名,中心着力推动从传统体检向全生命周期的健康管理服务新模式转变,形成以无创泛癌早筛、慢病运动干预为代表的特色服务。”中国健康促进基金会创会理事长、中华医学会健康管理学分会终身荣誉主任委员白书忠对近年来中国科大附一院健康管理中心取得的成绩给予了充分的肯定。

白书忠是我国健康管理学科的奠基人,在他看来,健康管理的核心理念是“防大病、管慢病、促健康”。其中,“防大病”的一个重要措施,就是做好癌症的早期筛查,做到早发现、早诊断、早治疗。“我国国民的癌症负担很重,癌症发病率持续上升,所以我们做好健康管理的一个关键点,就是尽可能集成癌症早筛的关键技术,探索其有效路径,提高早筛率。”白书忠希望,依托中国科学技术大学和安徽省立医院的雄厚资源,健康管理中心能够步入由量到质的高速转型发展期,充分发挥健康管理中心的平台作用,聚集学科建设所需的多学科专业人才,提供更加精准、高效、个性化的健康管理服务。

“以智赋能”让健康管理更具可及性

“当前,我国癌症发病率、死亡率跃居世界首位,中国平均每天都有6000多人死于癌症。”中华医学会健康管理学分会主任委员郭清表示,世界卫生组织曾明确提出,近一半的癌症是可以通过筛查和早期发现明确诊断。经过科学合理的治疗,大部分早期诊断的癌症患者可以获得比较满意的治疗效果。从这个角度来说,癌症早期筛查与诊断不仅意义重大、影响深远,而且势在必行、刻不容缓。

“理工医交叉融合”为早癌筛查新技术的发展和应用带来了巨大的动力和想象空间。与此同时,人工智能的应用也让早癌筛查更具可及性和有效性。在为期三天的会议中,“人工智能”“智慧健康”成为主会场和分会场上频频出现的热词,比如中国老年医学学会健康管理分会会长屠其雷主讲的《智慧健康管理为枢纽的医养结合》、复旦大学罗力教授主讲的《数智服务推动主动健康》、张永亮主讲的《人工智能在癌症早筛中的应用》等课题让与会者耳目一新。

聚焦健康管理技术的创新应用,“以智赋能慢病健康管理技术创新与应用大赛”成为本次大会的亮点。大赛旨在为我省广大医护人员提供慢病管理实践与交流平台,进一步促进医护人员掌握慢病管理的新理念、新进展、新技术。经过层层角逐,基于人工智能的便携式皮肤恶性肿瘤检测仪、基于高分子3D打印的柔性驱动与传感研发、基于人工智能技术的复发胶质瘤早期诊断等6个前沿技术领域的优质项目亮相会场。

随着人口老龄化的加速,老年健康成为健康管理工作的重要内容。在主论坛上,《中华健康管理学杂志》总编辑、国家老年疾病临床医学研究中心副主任、解放军总医院第二医学中心健康管理研究院主任曾强,中国老年医学学会健康管理分会会长屠其雷等专家作了专题报告。在老年健康分会场,授课专家分别就老年健康与中医调理、肺小结节健康管理、老年专科护士培养等课题进行了分享。

“如今,身患慢性疾病长期生存的老年人持续增加,失去正常生活能力的老年人也在逐步增加。”曾强表示,如何长寿又健康是老年医学和保健医学面临的重要问题。在他看来,健康管理是促进老年健康长寿的核心,而健康管理的核心理念是“防大病、管慢病、促健康”。他从老年疾病和衰老关键指标的早期检测与预警、老年功能状态精准化评估、老年疾病和衰老的个性化干预等方面进行授课,并分享了最新的研究成果。曾强强调,精准健康管理是早期检测、精准化评估和个性化干预三者有机结合的整体。

三级联动培训“安徽模式”获肯定

降低癌症发病率和病死率是疾病防控的重点工作。安徽一直以来高度重视癌症筛查与防治工作,并将实施癌症防治行动作为专项行动写入《健康安徽行动实施方案》,强化癌症防治知识宣传,推广有效的早筛查、早诊断、早治疗工作模式。

