博舍

人工智能的三个分支:认知、机器学习、深度学习 人工智能的三个级别包括哪些

人工智能的三个分支:认知、机器学习、深度学习

人工智能进入了一切领域——从自动驾驶汽车,到自动回复电子邮件,再到智能家居。你似乎可以获得任何商品(例如医疗健康,飞行,旅行等),并通过人工智能的特殊应用使其更加智能。所以除非你相信事件具有终结者般的转折,你可能会问自己,人工智能能够预示着工作场所或整体的业务线的什么利益。

人工智能主要有三个分支:

◆ ◆◆

1)认知AI(cognitiveAI)

认知计算是最受欢迎的一个人工智能分支,负责所有感觉“像人一样”的交互。认知AI必须能够轻松处理复杂性和二义性,同时还持续不断地在数据挖掘、NLP(自然语言处理)和智能自动化的经验中学习。

现在人们越来越倾向于认为认知AI混合了人工智能做出的最好决策和人类工作者们的决定,用以监督更棘手或不确定的事件。这可以帮助扩大人工智能的适用性,并生成更快、更可靠的答案。

◆◆◆

2)机器学习AI(MachineLearningAI)

机器学习(ML)AI是能在高速公路上自动驾驶你的特斯拉的那种人工智能。它还处于计算机科学的前沿,但将来有望对日常工作场所产生极大的影响。机器学习是要在大数据中寻找一些“模式”,然后在没有过多的人为解释的情况下,用这些模式来预测结果,而这些模式在普通的统计分析中是看不到的。

然而机器学习需要三个关键因素才能有效:

a)数据,大量的数据

为了教给人工智能新的技巧,需要将大量的数据输入给模型,用以实现可靠的输出评分。例如特斯拉已经向其汽车部署了自动转向特征,同时发送它所收集的所有数据、驾驶员的干预措施、成功逃避、错误警报等到总部,从而在错误中学习并逐步锐化感官。一个产生大量输入的好方法是通过传感器:无论你的硬件是内置的,如雷达,相机,方向盘等(如果它是一辆汽车的话),还是你倾向于物联网(InternetofThings)。蓝牙信标、健康跟踪器、智能家居传感器、公共数据库等只是越来越多的通过互联网连接的传感器中的一小部分,这些传感器可以生成大量数据(多到让任何正常的人来处理都太多)。

b)发现

为了理解数据和克服噪声,机器学习使用的算法可以对混乱的数据进行排序、切片并转换成可理解的见解。(如果你想吓跑你的同事,请先听听常用的不同排序算法)

视频全长5:50,请在WiFi条件下观看,土豪随意

从数据中学习的算法有两种,无监督算法和有监督算法。

无监督算法只处理数字和原始数据,因此没有建立起可描述性标签和因变量。该算法的目的是找到一个人们没想到会有的内在结构。这对于深入了解市场细分,相关性,离群值等非常有用。

另一方面,有监督算法通过标签和变量知道不同数据集之间的关系,使用这些关系来预测未来的数据。这可能在气候变化模型、预测分析、内容推荐等方面都能派上用场。

c)部署

机器学习需要从计算机科学实验室进入到软件当中。越来越多像CRM、Marketing、ERP等的供应商,正在提高嵌入式机器学习或与提供它的服务紧密结合的能力。

◆◆◆

3)深度学习(DeepLearning)

如果机器学习是前沿的,那么深度学习则是尖端的。这是一种你会把它送去参加智力问答的AI。它将大数据和无监督算法的分析相结合。它的应用通常围绕着庞大的未标记数据集,这些数据集需要结构化成互联的群集。深度学习的这种灵感完全来自于我们大脑中的神经网络,因此可恰当地称其为人工神经网络。

深度学习是许多现代语音和图像识别方法的基础,并且与以往提供的非学习方法相比,随着时间的推移具有更高的准确度。

希望在未来,深度学习AI可以自主回答客户的咨询,并通过聊天或电子邮件完成订单。或者它们可以基于其巨大的数据池在建议新产品和规格上帮助营销。或者也许有一天他们可以成为工作场所里的全方位助理,完全模糊机器人和人类之间的界限。