作为国家慢病健康管理——癌症筛查与早诊培训项目首批试点的10个省市之一,安徽积极探索省-市-县三级联动的癌症筛查与早诊培训模式,在中国科学技术大学附属第一院(安徽省立医院)1家省级培训单位的基础上,通过科学规划,在六安、芜湖、淮南合理增设了3家市级培训基地,及创新性地在金寨县发展了1家县级培训点。从2020年开始,项目已成功举办三届培训班,覆盖安徽16个市150余家医疗卫生机构,培养了660多名从事癌症防治工作的卫生专业技术人员。”张凯表示,这对降低癌症发病率和死亡率、提高患者生存质量等方面有重要意义。

“牵头单位高度重视、举措得力是持续推进、做好这项工作的关键。”国家卫生健康委“慢病健康管理——癌症筛查与早诊培训项目”工作委员会副主任委员张凯表示,在项目牵头人、中国科大附一院党委书记刘连新教授带领下,项目团队精心策划部署,启动师资岗前培训,落实同质化教学;打通癌症筛查与早诊的最后一公里,积极推广癌症筛查早诊早治适宜技术,扩大辐射范围;培训优先考虑城市癌症早诊早治和农村癌症早诊早治相关工作人员,同时兼顾健康管理行业的从事人员,提升安徽各级医疗机构癌症筛查防治与健康管理水平,为促进安徽省癌症早期筛查与诊治规范化、精准化和系统化发展奠定了良好基础,对全面提升安徽癌症防治能力具有重要意义。“安徽省这种省-市-县三级联动的癌症筛查与早诊培训模式,为我们创新性探索适合地方特色的培训模式提供了有力的借鉴,值得推广”。

中国科大附一院执行院长严光表示,医院将继续探索具有安徽特色的癌症防治与健康管理分级培训及工作模式,并充分发挥人工智能技术与慢病管理、癌症早筛相结合的优势。

推广癌症筛查早诊早治适宜技术

根据安徽省肿瘤登记年报数据,安徽肿瘤登记地区恶性肿瘤(癌症)发病率(粗率)为282.45/10万,中国人口标化率为191.45/10万。安徽省肿瘤登记地区恶性肿瘤死亡率(粗率)为167.05/10万,中国人口标化率为103.67/10万。

“可见癌症正严重威胁安徽群众健康,给社会和患者家庭造成了重大经济负担,已经成为重大的民生痛点,更构成了重大的公共卫生问题。”安徽省卫健委相关负责同志表示,为了加强癌症筛查与早诊人才队伍建设,提升癌症早诊早治能力,国家卫生健康委疾控局于2020年启动实施全国性“慢病健康管理——癌症筛查与早诊培训项目”。中国科大附一院作为安徽省唯一技术负责单位和省级培训基地,积极探索省-市-县三级联动的癌症筛查与早诊培训模式,在癌症筛查与早诊领域大胆开拓、积极创新,把癌症筛查和健康管理相结合,取得了令人满意的成果,并通过对基地师资进行统一培训提高同质化教学水平,提升了医疗机构癌症筛查防治与健康管理水平,为促进全省癌症早期筛查与诊治规范化、系统化发展奠定了良好的基础。安徽将依托中国科大附一院、整合各级基地的优势人才、技术等资源,争取将全省癌症筛查工作集团化整合,实行筛查服务一体化,积极拓展省-市-县三级培训网络,不断推广癌症筛查早诊早治适宜技术的应用,努力提高人群社会性和机会性筛查的参与度,提高癌症的筛查和早诊早治效果。新安晚报安徽网大皖新闻记者叶晓

海量资讯、精准解读,尽在新浪财经APP

人工智能的历史、现状和未来

如同蒸汽时代的蒸汽机、电气时代的发电机、信息时代的计算机和互联网,人工智能正成为推动人类进入智能时代的决定性力量。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷转型发展,抢滩布局人工智能创新生态。世界主要发达国家均把发展人工智能作为提升国家竞争力、维护国家安全的重大战略,力图在国际科技竞争中掌握主导权。习近平总书记在十九届中央政治局第九次集体学习时深刻指出,加快发展新一代人工智能是事关我国能否抓住新一轮科技革命和产业变革机遇的战略问题。错失一个机遇,就有可能错过整整一个时代。新一轮科技革命与产业变革已曙光可见,在这场关乎前途命运的大赛场上,我们必须抢抓机遇、奋起直追、力争超越。

概念与历程

了解人工智能向何处去,首先要知道人工智能从何处来。1956年夏,麦卡锡、明斯基等科学家在美国达特茅斯学院开会研讨“如何用机器模拟人的智能”,首次提出“人工智能(ArtificialIntelligence,简称AI)”这一概念,标志着人工智能学科的诞生。

人工智能是研究开发能够模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的一门新的技术科学,研究目的是促使智能机器会听(语音识别、机器翻译等)、会看(图像识别、文字识别等)、会说(语音合成、人机对话等)、会思考(人机对弈、定理证明等)、会学习(机器学习、知识表示等)、会行动(机器人、自动驾驶汽车等)。

人工智能充满未知的探索道路曲折起伏。如何描述人工智能自1956年以来60余年的发展历程,学术界可谓仁者见仁、智者见智。我们将人工智能的发展历程划分为以下6个阶段:

一是起步发展期:1956年—20世纪60年代初。人工智能概念提出后,相继取得了一批令人瞩目的研究成果,如机器定理证明、跳棋程序等,掀起人工智能发展的第一个高潮。

二是反思发展期:20世纪60年代—70年代初。人工智能发展初期的突破性进展大大提升了人们对人工智能的期望,人们开始尝试更具挑战性的任务,并提出了一些不切实际的研发目标。然而,接二连三的失败和预期目标的落空(例如,无法用机器证明两个连续函数之和还是连续函数、机器翻译闹出笑话等),使人工智能的发展走入低谷。

三是应用发展期:20世纪70年代初—80年代中。20世纪70年代出现的专家系统模拟人类专家的知识和经验解决特定领域的问题,实现了人工智能从理论研究走向实际应用、从一般推理策略探讨转向运用专门知识的重大突破。专家系统在医疗、化学、地质等领域取得成功,推动人工智能走入应用发展的新高潮。

四是低迷发展期:20世纪80年代中—90年代中。随着人工智能的应用规模不断扩大,专家系统存在的应用领域狭窄、缺乏常识性知识、知识获取困难、推理方法单一、缺乏分布式功能、难以与现有数据库兼容等问题逐渐暴露出来。

五是稳步发展期:20世纪90年代中—2010年。由于网络技术特别是互联网技术的发展,加速了人工智能的创新研究,促使人工智能技术进一步走向实用化。1997年国际商业机器公司(简称IBM)深蓝超级计算机战胜了国际象棋世界冠军卡斯帕罗夫,2008年IBM提出“智慧地球”的概念。以上都是这一时期的标志性事件。

六是蓬勃发展期:2011年至今。随着大数据、云计算、互联网、物联网等信息技术的发展,泛在感知数据和图形处理器等计算平台推动以深度神经网络为代表的人工智能技术飞速发展,大幅跨越了科学与应用之间的“技术鸿沟”,诸如图像分类、语音识别、知识问答、人机对弈、无人驾驶等人工智能技术实现了从“不能用、不好用”到“可以用”的技术突破,迎来爆发式增长的新高潮。

现状与影响

对于人工智能的发展现状,社会上存在一些“炒作”。比如说,认为人工智能系统的智能水平即将全面超越人类水平、30年内机器人将统治世界、人类将成为人工智能的奴隶,等等。这些有意无意的“炒作”和错误认识会给人工智能的发展带来不利影响。因此,制定人工智能发展的战略、方针和政策,首先要准确把握人工智能技术和产业发展的现状。

专用人工智能取得重要突破。从可应用性看,人工智能大体可分为专用人工智能和通用人工智能。面向特定任务(比如下围棋)的专用人工智能系统由于任务单一、需求明确、应用边界清晰、领域知识丰富、建模相对简单,形成了人工智能领域的单点突破,在局部智能水平的单项测试中可以超越人类智能。人工智能的近期进展主要集中在专用智能领域。例如,阿尔法狗(AlphaGo)在围棋比赛中战胜人类冠军,人工智能程序在大规模图像识别和人脸识别中达到了超越人类的水平,人工智能系统诊断皮肤癌达到专业医生水平。

通用人工智能尚处于起步阶段。人的大脑是一个通用的智能系统,能举一反三、融会贯通,可处理视觉、听觉、判断、推理、学习、思考、规划、设计等各类问题,可谓“一脑万用”。真正意义上完备的人工智能系统应该是一个通用的智能系统。目前,虽然专用人工智能领域已取得突破性进展,但是通用人工智能领域的研究与应用仍然任重而道远,人工智能总体发展水平仍处于起步阶段。当前的人工智能系统在信息感知、机器学习等“浅层智能”方面进步显著,但是在概念抽象和推理决策等“深层智能”方面的能力还很薄弱。总体上看,目前的人工智能系统可谓有智能没智慧、有智商没情商、会计算不会“算计”、有专才而无通才。因此,人工智能依旧存在明显的局限性,依然还有很多“不能”,与人类智慧还相差甚远。