人工智能通过在其上使用的数据规模来生存和改进,这意味着不但我们能够随着时间的推移看到更好的人工智能,而且它们的发展将会围绕着那些可以挖掘最大数据集的组织。

发展人工智能 需要经历的三个重要阶段

如果说第一阶段是因为对人工智能的一时兴起,而带来了第一波高潮,但是原来第一阶段的人们可能不研究人工智能了,那么这第二阶段的高潮,可以说是大企业带来的,大企业在这个阶段发挥出了规模优势,是推动人工智能发展第二波高潮的主要力量,同时也是动力。所以第二阶段也可以叫可以说是感知智能阶段。

第三阶段

前面两个阶段,可以简单的理解为起源和发展,那么到了第三阶段,目标就很明显了。经过第一阶段和第二阶段的研究与进步,到了第三阶段自然就是要对前两个阶段的东西进行实际落地应用,毕竟研究了许久,为的就是这一刻。随着人工智能技术的发展和数据积累,相信大部分行业会逐渐发现人工智能技术好像到达了天花板,短期之内无法再通过研究加强人工智能,于是企业便把目标转向人工智能深入到具体应用上。所以在第三阶段,数据分布的情境化特性使得人工智能在特定情境下的垂直发展成为了可能。

那么还有第四阶段吗?目前来看是没有的,我们需要克服目前第三阶段的困难才能前进。企业们要挖掘人工智能在实际场景中应用的可能性,让机器具备能理解思考、像人一样能够学习和推理的能力。所以,我们可以看见目前有越来越多基于人工智能的科技产品诞生,例如它不仅能下围棋,还可以当医生、当老师,甚至做律师,可以在很多方面,不光从是代替人类做简单重复的机械式体力劳动,还可以替代人类很多纷繁复杂的脑力劳动,释放出人类更聪明的智慧和灵感。所以第三阶段也叫实际场景应用阶段,当然,也可以以人工智能的角度来看,那就是认知智能阶段,这里的认知智能,意思是让人工智能去学习、学会像人类一样的思考,具有自己认知的能力。

当然,随着人工智能在三个阶段里不断的完善发展,目前各个行业基本都会有人工智能的影子在,相信大家也都有接触过,那么这里我们就来举几个人工智能在部分行业的应用。

人工智能应用场景举例

比如智能家居,想必也是大家听到最多的一个词,智能家居是以住宅为平台,基于物联网技术,由硬件、软件系统、云计算平台构成的一个家居生态圈,其中包括家居生活中多种产品,涵盖多个家庭生活场景。虽然大家听到非常多的智能家居,但是呢,我国智能家居市场其实正在处于启动阶段,尚未进入爆发期,而且产品渗透率较低,并不是大家想象的那般已经非常普及了,但是可以想象,人工智能技术肯定会为智能家居行业带来颠覆性的突破。

再例如智能安防,不要以为安防与我们无关,这其实是错的。安防在我们的身边到处都是,但是安防为什么能和人工智能扯上关系呢?那是因为随着物联网技术的发展,传统简单被动的安防形式已无法满足日常多样化的生活和工作场景,比如现在越来越高明的骗术和利用高科技偷窃等,与其被动,不如我们主动防护,所以在大数据、人工智能等技术的带动下,安防向城市化、综合化、主动安防方向发展,智能安防成为当前发展的主流趋势,其应用覆盖了金融、交通、教育等行业,囊括银行机构、政府、学校、家庭等场所。把安防赋予人工智能的强大能力,让我们能够持续的在安全环境中生活。

人工智能的未来展望

总的来说,依据人工智能这几十年的发展规律,是完全符合那三个阶段的。当前,人工智能可以说是非常的火爆,就比如现在正在举办的2021世界人工智能大会,在大会上就出现了非常非常多的优秀的人工智能实际落地场景,可谓是百花齐放。最后说回我们国内,单纯看我们国内的话,其实还是处于第二阶段的,也就是还处在成长期。因为目前人工智能在技术、应用、安全、隐私以及道德伦理等方面,还有不少问题需要不断完善。

人工智能的发展是为了满足人民的美好生活,工具为人服务,人工智能是人创造的,也必须为人服务,要有利于维护社会公平正义,解决发展不平衡、不充分的问题,推动全体人民的共同富裕、共同发展。未来,希望各大企业都可以围绕着“满足人民的美好生活”为目标,不断的在人工智能里深入研究,并基于人工智能开发出为人民服务的实用工具,早日解决发展不平衡、不充分的问题,推动全体人民的共同富裕、共同发展。返回搜狐,查看更多

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容,一经查实,本站将立刻删除。

上一篇

下一篇