人工智能创新创业如火如荼。全球产业界充分认识到人工智能技术引领新一轮产业变革的重大意义,纷纷调整发展战略。比如,谷歌在其2017年年度开发者大会上明确提出发展战略从“移动优先”转向“人工智能优先”,微软2017财年年报首次将人工智能作为公司发展愿景。人工智能领域处于创新创业的前沿。麦肯锡公司报告指出,2016年全球人工智能研发投入超300亿美元并处于高速增长阶段;全球知名风投调研机构CBInsights报告显示,2017年全球新成立人工智能创业公司1100家,人工智能领域共获得投资152亿美元,同比增长141%。

创新生态布局成为人工智能产业发展的战略高地。信息技术和产业的发展史,就是新老信息产业巨头抢滩布局信息产业创新生态的更替史。例如,传统信息产业代表企业有微软、英特尔、IBM、甲骨文等,互联网和移动互联网时代信息产业代表企业有谷歌、苹果、脸书、亚马逊、阿里巴巴、腾讯、百度等。人工智能创新生态包括纵向的数据平台、开源算法、计算芯片、基础软件、图形处理器等技术生态系统和横向的智能制造、智能医疗、智能安防、智能零售、智能家居等商业和应用生态系统。目前智能科技时代的信息产业格局还没有形成垄断,因此全球科技产业巨头都在积极推动人工智能技术生态的研发布局,全力抢占人工智能相关产业的制高点。

人工智能的社会影响日益凸显。一方面,人工智能作为新一轮科技革命和产业变革的核心力量,正在推动传统产业升级换代,驱动“无人经济”快速发展,在智能交通、智能家居、智能医疗等民生领域产生积极正面影响。另一方面,个人信息和隐私保护、人工智能创作内容的知识产权、人工智能系统可能存在的歧视和偏见、无人驾驶系统的交通法规、脑机接口和人机共生的科技伦理等问题已经显现出来,需要抓紧提供解决方案。

趋势与展望

经过60多年的发展,人工智能在算法、算力(计算能力)和算料(数据)等“三算”方面取得了重要突破,正处于从“不能用”到“可以用”的技术拐点,但是距离“很好用”还有诸多瓶颈。那么在可以预见的未来,人工智能发展将会出现怎样的趋势与特征呢?

从专用智能向通用智能发展。如何实现从专用人工智能向通用人工智能的跨越式发展,既是下一代人工智能发展的必然趋势,也是研究与应用领域的重大挑战。2016年10月,美国国家科学技术委员会发布《国家人工智能研究与发展战略计划》,提出在美国的人工智能中长期发展策略中要着重研究通用人工智能。阿尔法狗系统开发团队创始人戴密斯·哈萨比斯提出朝着“创造解决世界上一切问题的通用人工智能”这一目标前进。微软在2017年成立了通用人工智能实验室,众多感知、学习、推理、自然语言理解等方面的科学家参与其中。

从人工智能向人机混合智能发展。借鉴脑科学和认知科学的研究成果是人工智能的一个重要研究方向。人机混合智能旨在将人的作用或认知模型引入到人工智能系统中,提升人工智能系统的性能,使人工智能成为人类智能的自然延伸和拓展,通过人机协同更加高效地解决复杂问题。在我国新一代人工智能规划和美国脑计划中,人机混合智能都是重要的研发方向。

从“人工+智能”向自主智能系统发展。当前人工智能领域的大量研究集中在深度学习,但是深度学习的局限是需要大量人工干预,比如人工设计深度神经网络模型、人工设定应用场景、人工采集和标注大量训练数据、用户需要人工适配智能系统等,非常费时费力。因此,科研人员开始关注减少人工干预的自主智能方法,提高机器智能对环境的自主学习能力。例如阿尔法狗系统的后续版本阿尔法元从零开始,通过自我对弈强化学习实现围棋、国际象棋、日本将棋的“通用棋类人工智能”。在人工智能系统的自动化设计方面,2017年谷歌提出的自动化学习系统(AutoML)试图通过自动创建机器学习系统降低人员成本。

人工智能将加速与其他学科领域交叉渗透。人工智能本身是一门综合性的前沿学科和高度交叉的复合型学科,研究范畴广泛而又异常复杂,其发展需要与计算机科学、数学、认知科学、神经科学和社会科学等学科深度融合。随着超分辨率光学成像、光遗传学调控、透明脑、体细胞克隆等技术的突破,脑与认知科学的发展开启了新时代,能够大规模、更精细解析智力的神经环路基础和机制,人工智能将进入生物启发的智能阶段,依赖于生物学、脑科学、生命科学和心理学等学科的发现,将机理变为可计算的模型,同时人工智能也会促进脑科学、认知科学、生命科学甚至化学、物理、天文学等传统科学的发展。

人工智能产业将蓬勃发展。随着人工智能技术的进一步成熟以及政府和产业界投入的日益增长,人工智能应用的云端化将不断加速,全球人工智能产业规模在未来10年将进入高速增长期。例如,2016年9月,咨询公司埃森哲发布报告指出,人工智能技术的应用将为经济发展注入新动力,可在现有基础上将劳动生产率提高40%;到2035年,美、日、英、德、法等12个发达国家的年均经济增长率可以翻一番。2018年麦肯锡公司的研究报告预测,到2030年,约70%的公司将采用至少一种形式的人工智能,人工智能新增经济规模将达到13万亿美元。

人工智能将推动人类进入普惠型智能社会。“人工智能+X”的创新模式将随着技术和产业的发展日趋成熟,对生产力和产业结构产生革命性影响,并推动人类进入普惠型智能社会。2017年国际数据公司IDC在《信息流引领人工智能新时代》白皮书中指出,未来5年人工智能将提升各行业运转效率。我国经济社会转型升级对人工智能有重大需求,在消费场景和行业应用的需求牵引下,需要打破人工智能的感知瓶颈、交互瓶颈和决策瓶颈,促进人工智能技术与社会各行各业的融合提升,建设若干标杆性的应用场景创新,实现低成本、高效益、广范围的普惠型智能社会。

人工智能领域的国际竞争将日益激烈。当前,人工智能领域的国际竞赛已经拉开帷幕,并且将日趋白热化。2018年4月,欧盟委员会计划2018—2020年在人工智能领域投资240亿美元;法国总统在2018年5月宣布《法国人工智能战略》,目的是迎接人工智能发展的新时代,使法国成为人工智能强国;2018年6月,日本《未来投资战略2018》重点推动物联网建设和人工智能的应用。世界军事强国也已逐步形成以加速发展智能化武器装备为核心的竞争态势,例如美国特朗普政府发布的首份《国防战略》报告即谋求通过人工智能等技术创新保持军事优势,确保美国打赢未来战争;俄罗斯2017年提出军工拥抱“智能化”,让导弹和无人机这样的“传统”兵器威力倍增。

人工智能的社会学将提上议程。为了确保人工智能的健康可持续发展,使其发展成果造福于民,需要从社会学的角度系统全面地研究人工智能对人类社会的影响,制定完善人工智能法律法规,规避可能的风险。2017年9月,联合国犯罪和司法研究所(UNICRI)决定在海牙成立第一个联合国人工智能和机器人中心,规范人工智能的发展。美国白宫多次组织人工智能领域法律法规问题的研讨会、咨询会。特斯拉等产业巨头牵头成立OpenAI等机构,旨在“以有利于整个人类的方式促进和发展友好的人工智能”。

态势与思考

当前,我国人工智能发展的总体态势良好。但是我们也要清醒看到,我国人工智能发展存在过热和泡沫化风险,特别在基础研究、技术体系、应用生态、创新人才、法律规范等方面仍然存在不少值得重视的问题。总体而言,我国人工智能发展现状可以用“高度重视,态势喜人,差距不小,前景看好”来概括。

高度重视。党中央、国务院高度重视并大力支持发展人工智能。习近平总书记在党的十九大、2018年两院院士大会、全国网络安全和信息化工作会议、十九届中央政治局第九次集体学习等场合多次强调要加快推进新一代人工智能的发展。2017年7月,国务院发布《新一代人工智能发展规划》,将新一代人工智能放在国家战略层面进行部署,描绘了面向2030年的我国人工智能发展路线图,旨在构筑人工智能先发优势,把握新一轮科技革命战略主动。国家发改委、工信部、科技部、教育部等国家部委和北京、上海、广东、江苏、浙江等地方政府都推出了发展人工智能的鼓励政策。

态势喜人。据清华大学发布的《中国人工智能发展报告2018》统计,我国已成为全球人工智能投融资规模最大的国家,我国人工智能企业在人脸识别、语音识别、安防监控、智能音箱、智能家居等人工智能应用领域处于国际前列。根据2017年爱思唯尔文献数据库统计结果,我国在人工智能领域发表的论文数量已居世界第一。近两年,中国科学院大学、清华大学、北京大学等高校纷纷成立人工智能学院,2015年开始的中国人工智能大会已连续成功召开四届并且规模不断扩大。总体来说,我国人工智能领域的创新创业、教育科研活动非常活跃。

差距不小。目前我国在人工智能前沿理论创新方面总体上尚处于“跟跑”地位,大部分创新偏重于技术应用,在基础研究、原创成果、顶尖人才、技术生态、基础平台、标准规范等方面距离世界领先水平还存在明显差距。在全球人工智能人才700强中,中国虽然入选人数名列第二,但远远低于约占总量一半的美国。2018年市场研究顾问公司CompassIntelligence对全球100多家人工智能计算芯片企业进行了排名,我国没有一家企业进入前十。另外,我国人工智能开源社区和技术生态布局相对滞后,技术平台建设力度有待加强,国际影响力有待提高。我国参与制定人工智能国际标准的积极性和力度不够,国内标准制定和实施也较为滞后。我国对人工智能可能产生的社会影响还缺少深度分析,制定完善人工智能相关法律法规的进程需要加快。

前景看好。我国发展人工智能具有市场规模、应用场景、数据资源、人力资源、智能手机普及、资金投入、国家政策支持等多方面的综合优势,人工智能发展前景看好。全球顶尖管理咨询公司埃森哲于2017年发布的《人工智能:助力中国经济增长》报告显示,到2035年人工智能有望推动中国劳动生产率提高27%。我国发布的《新一代人工智能发展规划》提出,到2030年人工智能核心产业规模超过1万亿元,带动相关产业规模超过10万亿元。在我国未来的发展征程中,“智能红利”将有望弥补人口红利的不足。

当前是我国加强人工智能布局、收获人工智能红利、引领智能时代的重大历史机遇期,如何在人工智能蓬勃发展的浪潮中选择好中国路径、抢抓中国机遇、展现中国智慧等,需要深入思考。

树立理性务实的发展理念。任何事物的发展不可能一直处于高位,有高潮必有低谷,这是客观规律。实现机器在任意现实环境的自主智能和通用智能,仍然需要中长期理论和技术积累,并且人工智能对工业、交通、医疗等传统领域的渗透和融合是个长期过程,很难一蹴而就。因此,发展人工智能要充分考虑到人工智能技术的局限性,充分认识到人工智能重塑传统产业的长期性和艰巨性,理性分析人工智能发展需求,理性设定人工智能发展目标,理性选择人工智能发展路径,务实推进人工智能发展举措,只有这样才能确保人工智能健康可持续发展。

重视固本强基的原创研究。人工智能前沿基础理论是人工智能技术突破、行业革新、产业化推进的基石。面临发展的临界点,要想取得最终的话语权,必须在人工智能基础理论和前沿技术方面取得重大突破。我们要按照习近平总书记提出的支持科学家勇闯人工智能科技前沿“无人区”的要求,努力在人工智能发展方向和理论、方法、工具、系统等方面取得变革性、颠覆性突破,形成具有国际影响力的人工智能原创理论体系,为构建我国自主可控的人工智能技术创新生态提供领先跨越的理论支撑。

构建自主可控的创新生态。我国人工智能开源社区和技术创新生态布局相对滞后,技术平台建设力度有待加强。我们要以问题为导向,主攻关键核心技术,加快建立新一代人工智能关键共性技术体系,全面增强人工智能科技创新能力,确保人工智能关键核心技术牢牢掌握在自己手里。要着力防范人工智能时代“空心化”风险,系统布局并重点发展人工智能领域的“新核高基”:“新”指新型开放创新生态,如产学研融合等;“核”指核心关键技术与器件,如先进机器学习技术、鲁棒模式识别技术、低功耗智能计算芯片等;“高”指高端综合应用系统与平台,如机器学习软硬件平台、大型数据平台等;“基”指具有重大原创意义和技术带动性的基础理论与方法,如脑机接口、类脑智能等。同时,我们要重视人工智能技术标准的建设、产品性能与系统安全的测试。特别是我国在人工智能技术应用方面走在世界前列,在人工智能国际标准制定方面应当掌握话语权,并通过实施标准加速人工智能驱动经济社会转型升级的进程。

推动共担共享的全球治理。目前看,发达国家通过人工智能技术创新掌控了产业链上游资源,难以逾越的技术鸿沟和产业壁垒有可能进一步拉大发达国家和发展中国家的生产力发展水平差距。在发展中国家中,我国有望成为全球人工智能竞争中的领跑者,应布局构建开放共享、质优价廉、普惠全球的人工智能技术和应用平台,配合“一带一路”建设,让“智能红利”助推共建人类命运共同体。

(作者:中央人民政府驻香港特别行政区联络办公室副主任、中国科学院院士)

人工智能在健康管理领域的发展主要集中在以下六个方面

人工智能在医疗领域得以迅速应用和发展的关键,实际上在于医疗大数据的积累和数据库的发展。而这些数据并不仅仅产生于医学影像的获得或者医院诊断的信息录入,还可以在人们的日常生活中随时随地产生。因此,未来的医疗大数据实际上是在人们对自身进行日常健康管理的过程中产生和集中起来的。

在此基础上,通过人工智能的算法,人们不仅可以对个人的健康状况进行精准化的把握,还可以通过大数据把握传染性和季节性疾病的发展状况,从而做出相应的应对措施。从某种程度上讲,这或许是人工智能与人类日常生活融合最为密切的一个领域,可以为人类提供高质量、智能化与日常化的医疗护理服务。从目前的整体发展情况来看,依托大数据和算法技术,人工智能在健康管理领域的发展主要集中在以下六个方面。

第一,大数据与流感预测。早在2008年,谷歌就已经推出了流感预测的服务,通过检测用户在谷歌上的搜索内容就可以有效地追踪流感爆发的迹象。例如,“头痛发烧”“恶心”和“打喷嚏”等关键词的搜索次数在某一区域内日常约为每日20万次,当某一时间段这些关键词的搜索次数急剧上升到60万至80万时,谷歌服务器就会判断必须对疫情进行预判和警戒。谷歌还会通过分析用户的电子邮件,并将用户的搜索情况与之关联,从而更加精确地研判出这类疫情的发生。此外,谷歌基线研究项目(GoogleBaselineStudy)希望建立一个庞大的人类健康数据库,找出完全健康的人类基因模型。根据这个数据库,只要发现用户的健康数据与模型有出入,谷歌就会提醒用户可能出现的健康问题,使其进行预防。

谷歌健康(GoogleFit)平台开发了一系列可穿戴设备,包括衣服、鞋子、手环、眼镜等。这些产品都在不断收集海量的生物统计数据并与谷歌基线研究结合起来,以提供更加强大的应用。不难看出,结合大数据和互联网技术,我们可以对某些传染性疾病进行较为及时、准确的监控和预防,并在建立一些数据库、智能分析模型后,使得这些活动更为便捷和迅速。

第二,机器学习与血糖管理。2015年11月,杂志发表的一篇文章阐释了机器学习应用于营养学的积极意义。该研究团队首先对800名志愿者进行标准化饮食试验,采集了他们的血样、粪便,收集了血糖、肠道菌群等多项数据,并使用调查问卷等形式收集饮食、锻炼以及睡眠数据。研究者发现,即便食用同样的食物,不同人依然会产生具有相当大差异的反应。因此,以往通过直观经验而得出的一般性的饮食摄入建议,往往都是不能与每个人完美匹配的。

接着,研究者开发了一套“机器学习”算法,通过分析学习人们的肠道菌群特征与餐后血糖水平之间的关联,从而尝试对标准化食品进行血糖影响预测。经过800名志愿者的数据“训练”之后,这套机器学习算法所建立起的预测模型,在新的一批志愿者身上得到了有效验证。此后,研究团队进一步验证了机器学习能否进行健康饮食指导。他们对新的一组志愿者进行分组,使其分别采用机器学习算法给出的膳食建议,以及医生与营养专家的建议。其中膳食建议也分为了一周的“健康饮食”与一周的“不健康饮食”两种。

通过细致比较,他们发现机器学习算法给出了更精准的营养学建议,能够更好地控制餐后血糖水平,传统的专家建议则稍逊一筹。不难看出,机器学习的作用在这一研究中得到了充分的体现,在精准营养学上,人工智能可以帮助用户进行精确的辅助分析,从而使用户做出更为合适的选择。

第三,数据库技术与健康要素监测。位于都柏林的Nuritas生物科技公司是一家将人工智能与分子生物学相结合的初创公司,该公司通过建立食品数据库来识别肽(食品类产品中的某些分子)是否可以作为食物的补充或新的成分。通过机器学习的运用,Nuritas可以为食品制造企业提供数据挖掘服务,还计划未来推出面向消费者的个性化营养方案制定产品。

在中国,人工智能生物科技初创公司碳云智能(iCarbonX)也在从事相关的研发。该公司试图建立一个健康大数据平台,该平台最终可以利用人工智能技术对这些数据加以处理,帮助人们进行健康管理。不难看出,无论是食品数据库还是健康大数据平台,都旨在通过大数据与人工智能技术来对人体的健康要素进行监测、记录,并通过对这些记录和数据的分析得出更加准确和有效的健康管理计划。

第四,健康管理与生活品质提升。随着人们生活水平的不断提升,对于自身健康的严格管理将成为很多人的日常诉求。如果能够收集到每个人的各方面的健康数据,以这些数据为基础,通过人工智能的算法,对健康的日常管理就有可能轻松实现。相当一批科技公司正在从事相关的研究。美国的Welltok公司就是其中的一家。

该公司的核心产品是CaféWell健康管理优化平台(CaféWellHealthOptimizationPlatform)。该产品的一个核心理念是,医疗健康服务并不是只有病人才需要,普通人也需要时刻关注和维护自身的健康。通过技术开发和服务拓展,CaféWell平台可以协助医疗保险商和人口健康管理者引导并激励用户改善健康,并且可以针对个人提供精确的健康服务。

IBM公司也投资了WellTok,并将其开发的Watson平台融入CaféWell,借助Watson的人工智能认知能力来理解复杂的人类语言,对海量数据进行快速的运算,从而为用户提供健康管理、慢性病恢复和健康食谱等方面的指导。

当然,与CaféWell类似的其他技术平台和服务也在投入开发应用,如前所述,这种趋势源自人们对自身健康的更高需求在医疗服务之外也需要健康服务作为补充。

第五,人脸识别与情绪分析。位于圣地亚哥的初创企业Emotient致力于通过面部表情分析来判定人的情绪。Emotient起源于加利福尼亚大学的“机器感知实验室”(MachinePerceptionLab),其最终目的是打造一套“无所不在”的人类情感分析系统。Emotient利用摄像头来捕捉、记录面部肌肉运动,并利用其人工智能计算模型来分析面部表情,可以在数秒内解读出面部表情所代表的意义。这种技术的应用领域其实很广泛,当其被用于医疗领域,可以借以判断病人的感受。目前,Emotient已经能够辨别出喜悦、悲伤、愤怒、惊讶等基础表情,还能够分析出一些更细微和复杂的表情,比如焦虑以及沮丧。2016年1月,苹果公司宣布收购了这家人工智能技术公司,这在某种程度上也说明了这项技术的发展潜力。

第六,医学分析与人类寿命的预测。人们对健康的重视,实际上就是为了追求更长且更有品质的寿命。如果能够对于自身的寿命有准确的预期,人们或许能够更好地对待自身的生活。当然,这也可能导致一些消极的后果。但是,对于医生而言,如果能够把握病人的寿命预期,便可以更好地确定相应的治疗方案。目前,澳大利亚的科学家已经开始利用人工智能分析医学影像来预测人的健康状况和寿命。他们使用机器学习算法分析了资料库中48名60岁以上成人胸部的CT扫描图像。

通过分析这些图像数据,人工智能的算法预测了这些志愿者在五年内死亡的概率。通过与实际情况进行对比,这一算法预测的准确率接近70%,与医学专家的预测准确率相当。当然,目前由于研究样本较少,人工智能算法预测的准确率还没有超过人类专家。但是,人工智能的发展依赖于数据样本的扩大,如果增加所分析的患者数量和诊断的部位数,就可以获得更精确的预测率,从而帮助医生尽早诊断并进行治疗。

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